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Abstract

This paper presents an overview of a game playing
model which is based on human perceptual and problem
solving abilities. The representation of games, ac-
quisition of rules, learning of strategies, and selec-
tion of moves are outlined. Details of move selection,
including scanning of the board, use of familiar pat-
terns to suggest move candidates, evaluation of moves,
and lookahead are described. Finally, there is a dis-
cussion of the means by which the model learns to play
a better game.

Introduction

People can be taught a board game by means of nat-
ural language instruction, which may or may not be ac-
companied by a demonstration. Moves made by beginners
are almost always legal, often bad, and probably never
random. People can improve the quality of their play
with experience, and can also be taught (by a book or
a tutor) particular moves, patterns of pieces, or stra-
tegic concepts. A model of human game playing should
exhibit all of these characteristics. One possible
model is developed in this paper. The major assump-
tions of the model are being tested through experiments
with human game players. In this paper, we cite our
experimental studies in the footnotes.

Our model is embedded in the framework of a larger
model of human information processing which has been
described in Rumelhart, Lindsay & Norman'® and Rumel-

hart & Norman?®. The database structure is that of a
semantic network consisting of nodes connected by bi-
directional, labelled relations. A parser translates
English into the database. A programming language,
SOL, wnich is a subset of English, allows the user to
interact with the database. There is no inherent dis-
tinction made between data and procedures. Although
this paper illustrates many of the mechanisms necessary
for the implementation of the game playing model, the
complete implementation has not yet been accomplished.

Acquiring the Rules of a New Game

In learning to play a game there are two distinct
stages: defining the task (learning the rules of the
game), and searching for a solution (playing the game
to win). In order to start playing a game, knowledge
of three things is necessary: the goal of the game; the
universe within which the game takes place; and the
rules governing actions within that universe. Two ques-
tions arise within this context: (a) What does it take
to understand the rules of a game? (b) How are these
rules represented once they are acquired?

Understanding the Rules of a Game

It is always possible to state the rules of a game
in English. Most people can understand such rules and
can start playing a legal game once they have heard
them. Clearly, these rules would be meaningless if the
words comprising them were not understood. The study
of how this understanding is acquired constitutes a ma-
jor investigation in its own right that will not be
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performed here. For our model, we assume that this
level of understanding has already been achieved. This
assumption has two important implications; First, all
the concepts considered to be important for understand-
ing the rules of games are incorporated into the model
(i.e., entered by hand) in advance. Second, the model
only applies to the behavior of adults who can be as-
sumed to possess this knowledge.

The Internal Representation of a Game

Although there
all games have much in common.
eral structure which represents
implicitly assumed whenever the
scribed. Building an initial
of a game consists of filling in specific arguments in
the variable slots of that general frame. Those varia-
bles can be anything from single values to complex
structures. Appendix A gives our representation of the
frame for games.

is a large variety of board games,

The existence of a gen-
the common features is
rules of a game are de-

internal representation

Generating Primitive Strategies

Mere knowledge of the rules of the game would re-
sult in the generation of random (though legal) moves.
But even beginners of a game do not play randomly.3
The nonrandom nature of playing is inherent in game
playing, since games are by definition a goal directed
activity. As the game starts, the player must already
have a set of primitive strategies for playing that
particular game.

For example, "capture more pieces" is a primitive
strategy for checkers, while "get more in a row" is a
primitive strategy for Gomoku.4 These primitive stra-
tegies have in common the notion of making progress on
some dimension such as "capture" or "number of pieces
in a row." The dimensions for which primitive strate-
gies are generated are those explicitly mentioned in
the rules of the game. A meta-strategy is needed to
determine how "progress" is to be characterized for
each dimension. One way to do this is to apply means-
ends analysis in order to see whether a goal state for
a particular dimension may be attained by successive ap-
plications of a single operation. If so, that opera-
tion is singled out as a primitive strategy. The sym-
metric nature of most games allows the creation of com-
plementary primitive strategies for impeding the op-
ponent's progress on a given dimension.

Move Selection

Here is a quick overview of the flow of processing
performed by our model following the opponent's move.
First, it tries to find a reason for the opponent's
move: the representation of the current situation is
updated in light of that reason. The model may then
either respond to the opponent's move, continue with
the execution of a previously created plan, or generate
a new plan.

The evaluation of newly created patterns identified
by a scan of the board singles out the reason for the



opponent's move. Plans are sequences of moves leading
to a situation which is more favorable than the current
one. The moves within the plan sequences are original-
ly suggested either by familiar patterns or by strate-
gies. The suggested moves undergo evaluation during a
lookahead process whose depth is limited by the con-
straints of a working memory.

Of necessity, all of these processes interact heav-
ily. It will be convenient, however, to discuss in-
dividually the following segments of the model: scan-
ning the board, familiar patterns, move evaluation,
lookahead, and finding a reason for the opponent's move.

Scanning the Board

The game board serves as an external memory for
human players. This external memory is simulated by a
2-dimensional array which remains conceptually distinct
from the model. The problem of scanning the board may
be thought of as a problem of parsing a 2-dimensional
string. Top-down parsing algorathms which have been
used as a mechanism for the analysis of line drawmgs

15, capture the predictive power and analysis-by-
synthesis nature of human visual processing. Bottom-
up parsers (e.g., Ledley ) capture the essence of or-
ganization of visual scenes for which there are no ex-
pectations. They may also miss important configura-
tions, which is a disadvantage for an optimal game
playing machine, but a necessity for a realistic model
of human game playing.

The scanning routine used by our model begins with
a bottom-up parse of the board, but becomes a top-down
parse as soon as enough information is gathered to gen-
erate some expectations. The scan iterates through all
board locations whose contents have changed as a result
of the last move, treating each such location as the
origin of a bottom-up parse. When scanning from a
given origin the model peripherally notices all the im-

mediate neighbors of that origin, i.e., all pieces
within the 3x3 area containing the origin and its neigh-
bors. It identifies those combinations which either

constitute complete patterns or are possible members of
some larger patterns.

If a larger pattern is marked as potentially pre-
sent, the scan then switches to its top-down phase and
actively tries to find that larger pattern. The identi-
fication of patterns is made by network matching rou-
tines which compare the current view with a network
containing descriptions of familiar patterns.

The top-down parse starts with an attempt to identi-
fy familiar patterns derived from Gestalt principles of
human perception. The three Gestalt principles includ-
ed in the model are those of proximity, similarity, and
continuity.11 Proximity is incorporated by having the
scan move outwards from the origin in expanding concen-
tric circles. The principle of similarity is embodied
by marking "piece next to a similar piece" as a familiar
pattern for all games. The principle of continuity is
incorporated by regarding lines of pieces as inherently
familiar patterns. Consequently, a potential line of
pieces seen in the initial 3x3 area will result in the
initiation of a top-down search for that line.

Note that although patterns are "familiar," they
are not necessarily meaningful within the context of a
particular game. Thus, a row of four bishops side by
side on a chess board will be called "familiar" by the
Gestalt principles, although the intrinsic importance
of such a configuration is not at all clear.

Once simple Gestalt groupings are recognized, the
top-down scan continues looking for other potential
patterns (if other potential ones are indicated). The
remaining ones are those which are important within the
context of the specific game currently being played.®

Familiar Patterns

The ability to recognize familiar configurations

of pieces on the board is crucial for the playing of
any game. A person who recognizes a familiar pattern
can refer to its representation in his long-term memory
by using a single label, thus freeing valuable space.
Additional savings are obtained if the pattern is as-
sociated with a well known sequence of suggested moves,
since these suggestions need not be generated in the

normal lookahead manner. A large repertoire of familiar
patterns is one of the characteristics of skillful
players.8,23

Patterns are represented in the model by means of
active semantic networks of the type described in Rum-
elhart G Norman.?® Such networks may be treated either
as data to be consulted during the recognition of pat-
terns (i.e., as a table of rewrite rules during a visu-
al parse) or as procedures which themselves direct the
recognition process. In fact, the current scanning al-
gorithm invokes the procedural definitions during its
top-down phase, and treats the same definitions as data
during its bottom-up phase.

This format of representation appears to be both
powerful and general. If we represent specific loca-
tions and pieces, the representation becomes equwalent
to that of Simon and Gilmartin's MAPP program. Non-
specific locations and orientations allow us to have
internal representations which are homomorphic to the
real world configurations. This was the type of repre-
sentation used by Murray and Elcock for Gomoku."” Re-
cursive definitions of groups of stones in Go, found
useful by Ryder,-* are also easy to handle in this for-
mat. A sequence of suggested moves for a familiar pat-
tern is represented as a procedure which, when executed,
returns with advice relevant within the context of a
particular game. For example, if the pattern "four in
a row" is discovered in the game of Gomoku, a procedure
is activated which looks for a vacant square next to
and in a line with the pattern, and recommends moving
to that square. Note how this contrasts with the
"meaningless" chess pattern of four bishops in a row
described earlier.

Evaluation

The evaluation of moves is based on the dimensions
stored under a "strategy" node. For example, on the
dimension of "length," a string of five in a row has a
greater value than a string of four in a row. If we
are comparing two moves along the dimension of "cap-
ture value," we might compare the number of pieces cap-
tured [e.g., in checkers), or the numerical value which
some book or tutor has told us to assign to the cap-
tured pieces (e.g., in chess). Relevant dimensions are
stored explicitly under the strategy node, but are dif-
ferent for different games.

Actual numerical values are not computed in the cur-
rent model, and at present there is no ordering of the
sequence in which different dimensions are encountered,
but we allow an ordering of the nodes within a given
dimension.

When a pattern has been found by the scan, candidate
moves will be suggested if there are explicit recom-
mendations associated with the pattern. If such recom-
mendations are not found, the strategy node provides
suggestions by pointing out a dimension and a way of
increasing values on that dimension {e.g., adding a
piece next to its neighbors to increase length).

A pairwise comparison of successively generated can-
didates is made along relevant dimensions (as suggested
by strategies) in order to choose the best move. If,
during the course of these comparisons, a candidate is
found which has a value above "satisficing"18 on any
dimension, the evaluation terminates and that-candidate
becomes the model's choice for the next move.

When trying to find the best of two candidate moves,
it is possible that they will have the same values on
the dimension on which they are compared, or that these



values can only be determined if they lead to a famil-
iar configuration of pieces within several moves. If
this is the case, we call a lookahead procedure which
looks for recommended moves for the opponent and com-
pares the outcomes of these recommended moves (which
itself may require another call to the lookahead pro-
cedure) . Since there are normally several alternative
moves, the only recommended moves which are considered
for evaluation (and possible further lookahead) are
those which have the highest probability of being re-
alized. If we could objectively decide on a move for
the opponent using an unbiased evaluation scheme, then
our move selection technique would be formally equiva-
lent to minimaxing. People typically do not perform
this type of analysis, since they are subject to a bias
when trying to carry out a plan; they may assume that
pieces only have a particular role (e.g., offensive or
defensive) or only move with a specific intent (e.g.,
"he is trying to capture my bishop"). In the model,
bias operates by instructing the scanning routine to
look only for pieces which fulfill certain roles. |In
this way, we still choose "best" moves for the opponent,
but bias yields what we call "subjective minimaxing."

Lookahead

The model's actual lookahead may be regarded as a
product of many interacting processes. These processes
(which we will discuss in detail below) include: an ac-
tive working memory which effectively limits the depth
of lookahead; heuristics for narrowing the selection of
move candidates; a mechanism for making hypothetical
moves; a limited backup capability which restricts the
model to a "progressive deepening" search. The actual
lookahead typically proceeds by means of a forward
search, but capability for means-ends analysis is also
provided. Plans are treated as an outcome of the look-
ahead process.

Working Memory. All active processing takes place
within the confines of a limited size working memory.
The size restriction is regarded as an asset to the
model, as it necessitates garbage-collection and chunk-
ing of information. The contents of working memory is
a homogeneous mixture of data, procedures, and pointers
to items in long-term memory. Achieving a given per-
formance level (e.g., remembering 7+2 random digits'®)
depends upon a model's specific implementation. We are
currently considering different size limitations, and
the final choice is likely to be in the order of hun-
dreds of nodes. This conceptualization is an adapta-
tion of the one proposed by Newell and Simon."

Heuristic Candidate Selection. The selection of
only a few move candidates for further lookahead is an
automatic result of the way in which these candidates
are suggested. The scan of the board concentrates on
those areas which have changed as the result of a move.
Some candidate moves are suggested by familiar patterns
which result from this localized scan. Other candidate
moves are suggested by advice from different dimensions
known to the strategy node (e.g., "increase length").
Finally, if good move candidates which were previously
considered are still in working memory, a re-analysis
of these candidates may be performed. The number of
candidates is often small in highly constrained situa-
tions, such as dynamic piece exchange. Since working
memory size is constant, a small number of candidates
enhances the depth of lookahead.

Hypothetical Moves. Since the array representing
the board is regarded as an external memory, imaginary
moves do not affect this array. A hypothetical move is
made by asserting a proposition which includes (among
other things) a "beginning-state," an "end-state," and
the move which causes the transition between the two
states. The end-state for a given move is the result
of augmenting the beginning-state for that move with
the changes caused by that move- The beginning-state

for a move is simply the end-state of the preceding
move, if such a preceding move existed. The beginning-
state for the first imaginary move is empty, since no
changes have yet been imagined. During lookahead, the
board scanning routine scans the real world array as
described earlier, but it also consults the latest as-
serted end-state in order to correctly locate imaginary
pieces. If many changes are imagined, there is the dan-
ger that old ones will be lost as working memory fills
up, in which case board scanning errors will occur.

Progressive Deepening. The search path followed by
humans during lookahead is best characterized by the
term "progressive deepening."®'® This term refers to
the tendency of people to revisit a given lookahead path
in order to explore a single new side path or to extend
the depth of the original path. The search path of a
subject solving a chess problem thus looks like a suc-
cession of many straight paths, with only a few cases of
true backup to positions one or two moves back in the
path.'® If the model has to back up, it may do so
either by going back to the real board and beginning
another lookahead, or by undoing the latest hypothetical
move (only the most recently asserted proposition is ac-
cessible, and the sequence of moves cannot be deduced
from the end-states).

Old propositions are recognized by a pattern match-
ing primitive if they are still within working memory
when re-asserted by the model. A simple "termination”
flag on old propositions allows the model to investigate
other move candidates and thus avoid following the exact
same path each time. Propositions become flagged as
soon as their end-state imaginary board positions evalu-
ate to some criterion level. Upon re-initiating look-
ahead, the model re-explores part of the most recent
path, branching off when it tries to re-assert a propos-
ition which has been flagged as terminal.

Plans. Beginning with the current real board posi-
tion, each asserted proposition is connected by a "for-
ward" link to the asserted proposition which follows it.
One-move backup results in multiple links extending
forward from the target of the backup, but a return to
the starting position causes a brand new sequence to be-
come linked. Thus, if the sequence of imaginary moves
A,B,C,.D is followed bv a return to the original position
and then by the sequence A,B,C,E, the two structures
symbolized by

athenB3thwizCthen.g

and A,then_*Euthen>C|then>E

will be constructed. A' and A will be complex struc-
tures representing two instances of the verb "move"
with identical arguments. The other letters have a
similar connotation. These linked sequences are the
model's representation of plans. The restriction to
forward links may be regarded as a result of the way
events are perceived in the real world (e.g., it is vir-
tually impossible to whistle a tune backwards).
Means-ends Analysis. The lookahead mechanisms de-
scribed above were presented mainly in the context of a
forward-search analysis of a board position. Not all
move selections are arrived at in this way. One or
more of the dimensions under the strategy node may sug-
gest a goal state rather than an actual move (e.g.,
"try to capture a piece"). Since the definition of
moves such as "capture" includes the notion of a trans-
ition from a peginning-state to an end-state, the model
regards the beginning-state in such definitions as a
precondition which must be attained before the re-
commendation may be carried out. For example, in the
game of chess the prior state for "x captures y" is
"x bears on y." If the prior state exists on the board,
then the specific recommendation leads to the assertion
of a new move candidate. If the state does not exist,
then that state is treated as a new subgoal, and its
preconditions are searched for in a similar manner.
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The actual search is constrained in the same way as
forward search, and therefore we refer to it as "re-
gressive deepening" search.

Since the concept of "forward" linking refers to
the order in which the imaginary propositions are as-
serted, an actual sequence of moves leading to a goal
state arrived at through means-ends analysis will be
stored in reverse order (i.e., starting move last).
The correct sequence may be rederived at each stage.
This rederivation may occur a move at a time during
the course of the game, or may occur in lookahead by
initiating a forward search from the initial move af-
ter it has been discovered by means-ends analysis. In
practice we expect the model to be able to begin a
forward search, and then initiate a means-ends analysis
from some hypothetical position which is embedded with-
in the forward s.earch.

Finding a Reason for the Opponent's Move

The opponent's latest move is examined to see
whether it is part of a current plan sequence. If so,
then it is classified as an "expected" move. We then
assign to that move a "reason" taken from the reason
for which the model generated this expected move dur-
ing its earlieT planning sequence. This reason may
not be why the opponent actually made that move. This
egocentric oversight may cause the model to miss some
important configurations, but we believe that humans
suffer from exactly this failing.

If the opponent's move is unexpected, the model
checks to see whether the change between the previous
board and the current board has been favorable for the
opponent. If either a material change or a pattern
identified by this check has a value which surpasses
the satisficing criterion, then the model assumes it
has found the proper reason for the opponent's move.
As before, this may be wrong if there were multiple
outcomes of the move. If no satisfactory reason has
yet been found, the model tries to see what the op-
ponent can do on his following move, by looking at the
current board and pretending to be its own opponent.
The most favorable outcome for the opponent after a
"lookahead" evaluation is regarded as being the reason
for the questionable move.

Note that while all of these processes lead to a
seemingly shortsighted and subjective determination of
the reason, the model may become more sophisticated by
not stopping these procedures upon the discovery of
some single high-valued reason, but rather doing all of
them, thus finding multiple reasons.

Learning to Play a Better Game

Playing a game may be viewed as an attempt to modi-
fy a current state into some goal state by means of
some operator (or a plan). Improving one's skill in
playing a game involves the emergence of the ability to
identify states for which operators exist, and to find
operators which are applicable to already known states.
States and operations which transform states can be ac-
quired by means of both experience and instructions
from an external source (books, a tutor, etc.).

The Lookback Mechanism

The main mechanism for learning through experience
proposed here is that of "lookback." Whenever the model
encounters a situation which looks definitely better
(or worse) than the situation existing before, it re-
constructs the former situation and tries to identify
what operations were performed which transformed it in-
to the present state. The model may notice a change in
states but be unable to reproduce the way in which the
change has occurred, especially when it has taken many
moves to produce a change. As with lookahead, the deptn

of lookback is limited by working memory and aided by
the ability to encode whole segments of moves into one
meaningful chunk.

Since winning and losing constitute definite chang-
es in states, at these points the model looks back and
tries to identify what has made the situation just pre-
ceding the completion of the game so powerful. This
situation now becomes a subgoal state. The model also
attempts to characterize the last move along the dimen-
sions employed during move evaluation. This character-
ization serves as a plan for transforming the newly
found subgoal into a win. Moves that would prevent the
win from occurring can also be considered. Winning (or
losing) is not the only case where a definite change in
states occurs, but it is the most striking one. When-
ever the model notices that an already known state has
been achieved, the same evaluation process may take
place. The result of a successful lookback is the cre-
ation of a new node representing the newly identified
subgoal. In addition to a description of the subgoal,
this node includes a pointer to the goal, and to the
sequence of moves leading from the subgoal to the goal.

Whenever an existing operation is about to be exe-
cuted, the player has definite expectations about the
outcome. If that outcome fails to materialize, then
the operation can be Te-evaluated and modified, or even
discarded.

Lookback can occur whenever one encounters a famil-
iar pattern. This is true regardless of whether that
familiar pattern is actually there on the board (i.e.,
consists of real pieces), or whether it partially or
wholly consists of imaginary pieces (i.e., pieces "add-
ed" to the board by the lookahead process). The work-
ing memory constraints acting upon lookahead will make
the detection of an imaginary familiar pattern somewhat
less likely than the detection of a real familiar pat-
tern, but once such a pattern is detected the learning
process may proceed in the regular way.

The ldentification of Patterns and Operations

So far the discussion has implicitly assumed that
plavers engaged in lookback know what they are looking
for, and that the identification of new patterns and
plans occurs after the first occurrence of an opportuni-
ty to learn which the player is aware of. That assump-
tion is far from being true. Progress in game playing
skill is very slow and often frustrating. Working mem-
ory constraints arc one reason for the slow progress.
Often players just cannot recall the initial state or
the sequence of moves which led to the final state.

An even more important obstacle to fast progress
(and one which may also greatly increase working memory
load) is the player's inability to distinguish between
relevant and irrelevant information which exists on the
board. The initial state (which eventually becomes a
familiar pattern and a possible final state) is not on
the board by itself. The board often contains many ir-
relevant pieces. Even the relevant pieces may have
properties which are irrelevant for the identification
of a particular subgoal.

This situation is analogous to the one existing in
psychological experiments on concept learning, and our
model goes about learning patterns in a way similar to
that in which human subjects learn concepts. Studies
of concept Iearning14 indicate that people usually gen-
erate a hypothesis about the concept they have to learn
on the basis of available instances. They regard this
hypothesis as the correct concept until they encounter
a disconfirmation of the hypothesis, in which case they
try another one.

Whenever a subgoal is achieved, the lookback mechan-
ism reconstructs the preceding situation (the "initial
state") unless the subgoal has been the result of the
application of a plan (in which case no lookback and
re-evaluation will occur). Those features which have
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changed serve as a clue as to which features may be
relevant to the description of the initial state.
description is the model's current concept for the
state preceding that subgoal. When the same subgoal
occurs again a new description of its initial state is
generated. A generalization routine compares this new
description with the current concept for the initial
state which precedes this subgoal. The common features
found by this comparison form a new generalized concept
for that initial state. A similar process is applied
to the sequences of moves which have led to the final
goal. The states and plans identified at the early
stages of the game are greatly modified over short
periods of time, but they rapidly stabilize.

This

Tutoring

The preceding section has described the way in
which the model learns to play a better game on the
basis of experience only. People can become better
players by using external sources of knowledge. Zo-
brist and Carlson?* emphasize the importance of advice-
taking for a model of game playing. Our model has this
capability and can be given advice in a fairly natural
way. For example, the pattern ”openfour,” which is
crucial in Gomoku, can be taught to the model by enter-
ing the statement:

"OPENFOUR" LOOKS LIKE A SEQUENCE OF A
BLANK SQUARE, A ROW OF FOUR PIECES, AND
A BLANK SQUARE.

"LOOKS LIKE" is a predicate which adds a pointer from
the name of the pattern to its definition. "SEQUENCE"
builds a structure with its members ordered along one
axis, and is also a procedure for identifying the
existence of a similar structure on the board. "ROW"
is similar to "SEQUENCE," except that it allows per-
mutations of its members along a given axis.

The "meaning" of OPENFOUR for the game of Gomoku
may be added by saying:

"OPENFOUR" SUGGESTS FOR GOMOKU THAT YOU

PLACE A PIECE ON ANY UNOCCUPIED MEMBER
OF THE "OPENFOUR."

We are currently implementing procedures for giving
advice involving functional definitions and lookahead.
For example, we would like to be able to define a PIN
in chess as follows:

X PINS Y TO z
ISWHEN: X SEARS ON Y.
IF Y MOVES, X, WHICH DOES NOT BEAR ON Z,
WILL BEAR ON Z,
THE VALUE OF X CAPTURING Z FOR X'S OWNER
IS GREATER THAN THE VALUE OF ANY MOVE
OF Y FOR Y'S OWNER.

The operator "VALUE" takes into account the value of an
exchange plus the value of patterns resulting from a
given move (it may have to call lookahead to do this).

Notes and References
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3. The assertion that beginners do not play randomly is
supported by the following result: An experienced

Gomoku player was able to discriminate between ran-
domly generated (legal) moves and moves made by be-
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ginners for 41 out of 44 instances (93*) taken from
the first Gomoku games played by each of 5 beginners.
Gomoku is usually played on a 19x19 board, although
other sizes are often used. Two players alternately

place one of their pieces on any vacant square. The
first player to get five of his pieces in a row,
horizontally, vertically, or diagonally, wins the
game.

The scan thus finds its nearest horizontal and verti-

cal
but
ing a piece which
horizontally or diagonally.

neighbors before its nearest diagonal neighbors,
finds a neighboring diagonal piece before find-
is 2 squares away from the origin
This conforms nicely

with the following datum: 67% of the losses of sub-
jects playing their first 6 games of Gomoku can be
accounted for by a diagonal string of 5, even
though the number of possible different diagonal
strings of 5 is only 37% of the total number of
possible strings of 5 on the 9x9 board on which the
games took place. The following data indicate that
this is because diagonal squares are farther apart
than horizontal and vertical squares (by /2~:1) and
not because subjects scan horizontally and verti-
cally first: When the board was rotated 45" (to
form a diamond), subjects still lost 59% of their
games on the "diagonals" (now running horizontally

and vertically). In addition, when playing on rec-
tangular boards with sides in the ratio of 21 ,
subjects lost 4 times as many games on the long axis
(regardless of whether it was the vertical or the

one) as compared to the number of games
As expected, most of the

horizontal
lost on the short axis.

games on the rectangular boards were still lost on
diagonals (69% of them).

If the familiar patterns which direct the top-down
scanning routines differ from game to game, then we

should be able to construct ambiguous patterns when
different types of games are played on the same
board with the same pieces. We have done this with
human game players by using transformed (rotated
and reflected) versions of the same configuration
of pieces to represent both a Go problem and a Go-
moku problem. Subjects were first asked to solve

the "Go" problem, and then immediately afterwards
to reconstruct the "Go" board configuration from
memory. Next, the subjects were asked to solve the
"Gomoku" problem, and then to reconstruct the "go-
moku" board configuration from memory. In reality,
the "Go" problem and "Gomoku" problem were exactly

relative configuration of pieces. Half
the subjects were given the problems in the opposite
sequence. A comparison of the reconstructions
showed that the subjects remembered different con-
figurations of the pieces for each game. The
pieces that were remembered were the ones crucial
to the particular game from which they were told
that the problem had been taken.

The principle of satisficing is that we make the
first move which has a value above some criterion
level. Ore node among the ordered set of nodes
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APPENDIX A: General framework for games,

The empty ovals represent tokens of the "act" to
which they point. Empty brackets represent argument
slots which are filled in with information either
explicitly mentioned or derived from the rules of spe-
cific games.
as follows (note that statements

fications rather than part of the description itself):

"Games are played by players. The goal
of playing is for one of the players to
achieve some winning state. Garmes have some
setup [e.g. board, pieces]. Games have legal
moves which are made by players. A legal move

specifies some object [e.g. 'knight," 'bishop'],
its starting location [i.e. current location],

and its final location. [The final location

can be defined in terms of its spatial relation

to the starting location, and can include any

The English equivalent of this network is
in brackets are clari-
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special conditions concerning the path be-
tween the two locations (e.g., 'along an un-
blocked diagonal fto either an unoccupied
square or a Square occupied by an opponent's

piece'),] Games have moves which must be
legal moves. Moves have a goal and a
result.

The "must-be" relation between MOE and LEGALMOVE has
the following implications: For each node W such that
W-"MOVE and W relation(i)|>x>

there exists a node Y such that
Y- JA i LEGALMOVE yrelation?®

and

and X is within the range defined by 2,

The result of each move is a new configuration on
the board, plus whatever changes occur in the player's
conceptions of the game which are the result of a re-
evaluation of the board. The goal of each movwe is de-
rived from the strategies for generating good moves.
If present, such goals are regarded as being the rea-
sons for which particular moves are made.



