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ABSTRACT

The decision-making component of a robot
that operates in a poorly known environment is
considered. The usual problem-solving approach
to handling a task is not suitable when each
decision may turn out in several ways, and
many decisions are needed to complete the task.
An alternative approach, which is based on
maximizing the estimated utility resulting
from each decision, is illustrated. The ex-
ample describes the plans, utility functions
and decision procedures of a simulated insect-
like robot called PERCY. In spite of its
limited ability to perceive and store informa-
tion about the environment, PERCY can achieve
satisfactory performance on its task.

1. Introduction

Robot experiments are currently carried on
in limited task environments. In such circum-
stances, it is feasible to provide the system
with comprehensive, if not perfectly accurate,
information covering those features of the en-
vironment that relate to its tasks. But to
depend on planning methods that require such
comprehensive information will hinder the ex-
tension of the work that is now being done.
Systems will have to be able to operate in en-
vironments where much of the knowledge that
would help in carrying out their tasks cannot
be provided beforehand, and where the approach
of storing detailed information as it is re-
ceived is unsatisfactory, because there is more
information than can be stored, or because it
changes too often.

Comprehensive models of the environment are
needed when planning is based on a problem-
solving approach. This approach makes an ex-
ploratory analysis of its model, and lays out
an intended course of action before the first
action is taken. But if it is likely that the
course of action will not reach its intended
outcome, because the system's knowledge of its
environment is incomplete or inaccurate, plan-
ning as though the outcome were certain can be
a waBte of effort.

The possibility of using multiple-outcome
operatars in planning has been discussed by
Munson® and by Fikes, Hart and Nilsson'.
However, these discussions make it appear that
multiple outcomes do not mesh well with a
problem-solving approach. Every plan with a
desired goal state as one of its possible
outcomes may have to assign low probability
to that outcome, because the conditions to be
met in getting there are not known, and not
because it is really improbable that the goal
will be reached. It is not obvious how to
formulate the decision process when that case
is likely to come up.

A different approach to the use of multiple-
outcome operators has_been described in a
series of articles?*®* This type of planning
focuses on intermediate objectives, and uses
probability estimates to take account of its
inability to predict how a course of action
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will turn out. The approach has been tested
in experiments with a simulated robot that has
only crude knowledge of its environment.

The design of the robot involves a hierarchy
of control, with selection of plans handled at
the highest level, and the direct control of
perception and action delegated to the lowest
level. Various types of planning can function
with this hierarchical organization. In the
experiments, the selection of plans has been
based on a policy of maximizing utility. Thus,
the robot's decision-making component has some
features of the "cost-effective executive"
described by Munson. But there are differences.
For one thing, utility is associated not with a
specific goal, but with events that occur in
the course of the task, and contribute to or
detract from the overall measure of the success
in performing the task.

The system that is simulated, in the experi-
ments with this approach, is an insect-like
robot called PERCY. Its task is to build a
nest, and that calls for a number of trips
about the environment to locate material and
add it to the evolving nest. PERCY can com-
plete the nest in a very large number of ways;
its problem is to find a way that keeps it
adequately fed, and still does not excessively
delay the completion, in the latest experiment,
PERCY must also minimize encounters with an
enemy — the stinger; the risk of painful stings
can be totally eliminated only at the cost of
an unacceptable slowing of progress on the nest.

PERCY has very poor knowledge of its environ-
ment. Its ability to perceive the objects of
importance in its task is limited, and it has
no map of the environment to use in locating
those objects. It finds its way about by means
of landmarks, which it can perceive at a dis-
tance. These landmarks help it to locate the
nest site, several places where material can
be found, and the entrances to the area where
its food can be hunted. A diagram of the en-
vironment is shown in Figure 1.

In this task, there is no experimenter whose
commands set problems for the robot to solve.
The situation is more like the playing of a
game, in which the course of action is limited
by and responsive to the moves of the opponent.
And in fact, decisions are treated as the
system's moves in a game played against the
environment. In this game, the environment
replies to a decision by choosing one of its
possible outcomes, and that outcome identifies
the stage of the task at which the next deci-
sion must be made. A game tree summarizes the
set of complete sequences of alternating deci-
sions and outcomes; each sequence describes a
possible instance of performing the system's
task. Each such complete sequence has associ-
ated with it a utility value, which measures
the quality of performance when the task ef-
fort has followed the course described by the
sequence. A component of the system produces
the system's strategy in the game, and the
success of the strategy is measured by the
average utility over a series of performances
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of the task.

The game played against the environment

differs in important respects from the usual
games played by programs*. For one thing, the
environment as opponent is not trying to win.
Therefore, it is not appropriate to plan as
though the opponent will make the move that is
least advantageous to the system. A policy of
maximizing expected utility takes the place of
minimaxing. Secondly, the payoffs occur during
the course of the task rather than at the end.
PERCY does not win or lose; its utility rises
when things go well, and falls in the contrary
case. And finally, it is not necessary for
the system to make a new decision each time it
must act. Each decision picks an operator that
controls a course of action, and a new deci-
sion is called for only when the outcome of the
previous one is determined.

2. The PERCY Simulations

There are three types of stages at which
PERCY must make a decision. The first type
occurs when an immediate objective of a pre-
ceding decision has been realized: material
has been picked up, or placed at the nest, or
food has been eaten. In the second type, new
information has been obtained: food has been
spotted while looking for material, or material
has been seen while hunting food, or the
Stinger has been sighted. The third type of
decision stage is reached when food is being
tracked and is lost to sight.

TABLE (1)

PERCY'S Outcome
Type of Outcome

1. Material added to nest, task continues

2. Material taken near landmark 1

3. Material taken near landmark 2
4. Material taken near landmark 3
5. Food eaten,

material not held

6. Food eaten, material held
7. Material seen while hunting food

8. Food seen while finding material

9. Stinger seen
10. Food lost to sight, material not held
11. Material added to nest, task done

12. Task abandoned

Decisions are again of three types. PERCY
can hunt for food. If it iB carrying material,
it can head for the nest to place the material.
And if it is not carrying material, it can try
to locate some.

A decision is fully specified by giving the
list of targets that are of interest while the

decision is being executed. The list contains
a primary target — food, material, or the

nest; it usually contains one or more secondary
targets. A secondary target may be one of the

landmarks used by PERCY in finding its way
around the environment. Also, either food or
material may be a secondary target when the
other is the primary one, and the Stinger will
be a secondary target when seeing it will call
for a decision whether to avoid it or not.

The outcomes of these decisions have des-
criptions similar to those of the decision
stages that arise when the outcomes are reach-
ed. In addition, there are two outcomes that
end the task; completion of the nest, or a-
bandonment of the task. Note that in general
a decision stage can be named by the outcome
that triggers it, and we will make no distinc-
tion hereafter between outcomes and decision
stages.

Table (1) gives a complete list of outcomes
for PERCY'S decisions. Also, for each outcome
that does not end the task, the decisions open
at that stage are listed.

and Decisions
Decisions Available

Find material near landmark 1

Find material near landmark 2

Find material near landmark 3, watch
for food and Stinger

[e el

Id. Hunt food, watch for material. Stinger
2a. Add material to nest
2b. Hunt food via landmark 2

3a. Add material to nest
3b. Hunt food

4a. Add material to nest
4b. Hunt food

5a. Find material near landmark 2
5b. Find material near landmark 3

6a. Add material to nest via landmark 2
6b. Add material to nest via landmark 3

7a. Take material

7b. Hunt food

8a. Find material near landmark 3
8b. Hunt food

9a. Find material near landmark 2
9b. Find material near landmark 3
9c. Hunt food via landmark 2

9d. Hunt food via landmark 3

10a. Find material near landmark 3
10b. Hunt food via landmark 3

11a. Wait for new task

12a. Wait for new task
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An important point is brought out by this
table. There are in fact many more decision
stages in PERCY'S task then are shown, for
each outcome represents a class of equivalent
decision stages. Two stages are equivalent
when they have identical lists of decisions,
and each decision uses the same operator in
both stages. This does not mean that the same
decision will be made at the two stages, for
equivalent stages may differ in certain para-
meters that enter into the making of decisions.

The use of equivalence among decision
stages means that the system is applying gen-
eralization or abstraction to its task. The
decision stage when material is first added to
the nest is evidently different from that where
the addition of material leaves the nest nearly

completed, but PERCY'S decisions are not af-
fected by the difference. In fact, it cannot
recognize the difference.

Abstraction is important because it can

greatly simplify the problem of providing a
strategy. Clearly, the fewer the distinguish-
able outcomes, the less information will be
needed in making decisions. The importance
of this will be evident when the way PERCY
makes its decisions is described. Also, ab-
straction aids learning, as will be seen. On
the other hand, abstraction may omit informa-
tion that is relevant to decisions, and so may
adversely affect performance of the task.

The way PERCY assigns utility values will
now be described. Four kinds of payoffs occur
during a trial of its task. Each placement
of material at the nest, each feeding, each
pickup of material, and each sting, all make
their contribution — positive or negative —
to the measure of utility for the trial. The
utility measure uA(t) for the placement of
material depends on the time t that has elaps-
ed since the previous placement. One may
think of this measure as combining two offset-
ting factors; a fixed increment of satisfaction
when the material is placed, and a small fixed
charge against satisfaction at every instant
of time that placing of material is delayed.
Similarly, the utility measure UE(t) for the
consumption of food depends on how long it has
been since PERCY ate last. The dependence on
the elapsed time is more complicated than in
the case of placement, because the satisfac-
tion in eating is small if PERCY is not yet
hungry, and the dissatisfaction of not eating
increases sharply as PERCY gets hungrier.
When the elapsed time is so great that the
pleasure of eating is outweighed by the pains
of hunger before eating, the net utility uE
is negative. Finally, the positive utility
UM gained when material is picked up and the
negative utility Ug that accompanies a sting
are constant. The utility functions are sum-
marized in Figure 2.

The measure of utility for a trial of
PERCY'S task is the sum of the utilities for
the eight pickups of material, for their addi-
tions to the nest, for the various feedings,
and for the stings received. The problem of
achieving good performance is not a trivial
one. PERCY will get its best results by prop-
erly spacing its feedings, and making quick
round trips to the nest whenever the time
since it last ate permits this. To complicate
matters, when it sees the Stinger it may have
to decide whether it is better in the circum-
stances to accept the sting and save time, or

avoid the pain and instead put up with a sub-
stantial delay. There are two important para-
meters that distinguish equivalent decision
stages. These are the time since PERCY last
ate, and the time since material was last
added to the nest. They must be involved in
the way decisions are made if good performance
is to be attained.

3. Planning Strategies

We consider strategies that make decisions
by exploring the game tree. Exploration in-
volves the evaluation of plans.

A plan P at a decision stage D consists of
one decision d available at D, together with

some or all of its possible outcomes, and per-
haps further decisions and outcomes. In the

game against the environment, the plan is an-
alogous to a protocol that begins: "If | make

this decision, the following outcomes may
occur; if this outcome should happen, | can
then make one of these decisions; " It may
be formally represented as a subtree of the
game tree; this subtree is rooted at the node
corresponding to D and it contains a single
branch from that node — the branch for the
decision d. The nodes that terminate the
plans examined at a decision stage D mark the
limits of the planning horizon at that stage.
Values or utilities are estimated for the
stages of the task that correspond to these

terminal nodes, and on the basis of these
values, a value is derived for each plan —
or equally, for the decision implied by the
plan.

When a planning strategy is used, at each
decision stage D one or more plans are evaluat-
ed, until a decision with a suitable value is
obtained. This may be the decision with the
highest value, among those available at D; or
the first decision with a value exceeding some
appropriate threshold; or even the best deci-
sion found among the first n evaluated, for
some suitable n.

Thus a planning strategy involves four ele-
ments. There must be a way of providing a
set of plans for each decision stage. A rule
for assigning values to the situations that
terminate a plan must be present. A way of
deriving from these terminal values the value
of the decision that initiates the plan is
necessary. And finally, there must be a rule
for selecting a decision at a decision stage,
based on the values that are obtained for the
individual decisions.

In a planning strategy that uses the policy
of maximizing utility in making its decisions,
the last three of these elements take specific
forms. A utility estimate is provided for
every situation that terminates a plan. Also,
for every decision d, a set of estimates of
the probabilities {gqa(0)} of the possible out-
comes 0 must be available. Then, utilities
can be obtained by working backwards from the
terminal stages of a plan, using the fact that
the utility assigned to a set of uncertain out-
comes is the expected value of their utilities.
That is,

U(d)-£q4(O*)u(0*>
OI
where the sum is over all outcomes 0' of the
decision d that have non-zero probabilities.
And because of the policy of selecting the de-
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cision that has the highest utility,
u(0)*max U(d)
d

where the maximum is taken over the decisions
open at the decision stage that corresponds to
outcome 0. Continued application of these two
rules, to the utilities of the outcomes that
end the plan, will arrive at the utility of
the plan and its decision, and will also de-
cide among the available plans.

Both problem-solving strategies and minimax
policies can be treated as special cases of
this approach, although they are not usually
so considered. In problem solving, uncertain-
ty in the environment is usually ignored; this
means that the most probable outcome of a de-
cision is estimated to have probability 1, and
all others probability 0. Application of a
minimax policy is equivalent to estimating
probability 1 for the outcome with the lowest
utility, and probability 0 for other outcomes,
when working back from the situations that
terminate a plan.

In a stable environment where the probabil-
ity distributions {qq(0)} accurately reflect
the responses of the environment to the execu-
tion of decision d, there exists a set of i-
deal utilities {u(0)} for every outcome that
can occur in the course of handling the task.
These are derived from the utilities of the
payoffs in the following way: Each outcome
that terminates the task is assigned a utility
equal to the sum of the utilities of the pay-
offs that occur in the corresponding trial.
Then, by repeated application of the two equa-
tions given above, utilities for all other
outcomes are obtained. In the process, the
strategy that yields the highest expected util-
ity against an environment with the specified
probabilities is also determined.

In actual systems dealing with tasks in-
volving fairly large game trees, the probabil-
ity and utility estimates will at best crudely
approximate the ideal values just described.
In a dynamic environment, a stable set of
probability values need not exist. And even
when they do, the estimates of the values a-
vailable to the system may be inaccurate. In
addition, the calculation of utility estimates
from the payoffs, in the manner just described,
may be far beyond the capabilities of the
system.

Nevertheless, given such a task, there may
be no practical alternative to the policy of
maximizing utility as a basis for designing a
strategy component for the system that must
deal with it. Thus, the experiments with
PERCY are useful in showing what can be accom-
plished with such a strategy, despite the re-
liance on approximations to probabilities,
utilities, and other parameters that enter
into the making of decisions.

4. How PERCY Makes Decisions

In the PERCY experiments, the planning hor-
izon extends only as far as the outcomes of
each single decision. The use of the most
limited possible exploration of the future in
decision making is consistent with the
system's crude perceptual capabilities and
poor knowledge of its environment, its lack of
memory of earlier stages of a trial, and its
consequent inability to distinguish among
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equivalent decision stages.

However, when the capacity for cognition
that PERCY is given is limited in these ways,
it is possible to use a very simple structure
and a minimum of data in making its decisions.
Each decision becomes a plan merely by append-

ing a list of the possible outcomes. Only one
probability distribution {qa(0)> is needed in
finding the utility of the plan that involves

the decision d. And a uniform method of es-
timating the utility of any outcome takes care
of the remaining requirement for decision
making. The utility estimates given by this
method do not satisfy the theoretical rela-
tionships stated earlier for ideal utilities.
But in view of the inaccuracy of PERCY'S in-
formation, they may well be little worse than
those that would result from more extensive
calculations calling for a much more complica-
ted strategy component.

The utility estimate is closely related to
the utility function for payoffs described in
section 2. Suppose PERCY is at the decision
stage following outcome 0, that a time h has
elapsed since it last ate, and that a time n
has passed since material was last added to
the nest. PERCY must estimate a utility
“df°') for outcome 0', when that outcome is
reached after making decision d. The estimate
is based on the utility functions wug, ua up,
Us given in Figure 2, and on three time

estimates:

ty — the estimated time to reach out-
come 0' if decision d is executec
and 0' occurs

te¢ — the estimated time between occur-
rence of 0' and the next feeding
(0 if eating occurs at 0')

t, — the estimated time between occur-

rence of 0' and the next addition
to the nest (0 if placement oc-
curs at 0%)

Then (see Figure 3):
Ug(0")=ug(h+tg+te)+ua(n+ty+ty)+qsusteuy

where qg is the estimated probability that
PERCY will be stung in reaching outcome 0',
also e is 1 if material is picked up at 0',
and is 0 otherwise.

This utility estimate is an approximation
to the utility of the payoffs that will take
place until the next addition to the nest and
the next feeding. The approximation is rough,
because the values estimated by te and t,
depend on h and n and also on subsequent de-
cisions, but t and t, are treated as con-
stants.”

Since PERCY has estimates of t¢
every outcome 0',

and t, for
and also has estimates of

ti, qs and q,fO') for every decision-outcome
pair (d,0'), it can calculate the utility of
its decisions d, using the equation

* The method of estimating utilities described
in this section is the one used in the most

recent experiments with PERCY. It differs in
several respects from the method reported in
earlier articles.
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At a decision stage it makes the calculation

for each available decision and selects the
decision with the highest utility.

Of course, the probabilities and elapsed
times are characteristic of the particular
environment in which PERCY finds itself.
PERCY is not endowed with good estimates of
these quantities. Rather, initial estimates
are supposed to have been developed as PERCY
explored its environment in tasks engaged in
earlier; the estimates are improved on the
basis of its actual experience in the nest-
building and related tasks. That is, PERCY
has a capability to learn by developing better
values on which to base its decisions.

The estimates for qq4(0'), ty and qs are

provided by means of a set of totals -- one
set for each decision stage O:

N(d,0') -- the number of times deci-
sion d has resulted in
outcome O"

T(d,0') -- the total time elapsed in
reaching outcome 0' on
these occasions

S(d,0') — the number of times that

a sting was received in
reaching 0'

At a point where the estimates are needed,
they are calculated by means of the relations

tg¢ = T(d,0")/N(d,0"),

gs - s<d,0")/N(d,0") ,

qd(0O') = rN{d,0")+i]/ZIN(d,0")+I);
0*
the sum in the

last of these expressions is
over all

possible outcomes of decision d.*

Estimates of t. and t, are stored for each
outcome. When t.(0) is not zero — i.e., when
eating has not occurred at 0 — its value is
revised each time a decision d, made at 0,
arrives at an outcome 0'. The new estimate
is obtained by adding to the old one the
quantity

k[t(0")+te(0")-te(0)],

where t(0O') is the actual time it took to
reach O' after decision d, and k is a small
constant, say .2, The corresponding adjust-
ment for t,{0), when its value is not fixed
at zero, is

klt(0')+ta(0")-ta(0)]

The derivation of these revision formulas is
omitted. They are approximations, which are
used in order to live with the constraints of
limited memory and ability to calculate that
are assumed for PERCY.

We have now described how PERCY, in the
course of carrying on its task, continually

* This is the so-called Bayes estimate for
the probability of O'. It gives a non-zero
estimate for the probability of events that
are possible but not yet observed.

revises its estimates of time and probability.

This process of revision constitutes

PERCY'S learning, or adjustment to the environ-
ment. This is the only type of learning pro-
vided in the simulations thus far, although

other types can readily be added to the gener-
al structure that underlies PERCY.

5. PERCY'S Performance

The simulation as described has been run
with a number of different sets of utility
parameters. Various sets of values were chosen
for the constants k; in the utility functions
given in Figure 2. The relative weights given
to eating regularly, making progress on the
nest, and avoiding stings were changed thereby.
With each set of values, a series of trials of
the nest-building task was run. As soon as a
nest was finished, it was wiped out, and a new
trial began. The estimates with which PERCY
began this new trial were the ones arrived at
by the end of the preceding trial, so that
there was an opportunity to demonstrate learn-
ing during each series. All series started
with the same relatively poor estimates.

It was evident at the start of the experi-
ment that PERCY'S efforts were doomed to
frustration if its utility functions were in-
compatible with the realities of the environ-
ment. For example, when both k3 and k5 are
less than the time required for a round trip
to get material and food and bring it back to
the nest, a successful performance of the task
is impossible. Ideally, the parameters should
make more than one satisfactory strategy avail-
able, so as to test whether the learning fea-
ture in the system helps to offset the limited
horizon used in planning.

Tables (2) and (3) give information about
the kind of behavior PERCY exhibited in these
experiments. They describe the first trial of

a series, and the seventh trial of the same
series, by which time the behavior had converg-
ed to a locally optimal strategy which was
quite good, though not the best available. In

the initial trial, PERCY often made decisions
that exposed it to the risk of a sting, and
with rather baa luck Buffered a total of five
stingss By the seventh trial, it had substan-
tially reduced the likelihood of a sting. It
did this by going the long way round to get
material and food, and returning the short
way. Whenever it got back sufficiently quick-
ly, it made a rapid round trip to the nearby
material location before going after food
again.

The convergence after a half dozen or so
trials to a rather rigid pattern of decisions
occurred with each set of utility parameters
used. It appears that adjusting the estimates
t, and t., when this is done as if the values
being estimated are constants, cannot fully
make up for the limitations PERCY has in its
ability to plan. One of the several direc-
tions for further work is to see whether these
characteristics of its decision making can be
improved without an appreciable increase in
PERCY'S memory and ability to calculate.
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PERCY'S BEHAVIOR

Table (2) First Trial
Dezigion Number of uvtility
pecigion Stage Made Qutcome Time Units At Qutcome

At ne=st MF 38 Sees § 51 0
Stinger seen M2 Gets M at 2 B9 100
Material takan at L2 F Gets T 57 423
Food eaten, material held N 2 Places M at N, stung 174 81
At nest MF 38 Sees P 51 Bl
Fpod seen M3 Gata M at 3 9 181
Matearial taken at L3 F GatE F 44 : Z68
Food eaten, material haeld N 2 Places M at N 184 392
At nest MPF 38 Sess F 58 392
Fopod sean F 3 Gats F a7 7EQ
Food maten, no material M3 Geta M at 3 44 880
Material taken at L3 N Places M at N, stung 69 464
At nest M2 Gets M at 1 37 584
Material taken at L1 N Places M at N 33 824
At nest MF 38 Sees F ) 58 824
Food seen F 3 Gets T 31 1202
Food eaten, no matarial M3 Gets M at 3 45 1302
Material taken at I3 N Places M at ¥, stung 68 898
At nest M1 Gets M 5t 1 33 888
Material taken at Ll N Places M at N 36 1260
At nest MF 28 Sees 5 52 1260
Stinger seen MF3 Gets M at 3, stung 16 960
Matarial taken at L2 F Gets F 46 1360
Food eaten, material held N 2 Places M at N 195 1142
At nest MF 38 Sees S 47 1142
Stinger seen MF 3 Sees F, stung 10 742
Food seen F Gets F 36 1138
Food eaten, no material M 3 Gets M at 3 43 1238
Material taken at L3 N Finighes N, stunyg 66 828

Y TS 2 203322223 222322222222 2 X2 22322 222X RFST RSS2SR SRR 2 R 22 A LR R 2sRd)

Table (3) Seventh Trial
At nest M1 Gats M at 1 35 100
Matarial taken at Ll N Places M at N 35 360
At nest M2 Gats M at 2 129 460
Material taken at L2 F Gats F 54 753
Food eaten, material held N 3 Places M at N 114 559
At nest ’ M2 Gets M a¢ 2 116 659
Material taken at L2 F Gets F 60 1056
Food maten, material hald N 3 Places M at N 106 892
At nest M1 Gets M at 1 34 992
Material taken at Ll N Places M at XN 38 1240
At nest M2 Gets M at 2 118 1340
Material taken at L2 F Gets F 58 1619
Pood eatan, matarial held N 3 Placez M at N 101 1465
At nest M1 Gets M at 1 33 1565
Matearial taken at LI N Places M at N 35 1827
At nest N2 Cets M at 2 129 1927
Material taken at L2 F Gets F 61 2138
Pood eaten, material held N 3 Placas M at N, stung 106 1606
At nest M2 Gets M at 2 123 1706
Material taken at L2 P Gats ¥ 54 2098
Food eaten, material held N 3 Finighea N CT 1946

*******t*******t**!i!ii***t*ﬁtt********t**tttﬁ.tht*ﬁt*t*t****tt*ﬁ**t*t*itﬁi*t*tt**lt*it********
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6. Concluding Remarks

The way PERCY makes decisions has now been
explained in detail. This account completes
the series of articles that have described the
PERCY simulation as an example of the purpo-
sive system. The term refers to a general
structure for integrated systems, with a logi-
cal organization that reflects the game against
the environment. The structure disengages the
making of decisions from their execution. It
bases decision making on utility evaluations.
It clarifies the role of generalization in
handling tasks. And above all, its way of op-
erating faces squarely the problem of incom-
plete knowledge of the task environment.

Each of these points is illustrated by the
PERCY simulation. The present article, which
treats the problem and the process of decision
making without concern for the course of action
touched off by a decision, reflects the sepa-
ration of these two aspects of system opera-
tion. PERCY'S utility evaluations are based
explicitly on the payoffs associated with
feeding, progress on the nest, and meetings
with the Stinger; they are the only factors
influencing its decisions. And generalization
in dealing with the task takes the form of
equivalences among decision stages that select
the same set of targets for immediate atten-
tion.

In consequence of this design, PERCY a-
chieves good performance in a task calling for
a long series of decisions. Moreover, its
success is realized in spite of its very lim-
ited capacity to obtain or store information
about the environment, or to explore the im-
plications of the little information it
possesses.

To turn this last point around, the simula-
tion shows how an organism with a rather prim-
itive Central Nervous System can operate pur-
posefully in an environment even though the
program it is born with cannot contain specific
information about that environment. Thus the
simulation may be treated as a theory of how
creatures that are relatively low in the evo-
lutionary scale can show selective behavior on
tasks of moderate complexity. Utility func-
tions based on payoffs can readily account for
the "drives" that are assumed to guide animal
— and sometimes human — behavior.

Indeed, the way people tackle well under-
stood tasks may be closer to the PERCY approach
than to the problem-solving framework that
underlies much of the work on robots. Artifi-
cial intelligence, like human intelligence,
undoubtedly ought to incorporate both ways of
planning.

* * * * *
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Fig. 2. PERCY’s utility functions have the forms,
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Uy = kg

ug = k,

where kl' kz,...;k7 are suitable constants.
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Fig., 3. The diagram shows how PERCY, at decision stage 0, estimates
the total elapsed time between its last and next feedings, and
the total elapsed time between lts last and next placements;
in both cases on the assumption that O' occurs after decision 4
ie made. The estimate for time between feedings is the sum of
h = the actual time since the last feeding; equal to
zerc if feeding occurred at outcome 0.
té - estimated time till o' occurs.

t -~ estimated time from O' till next feeding:; equal to
zero i1f feeding occurs at 0'.

An analegous sum holds for placements at the nest.
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