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Abstract 

A novel technique, ca l led heredi tary p a r t i t i o n s , is 
Introduced. I t permits the r igorous proof tha t , in 
a given axiomat izat ion, cer ta in states can never be 
reached. The technique is implemented in a computer 
program, DISPROVER, and is applied to robot wor lds. 
DISPROVER cooperates wi th a path- f ind ing program when 
the l a t t e r encounters d i f f i c u l t i e s . 
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1 ■ In t roduc t ion . 

Theorem proving and problem solv ing programs are some
times successful in f ind ing a proof to an actual the
orem, or in solv ing a problem which does have a solu
t i o n . On the other hand, presented wi th an expression 
which is not a theorem, or wi th an unsolvable problem, 
the programs are general ly incapable of d iscover ing, 
in a pos i t i ve sense, that the expression Is not a the
orem, or that the problem is indeed unsolvable. The 
usual diagnost ic would be: "I cannot solve the prob
lem, because my resources are exhausted, or because I 
am stuck somewhere. However, the problem may be solva
b le . I j us t don' t know." 

We are interested in developing programs which, given 
a problem, w i l l t ry to solve i t . I f they cannot solve 
the problem, they w i l l t r y to show that it cannot be 
solved, A program which performs the last funct ion 
w i l l be ca l led a disproving program. To bu i ld such 
programs, we use a technique which we named heredi tary 
p a r t i t i o n s ■ This technique has some general i ty and 
forms our basis for a program, DISPROVER, which has 
been applied to disprove goals in robot worlds, i . e . 
DISPROVER proves r igorously tha t , for a given set of 
axioms, operators and an i n i t i a l wor ld, there is abso
l u t e l y no way to a t ta in some par t i cu la r goa l . 

DISPROVER also cooperates w i th another program, LAWALY, 
which t r i e s to f ind paths to goal s ta tes. Sometimes, 
when LAWALY cannot solve a (solvable) problem, DIS
PROVER -which c lear ly cannot disprove the solvable 
problem- gives LAWALY addi t iona l information which per
mits a so lu t ion to be found. 

We sha l l now describe some addi t ional mot ivat ion for 
our work, discuss the re lated technique of heredi tary 
propert ies -which is a degenerate case of heredi tary 
p a r t i t i o n s - and give several examples of d isproofs , 
terminat ing wi th examples of cooperation between DIS
PROVER and LAWALY. 

2. Why Disproofs? 
Somehow, it is much more romantic and chal lenging to 
show tha t , in the whole wide wor ld , there is absolute
ly no way that something can be proved, than to f ind 
one, of possibly many, proofs to some theorem. More
over, work on robots introduces a p rac t i ca l -and neces
sary- app l ica t ion of d isproving programs. In robot 
problem so lv ing systems, parts of the physical wor ld , 
inc lud ing some of the robot's c a p a b i l i t i e s , are simu-
lated as a model. It is desirable that the model con
form reasonably c losely to the physical wor ld , other
wise the robot may " t h i nk " that it can do some things 
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-which are in fact impossible- or cannot do some other 
things -which are in fact poss ib le - . For example, in 
[ l ] , the robot can be in two d i f f e ren t places at the 
same time.2 ,3 

3. Some Techniques for Disproofs. 
Many systems of i n te res t , such as predicate ca lcu lus, 
are undecidable, l , e . for a given statement in the sys
tem it Is not possible to determine, in general, whether 
a given statement in the system can or cannot be proved. 
I f , in a par t i cu la r case, we wish to show that a s ta te
ment is not a consequence of some axioms, the standard 
procedure is as fo l lows: f ind a model in which the 
axioms are t r ue , but the statement is known to be f a l se . 
Such model bu i ld ing is t r u l y an a r t , and is acquired 
through much experience. The automatic bu i ld ing of d i s 
proving models appears beyond the present state of the 
a r t . 

Since predicate calculus has been of great in terest to 
workers in a r t i f i c i a l i n te l l i gence , some addi t iona l 
comments ore in order. Given a well-formed formula 
wff in predicate ca lcu lus, three exclusive cases are 
possib le: 
a) wff is a theorem. 
b) iw f f is a theorem. 
c) neither a) or b) . In th is case, -iwff is also in 
category c ) , This last case is by far the most common, 
in the sense tha t , given a f i n i t e vocabulary of con
s tan ts , var iab les , funct ion and predicate names, the 
number of well-formed formulae of a given length in 
category c) far surpasses the number of formulae in 
categories a) and b) , 

Given a wff in categories a) or b ) , a theorem prover 
based on reso lu t ion , for example, can determine a f ter 
a f i n i t e time -which, in general, cannot be calculated 
in advance- in which of the two categories the wff be
longs. To obtain th is r e s u l t , the theorem prover could 
time-share i t s e f f o r t s between t r y ing to prove the in-
consistencies of both w f f and -|wff. However, if the 
wff Is in category c ) , then usual ly the theorem prover 
w i l l go on forever. In only very few cases w i l l the 
theorem prover stop because no new clauses are genera
ted: a disproof of the wff has then been obtained. 

A disproving program in predicate calculus would at 
tempt to determine that a wff is not in category a ) . 
The above discussion shows that present theorem provers 
are at best very weak disproving programs. 

It should also be noticed that a proof of the a t ta ina
b i l i t y of the negation of a statement does not imply 
that the statement i t s e l f can be disproved. For exam
p le , if a l i g h t can be turned on and o f f (at d i f f e ren t 
times) then the statement STATUS(LIGHT ON) and i t s nega
t i on -STATUS(LIGHT ON) are both a t ta inab le , and hence 
nei ther can be disproved. 

While the theorem proving approach gives resu l t s in far 
too few cases, and model bu i l d ing is too often ad-hoc , 
a d isproving technique wi th some genera l i ty has been 
ca l led heredi tary propert ies (see [4] for some examples). 
Consider a checkerboard from which we remove two oppo
s i t e squares. This mut i la ted checkerboard cannot be 
covered by dominoes. To obta in a d isproof , we not ice 
that whenever we add another domino on the checker
board, the number of white and black squares that have 
been covered remains the same. This property - the 
equa l i ty between the number of black and white squares 
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that have been covered- is hered i ta ry , that is it does 
not change ae any allowable move -pu t t i ng a domino on 
the checkerboard- is performed. The disproof is com
plete when we not ice t h a t , in the mut i la ted checker
board, the number of black squares does not equal the 
number of white squares, ( the d i f ference is two.) 

The technique of heredi tary propert ies can be summa-
rized as fo l lows : 
- the o r i g i n a l s ta te (s ) of the model has (have) some 
property, 

-whenever a state has th i s proper ty , a l l states ob
tained from it by a l l al lowable moves s t i l l have th i s 
proper ty , 

- the goal state which we are t r y i n g to a t t a i n does not 
have th i s proper ty . 

Hence the goal is unat ta inab le . W.W.W. (what we want
ed'.) 

4 . Hereditary P a r t i t i o n s . 

Hereditary p a r t i t i o n s general ize the basic idea of 
heredi tary p roper t i es . The technique of heredi tary 
pa r t i t i ons can be summarized as fo l lows : 
- c a l l the set of a l l states that can be achieved from 
the o r ig ina l s ta te (s ) by a l l lega l sequences of moves 
the a t ta inab le wor ld . 

-the a t ta inab le world can be pa r t i t i oned in to d i s j o i n t 
p a r t i t i o n s . Hence each o r i g i n a l s tate is in some par
t i t i o n , 

- the goal state which we are t r y i n g to a t t a i n does not 
belong to any of the p a r t i t i o n s . Hence the goal is 
unat ta inab le . 

Obviously, heredi tary proper t ies correspond to the case 
where there is only one p a r t i t i o n . 

We not ice that if we apply a lega l move to a state in 
some p a r t i t i o n , we obta in a state in the same or some 
other p a r t i t i o n . We can say that p a r t i t i o n s are closed 
under legal moves. In f a c t , as long as t h i s closure 
property is maintained, we might j us t as we l l add to 
the pa r t i t i ons some unattainable states ( i . e . states 
which are "meaningless") i f that makes l i f e s impler. 
Even fu r the r , to the p a r t i t i o n s containing some a t t a i n 
able stares we can add some p a r t i t i o n s containing no 
at ta inable s ta tes . The disproof is s t i l l complete i f 
t h i s expanded set of p a r t i t i o n s is closed under legal 
moves - i . e . from one p a r t i t i o n in the set any legal 
move leads us to the same or some other p a r t i t i o n in 
the set- and if the goal s tate that we are t r y i ng to 
disprove is not in any of the p a r t i t i o n s . 

In p rac t i ce , the problem i s , of course, to bu i l d the 
appropriate p a r t i t i o n s . We sha l l see an example in the 
next sec t ion . 

5. Example of a Disproof using Hereditary P a r t i t i o n s . 

We sha l l consider robot worlds axiomatized in a manner 
s imi la r to that used in [ l ] . The world is described 
as a set of predicates, for example HEXTT0(R0BOT B0X2) , 
Moves in the world are operators which must sa t i s f y 
some precondi t ions, and the i r e f fec t on the world is 
speci f ied by a delete set and an add se t . 

Let us consider a subworld of the world in [ l ] : a r o 
bot and three boxes, B0X1, B0X2 and B0X3, in a room. 
The only re levant operators fo r our problem are (some-
what s i m p l i f i e d from [ l ] ) . 
go to (ob jec t ) , meaning: robot goes next to an ob jec t . 
Precondi t ions: ONFLOOR. 
Delete se t : ATROB0T($) NEXTTO(ROBOT $ ) * . 
Add set : NEXTTO(ROBOT o b j e c t ) . 
push(object l ob jec t2 ) , meaning: robot pushes o b j e c t l 
next to ob jec t2 . 
Precondi t ions: PUSHABLE(objectl) A 0NFL0OR * NEXTTO 
(ROBOT o b j e c t l ) . 
*$ means every th ing. At least that was the meaning 
before a series of devaluations'. 

Delete se t : ATROBOT($) AT(object l $) NEXTTO(R0BOT $) 
NEXTTO(objectl $) NEXTTO($ o b j e c t l ) . 
Add se t ; NEXTTO(objectl object2) NEXTT0(object2 ob
j e c t l ) NEXTT0(R0BOT o b j e c t l ) . 

We assume that boxes are PUSHABLE, that the robot could 
climb on and o f f boxes, and possibly do a l o t of other 
mischievous actions, none of which would help her get 
two boxes next to each other . We now wish to solve the 
problem: get the three boxes next to each other, i . e . 
f i nd a path from an o r i g i n a l world which inc ludes: 
ONFLOOR ATROBOT(A) AT(B0X1 A l ) AT(B0X2 A2) AT(BOX3 A3) 
to a goal state which includes: 
NEXTT0(B0X1 B0X2) NEXTT0(B0X2 B0X3). 
A so lu t ion i s : goto(BOXl), push(BOXl B0X2), goto(B0X3), 
push(B0X3 B0X2). 

However, a more symmetric descr ip t ion of the goal state 
answering the statement " the three boxes are next to 
each other" would be: 
NEXTTO(BOXl B0X2) NEXTT0(B0X2 B0X3) NEXTTO(BOX3 BOXl). 
We sha l l now give a disproof of th i s goal , i . e . show 
that it cannot be achieved. 

The p a r t i t i o n s are described in terms of some anchor 
predicates and the i r negations. As a f i r s t choice, 
DISPROVER chooses the three predicates from the goal as 
anchors. We sha l l abbreviate these predicates as P12, 
P23 and P31. The o r i g i n a l state belongs to the p a r t i 
t i o n ; 
P a r t i t i o n l ; "IP12 ^ "P23 A -P31. 
This p a r t i t i o n contains a l l s ta tes , whether a t ta inable 
or not , which sa t i s f y -P12 A nP23 and A i P 3 1 , i . e . 
which do not contain any predicate of the form: 
NEXTTO(BOX., B O X . ^ 3 ) + 1 ) , i - 1,2,3. 

If the robot could juggle she would move i n to a new 
state which would presumably s t i l l be in the p a r t i t i o n . 
A l l goto operations do not , in t u r n , make her go out 
of the p a r t i t i o n . But l e t us consider: push(BOXl B0X2). 
This operator jl£ appl icable to p a r t i t i o n l -although not 
to the o r i g i n a l wor ld , because the robot does not s ta r t 
next to B0X1-, since the s ta te : 
NEXTT0(R0BOT BOXl) 1V12 -T23 -P31 
is a member of p a r t i t i o n l . Hence by applying push(BOXl 
B0X2) we move out of p a r t i t i o n l , and must create a new 
p a r t i t i o n 2 , spec i f ied by: 
P a r t i t i o n 2 : P12 A 1P23 A 1P31. 
S i m i l a r l y , we create p a r t i t i o n 3 
P a r t i t i o n 3 : TP12 AP23 A * 3 1 , and 
P a r t i t i o n ^ : TP12 A iP23 A P31. (see Figure 1.) 
From p a r t i t i o n 2 , we can e i ther go to p a r t i t i o n l by 
doing, for example, push(B0X2 B0X3); or stay in p a r t i -
t ion2 by doing, among other p o s s i b i l i t i e s , goto(BOX2); 
or move to a new 
P a r t i t i o n 5 : P12 A P23 A - P 3 1 , 
by applying push(B0X3 BOX2) to the state inc lud ing : 
NEXTTO(R0BOT B0X3) P12 P23 TP31 
of p a r t i t i o n 2 . S i m i l a r l y , we create: 
P a r t i t i o n 6 : P12 TP23 P31, and 
P a r t i t i o n ? : -P12 P23 P31. 

At that po in t , however, no new p a r t i t i o n s can be created'. 
Every legal move e i the r leaves the robot in the same 
p a r t i t i o n , or takes her to one of the other p a r t i t i o n s . 
Since the goal s ta te is not in any of the p a r t i t i o n s , 
the disproof is complete. W.W.W. 

DISPROVER, programmed in LISP 1.5 and run in terpre ted 
on the Un ivers i ty of Texas CDC 6600 found the above 
d isp roo f , fo r the complete world of [ l ] , in about 7 
seconds. 

Another d isproof , in the world of [ l ] , concerns the 
goa l : AT(B0X1 A) STATUS(LIGHTSWITCHl ON), s t a r t i n g 
from the o r i g i n a l s tate which inc ludes: AT(B0XL A) 
STATUS(LIGHTSWITCH1 OFF). The robot needs to cl imb on 
BOXl to turn on LIGKTSWITCH1, but she is then incapable 
of re tu rn ing BOXl to i t s o r i g i n a l l oca t i on . The d i s 
proof , by DISPROVER, took about 3 seconds; three p a r t i -
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t ions were b u i l t using the anchor predicates from the 
goal s ta te . 

5.1 Classes of Impossible States. 

Given some axiomatizat ion of a wor ld, namely an i n i 
t i a l s tate and a set of legal moves -operators- , we 
can d is t ingu ish broadly between two main classes of 
impossible goal s ta tes : 
a) goals inc lud ing a subgoal which is not sa t i s f i ed 
in the i n i t i a l state and does not occur on the add 
set of any operator. For example, ii the robot can
not pa in t , and if COLOR(BOX1 BLUE) is true i n i t i a l l y , 
then a goal inc lud ing COL0R(B0Xl PINK) cannot be 
achieved, and is disproved easi ly by DISPROVER using 
only one p a r t i t i o n . 

A va r ia t i on of th i s class of impossible tasks occurs 
when a subgoal, subgoal. , of the goal is sa t i s f i ed in 
the i n i t i a l world but must be destroyed, i . e . de le ted, 
to achieve some other subgoaln . Moreover, once de
le ted , subgoal cannot be added by any operator. The 
las t example in section 5 above is a case in po in t . 
b) Each subgoal. of the goal can be achieved indepen
den t l y , but the simultaneous rea l i za t ion of a l l sub-
goals is impossible, due to "s ide e f fec ts " caused by 
the delete sets . The main example in section 5 of the 
symmetric NEXTTO(BOX. BOX.) is a case in po in t . 

In p rac t i ce , what is most fun to do is to take someone 
e lse 's world and disprove goal states which " i n t u i 
t i v e l y " should be rea l i zab le ! 

5.2 Select ion and Test ing of Operators. 

Given a set {U } of anchor predicates in an attempted 
d isproof , DISPROVER f i r s t discards a l l operators which 
do not add or delete some predicate in {U} , since these 
operators are c lea r l y i r r e l evan t . The i n i t i a l world 
is intersected wi th {V"} " {P|P'e{u)v I P E ( U } } to give 
the f i r s t p a r t i t i o n . A l l remaining ( re levant) opera
to rs are applied to t h i s p a r t i t i o n in an attempt to 
create new p a r t i t i o n s . Whenever a new p a r t i t i o n is 
created, a test is made to see whether the goal state 
i s i n the p a r t i t i o n . I f i t i s , the disproof f a i l s , 
and DISPROVER w i l l t r y to bootstrap i t s e l f (sect ion 6.) 
Otherwise, the p a r t i t i o n is kept, and all relevant 
operators w i l l be applied to it to t ry and obtain yet 
fur ther new p a r t i t i o n s . In a r t i f i c i a l i n te l l i gence 
jargon, DISPROVER generates pa r t i t i ons b read th - f i r s t 
u n t i l the goal state is found -meaning the disproof 
f a i l ed for the given set of anchor predicates (see 
section 6) - or u n t i l no new pa r t i t i ons are found, which 
would then complete the d isproof . 

It should be noticed that w i th the form of precondi
t ions used, only a few simple set operations are need
ed to determine whether an operator is applicable to a 
p a r t i t i o n . I f precondit ions are generalized to a r b i 
t rary predicate calculus expressions, or include pro
cedures, then It may wel l be impossible to decide 
whether an operator is appl icable to a p a r t i t i o n , 

6. Bootstrapping in DISPROVER. 
The anchor predicates -which determine the p a r t i t i o n s -
are c ruc i a l for DISPROVER to be successful . In some 
cases, DISPROVER can change i t s set of anchor p red i 
cates. We sha l l use a disproof as an example of th is 
c a p a b i l i t y . We expand the world discussed previously 
v ia an operator gotoloc(loc), meaning: robot goes to 
locat ion loc tn room rm. 
Precondi t ions: ONFLOOR A 3rm( L0CINR00M(loc rm) ). 
Delete se t : ATROBOT($) NEXTTO(ROBOT $) . 
Add set : ATROBOT(loc). 
We w i l l disprove the state ATROBOT(Al), where Al was 
used in AT(B0X1 A l ) . As in [ l ] , there is no p red i 
cate LOCINROOM(A1 x) for any x, hence the task is ob
v iously impossible in the axiomat izat ion. 
The i n i t i a l anchor predicate is obtained from the goal : 

ATROBOT(Al). 
The i n i t i a l state is contained tn the p a r t i t i o n : 
P a r t i t i o n ! : lATROBOT(Al) . 
The s ta te : ONFLOOR LOCINR00M(Al x ) , for x anything, 
is a member of th is p a r t i t i o n l -even though it is unat
ta inab le - , and the operator goto loc(Al) can be applied 
to th i s s ta te , to obtain 
P a r t i t i o n 2 : ATROBOT(Al). 
Since the goal we are t r y i ng to disprove is a member of 
p a r t i t t o n 2 , the disproof f a i l s . 
At th i s po in t , DISPROVER t r i e s to extend i t s set of 
anchor predicates by adding to those already used, a l l 
those that were precondit ions of the operator(s) that 
permitted a t r ans i t i on to the p a r t i t i o n (here p a r t i -
t ion2) which we were hoping not to reach in the d is 
proof . The new set of anchor predicates i s : 
ATROBOT(Al) A ONFLOOR A L0CLNR00M(A1 x) . 
DISPROVER t r i e s again (and w i l l succeed wi th the d i s 
proof, otherwise we would not have chosen th is example'.) 
The o r i g i na l state is i n : 
P a r t i t i o n l : 1ATR0B0T(A1) A ONFLOOR A -L0CINR00M(Al x) . 
From th i s p a r t i t i o n , if the robot climbs on something, 
we can go t o : 
P a r t i t i o n 2 : -ATROBOT(Al) ft 10NFL00R ft "IL0CINR00M(A1 x) . 
However, no further pa r t i t i ons can be generated, com
p le t i ng the disproof , W.W.W. 

DISPROVER f i n a l l y f a i l s to f ind a disproof if -besides 
economic reasons of time l i m i t or memory exceeded- no 
new sets of anchor predicates are generated during boot-
s t rapping. 

7. LAWALY helped by DISPROVER. 

Up to t l i ts point we have seen DISPROVER working alone. 
Now we w i l l consider cooperation between LAWALY and 
DISPROVER. In some cases, LAWALY, the path- f inder we 
use to solve robot planning problems , does not f ind 
a path even though one e x i s t s . An example w i l l help to 
i l l u s t r a t e the d i f f i c u l t i e s she encounters. Figure 2 
shows the i n i t i a l and f i na l states of the robot wor ld . 
The robot must achieve: CLOSED(DOOR) A NEXTTO(ROBOT 
BOX), from the i n i t i a l s ta te : INR00M(R0B0T A) A CLOSED 
(DOOR) A INROOM(BOX B) . (See Figure 2.) LAWALY may 
decide to work f i r s t on the CLOSED(DOOR) cond i t i on , or 
f i r s t on the NEXTTO(ROBOT BOX) cond i t i on . Consider the 
f i r s t case. LAWALY f inds the door already closed in 
the i n i t i a l s ta te , so she wants to obtain the NEXTTO 
cond i t i on . To do tha t , she must enter Room B, and to 
do that go through the DOOR, But that would mean open
ing the DOOR, and hence undoing what she had already 
achieved, -CLOSED(DOOR)-, and so she decides to t ry the 
condit ions in the reverse order. To be NEXTT0(R0BOT 
BOX), she goes to DOOR, opens i t , goes through i t , and 
then goes next to BOX. At that po in t , she real izes 
that she must s t i l l close the DOOR, However, that would 
make her undo something she wanted, namely, NEXTTO(ROBOT 
BOX), so she qu i t s , having f a i l e d . 

The problem is now passed to DISPROVER. The anchor 
predicates are taken from the goal , and the fo l lowing 
p a r t i t i o n s are b u i l t : 
P a r t i t i o n l : -iNEXTT0(R0B0T BOX) CLOSED(DOOR). 
P a T t t t i o n 2 : 1NEXTT0(R0B0T BOX) lCLOSED(DOOR) . 
P a r t i t i o n 3 : NEXTTO(ROBOT BOX) -CLOSED(DOOR), 
P a r t i t i o n 4 : NEXTTO(ROBOT BOX) CLOSED(DOOR). 
Since Pa r t i t i on4 includes our goal , the disproof f a i l s . 
P a r t i t i o n 4 was obtained by applying the operator: 
gonext(ob.ject), Precondi t ions: (ONFLOOR) A 3x(INR00M 
(ROBOT x) A INROOM(object x) ), to the state interme-
d ta r y - s ta te : ONFLOOR A INRO0M(R0B0T B) A INR00M(B0X B) . 
DISPROVER suggests to LAWALY that the o r i g i n a l problem 
might be solved by s p l i t t i n g It up in to two successive 
problems. The f i r s t problem ie to go from the i n i t i a l 
state to a state containing intermediary-state above; 
the second problem is to go from there to the f i n a l 
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s t a t e . IAWALY does in fact solve the o r i g i n a l problem 
in th i s way, 

8. A Col laborat ive Fa i l u re . 
We now describe a solvable task which is not solved 
by the co l labora t ion between DISPROVER and LAWALY. 

The i n i t i a l and f i n a l states of the task are shown In 
Figure 3. The f i n a l s tate i s : ON(ROBOT BOX) A INROOM 
(ROBOT B) . Again, for essen t i a l l y the same reasons as 
before, LAWALY f a i l s to solve the problem. DISPROVER 
cannot f i nd a disproof (o f course, since none e x i s t s ) , 
but suggests the in te rmed ia ry -s ta te : 
INROOM(R0BOT B) A NEXTT0(ROB0T BOX). Once more, LAWALY 
f a i l s , again due to her stubbornness in i n s i s t i n g on 
f i n i s h i n g a subtask completely before s t a r t i ng another 
one. DISPROVER f inds no d isproof ( r i g h t l y so, since 
none ex is ts ) wi th the anchor pred icates: 
INRO0M(R0BOT BOX) NEXTT0(R0BOT BOX) ON(R0B0T BOX). 
Moreover, DISPROVER suggests the same intermediary-
state as before, hence the system would begin to re 
peat i t s e l f , and f a i l u r e is accepted. 

We are inves t iga t ing the p o s s i b i l i t y of LAWALY help ing 
DISPROVER by communicating informat ion on why she 
f a i l e d to f i nd a path, thereby helping DISPROVER to 
bu i l d a more adequate set of anchor predicates. The 
resu l t s are s t i l l sketchy and w i l l not be discussed 
here. 

9. The Importance of Ax iomat lzat ion. 

The problem of section ? could have been solved Imme-
d ia te l y by LAWALY, wi thout DISPROVER's help, if It had 
been fu r ther speci f ied as: 
CLOSED(DOOR) NEXTTO(ROBOT BOX) INROOM(ROBOT B). The 
problem of sect ion 8 could have been solved immediately 
by LAWALY if it had been fu r the r spec i f ied as: 
imOQM(ROBOT 3) 0N(ROBOT BOX) INROOM(BOX S). If could 
Also be solved immediately by LAWALY if the climbon 
operator had speci f ied as parts of i t s precondit ions 
that the robot could cl imb on an object only If both 
she and the object were in the same room. Thus, we 
can see that the d i f f i c u l t i e s encountered may be due 
to the axiomatizat ion used. 

Another way of reso lv ing the d i f f i c u l t i e s is to "patch" 
the goal descr ip t ions to include consequences such as: 
a robot is in the same room as the object she is on, 
e tc . Such a "patch" is a t r i v i a l program. 

10. Conclusions. 
The technique of hered i tary p a r t i t i o n s permits the 
d isproofs of statements that cannot be made t rue . We 
have applied th is technique to a d isproving program 
(perhaps the f i r s t such program in existence) which 
operates in simulated robot wor lds. DISPROVER can be 
used to ascertain that phys ica l l y undesirable states 
cannot occur in e model. We give examples of co l labo
r a t i o n between DISPROVER and a powerful robot planning 
system, LAWALY. The axiomat izat ion chosen for the 
world great ly inf luences the performance of the des
cr ibed systems. 
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Figure 1. Disproof of NEXTT0(B0Xl BOX2) * 
NEXTT0(B0X2 BOX3) * NEXYT0(B0X3 B0X1). 
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