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A b s t r a c t 

T h i s paper p r e s e n t s an ove rv iew of a game p l a y i n g 
model wh ich is based on human p e r c e p t u a l and p r o b l e m 
s o l v i n g a b i l i t i e s . The r e p r e s e n t a t i o n o f games, ac­
q u i s i t i o n o f r u l e s , l e a r n i n g o f s t r a t e g i e s , and s e l e c ­
t i o n o f moves are o u t l i n e d . D e t a i l s o f move s e l e c t i o n , 
i n c l u d i n g scann ing o f t he b o a r d , use o f f a m i l i a r p a t ­
t e r n s t o suggest move c a n d i d a t e s , e v a l u a t i o n o f moves, 
and lookahead are d e s c r i b e d . F i n a l l y , t h e r e i s a d i s ­
c u s s i o n o f t h e means by wh ich t h e model l e a r n s to p l a y 
a b e t t e r game. 

I n t r o d u c t i o n 

People can be t a u g h t a b o a r d game by means of n a t ­
u r a l language i n s t r u c t i o n , wh ich may or may n o t be ac­
companied by a d e m o n s t r a t i o n . Moves made by b e g i n n e r s 
a re a lmos t a lways l e g a l , o f t e n b a d , and p r o b a b l y never 
random. People can improve t h e q u a l i t y o f t h e i r p l a y 
w i t h e x p e r i e n c e , and can a l s o be t a u g h t (by a book or 
a t u t o r ) p a r t i c u l a r moves, p a t t e r n s o f p i e c e s , o r s t r a ­
t e g i c c o n c e p t s . A model of human game p l a y i n g s h o u l d 
e x h i b i t a l l o f t hese c h a r a c t e r i s t i c s . One p o s s i b l e 
model i s deve loped i n t h i s p a p e r . The ma jo r assump­
t i o n s o f t h e model a re b e i n g t e s t e d t h r o u g h expe r imen ts 
w i t h human game p l a y e r s . I n t h i s p a p e r , we c i t e our 
e x p e r i m e n t a l s t u d i e s i n t h e f o o t n o t e s . 

Our model i s embedded in t h e f ramework o f a l a r g e r 
model o f human i n f o r m a t i o n p r o c e s s i n g wh ich has been 
d e s c r i b e d in Rume lha r t , L i n d s a y & Norman19 and Rumel­
h a r t & Norman 2 0 . The da tabase s t r u c t u r e i s t h a t o f a 
semant i c ne twork c o n s i s t i n g o f nodes connec ted by b i -
d i r e c t i o n a l , l a b e l l e d r e l a t i o n s . A p a r s e r t r a n s l a t e s 
E n g l i s h i n t o t he d a t a b a s e . A programming l anguage , 
SOL, wn ich i s a subse t o f E n g l i s h , a l l o w s t h e u s e r t o 
i n t e r a c t w i t h t he da tabase . There i s n o i n h e r e n t d i s ­
t i n c t i o n made between d a t a and p r o c e d u r e s . A l t h o u g h 
t h i s pape r i l l u s t r a t e s many o f t h e mechanisms necessary 
f o r t h e i m p l e m e n t a t i o n o f t h e game p l a y i n g m o d e l , t h e 
comple te i m p l e m e n t a t i o n has n o t y e t been a c c o m p l i s h e d . 

A c q u i r i n g t he Rules of a New Game 

In l e a r n i n g to p l a y a game t h e r e a re two d i s t i n c t 
s t a g e s : d e f i n i n g t he t a s k ( l e a r n i n g t h e r u l e s o f t h e 
game), and s e a r c h i n g f o r a s o l u t i o n ( p l a y i n g t h e game 
t o w i n ) . I n o r d e r t o s t a r t p l a y i n g a game, knowledge 
o f t h r e e t h i n g s i s n e c e s s a r y : t h e goa l o f t h e game; t h e 
u n i v e r s e w i t h i n wh ich t h e game takes p l a c e ; and t h e 
r u l e s g o v e r n i n g a c t i o n s w i t h i n t h a t u n i v e r s e . Two ques­
t i o n s a r i s e w i t h i n t h i s c o n t e x t : (a) What does i t t a k e 
to u n d e r s t a n d the r u l e s of a game? (b) How a re t hese 
r u l e s r e p r e s e n t e d once t h e y a re a c q u i r e d ? 

U n d e r s t a n d i n g the Rules of a Game 

I t i s a lways p o s s i b l e t o s t a t e t h e r u l e s o f a game 
in E n g l i s h . Most p e o p l e can unde rs tand such r u l e s and 
can s t a r t p l a y i n g a l e g a l game once t h e y have h e a r d 
them. C l e a r l y , t h e s e r u l e s wou ld b e mean ing less i f t h e 
words c o m p r i s i n g them were n o t u n d e r s t o o d . The s t u d y 
o f how t h i s u n d e r s t a n d i n g i s a c q u i r e d c o n s t i t u t e s a ma­
j o r i n v e s t i g a t i o n i n i t s own r i g h t t h a t w i l l n o t b e 

pe r fo rmed h e r e . For o u r mode l , we assume t h a t t h i s 
l e v e l o f u n d e r s t a n d i n g has a l r e a d y been a c h i e v e d . T h i s 
assumpt ion has two i m p o r t a n t i m p l i c a t i o n s ; F i r s t , a l l 
t h e concepts c o n s i d e r e d t o b e i m p o r t a n t f o r u n d e r s t a n d ­
i n g t h e r u l e s o f games are i n c o r p o r a t e d i n t o t h e model 
( i . e . , e n t e r e d b y hand) i n advance. Second, t h e model 
o n l y a p p l i e s t o t h e b e h a v i o r o f a d u l t s who can be as ­
sumed to possess t h i s knowledge . 

The I n t e r n a l R e p r e s e n t a t i o n of a Game 

A l t h o u g h t h e r e i s a l a r g e v a r i e t y o f b o a r d games, 
a l l games have much in common. The e x i s t e n c e of a gen­
e r a l s t r u c t u r e wh ich r e p r e s e n t s t h e common f e a t u r e s i s 
i m p l i c i t l y assumed whenever t h e r u l e s o f a game a re de­
s c r i b e d . B u i l d i n g a n i n i t i a l i n t e r n a l r e p r e s e n t a t i o n 
o f a game c o n s i s t s o f f i l l i n g i n s p e c i f i c arguments i n 
t h e v a r i a b l e s l o t s o f t h a t g e n e r a l f rame. Those v a r i a ­
b l e s can be a n y t h i n g f rom s i n g l e va lues to complex 
s t r u c t u r e s . Appendix A g i v e s ou r r e p r e s e n t a t i o n o f t h e 
f rame f o r games. 

G e n e r a t i n g P r i m i t i v e S t r a t e g i e s 

Mere knowledge o f t he r u l e s o f t he game wou ld r e ­
s u l t i n t h e g e n e r a t i o n o f random ( though l e g a l ) moves. 
But even b e g i n n e r s of a game do n o t p l a y r andom ly .3 
The nonrandom nature o f p l a y i n g i s i n h e r e n t in game 
p l a y i n g , s i n c e games are by d e f i n i t i o n a goa l d i r e c t e d 
a c t i v i t y . As t he game s t a r t s , t he p l a y e r must a l r e a d y 
have a s e t o f p r i m i t i v e s t r a t e g i e s f o r p l a y i n g t h a t 
p a r t i c u l a r game. 

For example , " c a p t u r e more p i e c e s " i s a p r i m i t i v e 
s t r a t e g y f o r c h e c k e r s , w h i l e " g e t more i n a row" i s a 
p r i m i t i v e s t r a t e g y f o r Gomoku.4 These p r i m i t i v e s t r a ­
t e g i e s have i n common t h e n o t i o n o f making p r o g r e s s on 
some d imens ion such as " c a p t u r e " or "number of p i e c e s 
i n a r o w . " The d imens ions f o r wh ich p r i m i t i v e s t r a t e ­
g i e s a re genera ted a re t hose e x p l i c i t l y ment ioned i n 
t h e r u l e s o f t h e game. A m e t a - s t r a t e g y i s needed t o 
d e t e r m i n e how " p r o g r e s s " i s t o b e c h a r a c t e r i z e d f o r 
each d i m e n s i o n . One way to do t h i s is to app ly means-
ends a n a l y s i s i n o r d e r t o see whe the r a goa l s t a t e f o r 
a p a r t i c u l a r d imens ion may be a t t a i n e d by s u c c e s s i v e ap­
p l i c a t i o n s o f a s i n g l e o p e r a t i o n . I f s o , t h a t o p e r a ­
t i o n i s s i n g l e d o u t as a p r i m i t i v e s t r a t e g y . The sym­
m e t r i c n a t u r e o f most games a l l o w s the c r e a t i o n o f com­
p l e m e n t a r y p r i m i t i v e s t r a t e g i e s f o r imped ing t h e op ­
p o n e n t ' s p r o g r e s s on a g i v e n d i m e n s i o n . 

Move S e l e c t i o n 

Here is a quick overview of the f low of processing 
performed by our model fo l l ow ing the opponent's move. 
F i r s t , i t t r i e s to f i nd a reason f o r the opponent's 
move: the representat ion of the current s i t u a t i o n is 
updated in l i g h t of that reason. The model may then 
e i the r respond to the opponent's move, continue w i th 
the execution of a prev ious ly created p l a n , or generate 
a new p lan . 

The evaluat ion of newly created pat terns i d e n t i f i e d 
by a scan of the board s ingles out the reason f o r the 



opponent's move. Plans are sequences of moves leading 
to a s i t u a t i o n which is more favorable than the current 
one. The moves w i t h i n the plan sequences are o r i g i n a l ­
ly suggested e i ther by f am i l i a r patterns or by s t r a t e ­
gies. The suggested moves undergo evaluat ion during a 
lookahead process whose depth is l im i ted by the con­
s t r a i n t s of a working memory. 

Of necessi ty , a l l of these processes i n te rac t heav­
i l y . I t w i l l be convenient, however, to discuss i n ­
d i v i dua l l y the fo l low ing segments of the model: scan­
ning the board, f a m i l i a r pa t te rns , move evaluat ion, 
lookahead, and f i nd ing a reason fo r the opponent's move. 

Scanning the Board 

The game board serves as an external memory for 
human p layers . This external memory is simulated by a 
2-dimensional array which remains conceptually d i s t i n c t 
from the model. The problem of scanning the board may 
be thought of as a problem of parsing a 2-dimensional 
s t r i n g . Top-down parsing algorathms which have been 
used as a mechanism fo r the analysis of l i ne drawings9 , 

1 , 1 5 , capture the p red ic t i ve power and analysis-by-
synthesis nature of human v isua l processing. Bottom-
up parsers ( e . g . , Ledley ) capture the essence of or­
ganizat ion of v isua l scenes for which there are no ex­
pectat ions. They may also miss important conf igura­
t i ons , which is a disadvantage fo r an optimal game 
p lay ing machine, but a necessity fo r a r e a l i s t i c model 
of human game p lay ing . 

The scanning rout ine used by our model begins wi th 
a bottom-up parse of the board, but becomes a top-down 
parse as soon as enough informat ion is gathered to gen­
erate some expectat ions. The scan i t e ra tes through a l l 
board locat ions whose contents have changed as a resu l t 
of the las t move, t r ea t i ng each such locat ion as the 
o r i g i n of a bottom-up parse. When scanning from a 
given o r i g i n the model per iphera l l y not ices a l l the im­
mediate neighbors o f that o r i g i n , i . e . , a l l pieces 
w i th in the 3x3 area containing the o r i g i n and i t s neigh­
bors. I t i d e n t i f i e s those combinations which e i ther 
cons t i tu te complete patterns or are possible members of 
some larger pa t te rns . 

If a larger pa t te rn is marked as p o t e n t i a l l y pre­
sent, the scan then switches to i t s top-down phase and 
ac t i ve ly t r i e s to f i n d that larger pa t te rn . The ident i ­
f i c a t i o n of pat terns is made by network matching rou­
t ines which compare the current view wi th a network 
containing descr ipt ions of f a m i l i a r pat terns. 

The top-down parse s ta r t s wi th an attempt to ident i ­
fy f am i l i a r pat terns derived from Gestalt p r i nc ip les of 
human percept ion. The three Gestalt p r inc ip les inc lud­
ed in the model are those of p rox im i ty , s i m i l a r i t y , and 
con t inu i ty .11 Proximity is incorporated by having the 
scan move outwards from the o r i g i n in expanding concen­
t r i c c i r c l e s . The p r i n c i p l e of s i m i l a r i t y is embodied 
by marking "piece next to a s im i la r p iece" as a fami l iar 
pa t te rn fo r a l l games. The p r i n c i p l e of con t inu i t y is 
incorporated by regarding l ines of pieces as inherent ly 
f a m i l i a r pa t te rns . Consequently, a po ten t i a l l i ne of 
pieces seen in the i n i t i a l 3x3 area w i l l r esu l t in the 
i n i t i a t i o n of a top-down search fo r that l i n e . 

Note that although pat terns are " f a m i l i a r , " they 
are not necessar i ly meaningful w i t h i n the context of a 
p a r t i c u l a r game. Thus, a row of four bishops side by 
side on a chess board w i l l be ca l led " f a m i l i a r " by the 
Gestalt p r i n c i p l e s , although the i n t r i n s i c importance 
of such a conf igura t ion is not at a l l c lear . 

Once simple Gestal t groupings are recognized, the 
top-down scan continues looking for other potential 
patterns ( i f other po ten t i a l ones are ind ica ted) . The 
remaining ones are those which are important w i t h i n the 
context of the spec i f i c game cur ren t l y being p layed. 6 

Fami l iar Patterns 

The a b i l i t y to recognize f a m i l i a r conf igurat ions 

of pieces on the board is c ruc ia l f o r the playing of 
any game. A person who recognizes a f am i l i a r pa t te rn 
can re fe r to i t s representat ion in his long-term memory 
by using a s ing le l a b e l , thus f reeing valuable space. 
Addi t iona l savings are obtained i f the pat tern is as­
sociated wi th a wel l known sequence of suggested moves, 
since these suggestions need not be generated in the 
normal lookahead manner. A large reper to i re of familiar 
patterns is one of the charac te r i s t i cs of s k i l l f u l 
p layers . 8 ,23 

Patterns are represented in the model by means of 
act ive semantic networks of the type described in Rum-
e lhar t G Norman.20 Such networks may be t reated e i ther 
as data to be consulted during the recogni t ion of pat­
terns ( i . e . , as a table of rewr i te rules during a v i su ­
al parse) or as procedures which themselves d i rec t the 
recogni t ion process. In f a c t , the current scanning a l ­
gorithm invokes the procedural de f i n i t i ons during i t s 
top-down phase, and t reats the same de f i n i t i ons as data 
during i t s bottom-up phase. 

This format of representat ion appears to be both 
powerful and general. If we represent spec i f i c loca­
t ions and pieces, the representat ion becomes equivalent 
to that of Simon and Gi lmar t in 's MAPP program.23 Non-
spec i f i c locat ions and or ien ta t ions allow us to have 
in terna l representations which are homomorphic to the 
rea l world conf igurat ions. This was the type of repre­
sentat ion used by Murray and Elcock for Gomoku.17 Re­
cursive de f i n i t i ons of groups of stones in Go, found 
useful by Ryder,-* are also easy to handle in th i s f o r ­
mat. A sequence of suggested moves for a f am i l i a r pat­
tern is represented as a procedure which, when executed, 
returns wi th advice relevant w i t h in the context of a 
pa r t i cu l a r game. For example, i f the pat tern " four in 
a row" is discovered in the game of Gomoku, a procedure 
is act ivated which looks for a vacant square next to 
and in a l i ne wi th the pa t te rn , and recommends moving 
to that square. Note how t h i s contrasts wi th the 
"meaningless" chess pat tern of four bishops in a row 
described e a r l i e r . 

Evaluation 

The evaluat ion of moves is based on the dimensions 
stored under a "s t ra tegy" node. For example, on the 
dimension of " l e n g t h , " a s t r i ng of f i ve in a row has a 
greater value than a s t r i n g of four in a row. If we 
are comparing two moves along the dimension of "cap­
ture va lue , " we might compare the number of pieces cap­
tured [ e . g . , in checkers), or the numerical value which 
some book or t u t o r has t o l d us to assign to the cap­
tured pieces ( e . g . , in chess). Relevant dimensions are 
stored e x p l i c i t l y under the strategy node, but are d i f -
ferent fo r d i f f e ren t games. 

Actual numerical values are not computed in the cur­
rent model, and at present there is no ordering of the 
sequence in which d i f f e ren t dimensions are encountered, 
but we allow an ordering of the nodes w i th in a given 
dimension. 

When a pat te rn has been found by the scan, candidate 
moves w i l l be suggested if there are e x p l i c i t recom­
mendations associated wi th the pa t te rn . If such recom­
mendations are not found, the strategy node provides 
suggestions by po in t ing out a dimension and a way of 
increasing values on that dimension { e . g . , adding a 
piece next to i t s neighbors to increase length) . 

A pairwise comparison of successively generated can­
didates is made along relevant dimensions (as suggested 
by s t ra teg ies) in order to choose the best move. I f , 
during the course of these comparisons, a candidate is 
found which has a value above " s a t i s f i c i n g " 1 8 on any 
dimension, the evaluat ion terminates and that-candidate 
becomes the model's choice fo r the next move. 

When t r y i n g to f i n d the best of two candidate moves, 
it is possible that they w i l l have the same values on 
the dimension on which they are compared, or that these 
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values can only be determined if they lead to a f a m i l ­
i a r conf igura t ion of pieces w i t h i n several moves. I f 
t h i s is the case, we ca l l a lookahead procedure which 
looks for recommended moves fo r the opponent and com­
pares the outcomes of these recommended moves (which 
i t s e l f may requi re another c a l l to the lookahead pro­
cedure) . Since there are normally several a l t e rna t i ve 
moves, the only recommended moves which are considered 
for evaluat ion (and possible f u r the r lookahead) are 
those which have the highest p robab i l i t y of being r e ­
a l i zed . If we could ob jec t i ve ly decide on a move for 
the opponent using an unbiased evaluat ion scheme, then 
our move se lec t ion technique would be formal ly equiva­
lent to minimaxing. People t y p i c a l l y do not perform 
t h i s type of ana lys is , since they are subject to a bias 
when t r y i n g to carry out a p lan ; they may assume that 
pieces only have a p a r t i c u l a r ro le ( e . g . , o f fensive or 
defensive) or only move w i th a spec i f i c i n ten t ( e . g . , 
"he is t r y i n g to capture my b ishop") . In the model, 
bias operates by i n s t r u c t i n g the scanning rout ine to 
look only for pieces which f u l f i l l ce r ta in ro les . In 
t h i s way, we s t i l l choose "best" moves fo r the opponent, 
but bias y ie lds what we c a l l "sub jec t ive minimaxing." 

Lookahead 

The model's actual lookahead may be regarded as a 
product of many i n t e rac t i ng processes. These processes 
(which we w i l l discuss in d e t a i l below) inc lude: an ac­
t i v e working memory which e f f e c t i v e l y l i m i t s the depth 
of lookahead; heu r i s t i cs fo r narrowing the se lec t ion of 
move candidates; a mechanism fo r making hypothet ica l 
moves; a l im i t ed backup capab i l i t y which r e s t r i c t s the 
model to a "progressive deepening" search. The actual 
lookahead t y p i c a l l y proceeds by means of a forward 
search, but capab i l i t y f o r means-ends analysis is also 
provided. Plans are t rea ted as an outcome of the look-
ahead process. 

Working Memory. A l l ac t ive processing takes place 
w i t h i n the confines of a l im i t ed size working memory. 
The size r e s t r i c t i o n is regarded as an asset to the 
model, as it necessitates garbage-col lect ion and chunk­
ing of in format ion. The contents of working memory is 
a homogeneous mixture of data, procedures, and po in ters 
to items in long-term memory. Achieving a given per­
formance leve l ( e . g . , remembering 7±2 random d i g i t s 1 6 ) 
depends upon a model's spec i f i c implementation. We are 
cur ren t ly considering d i f f e r e n t size l i m i t a t i o n s , and 
the f i n a l choice is l i k e l y to be in the order of hun­
dreds of nodes. This conceptual izat ion is an adapta­
t i o n of the one proposed by Newell and Simon.18 

Heur is t i c Candidate Se lect ion. The se lec t ion of 
only a few move candidates fo r f u r the r lookahead is an 
automatic resu l t of the way in which these candidates 
are suggested. The scan of the board concentrates on 
those areas which have changed as the resu l t of a move. 
Some candidate moves are suggested by f a m i l i a r pat terns 
which resu l t from th i s loca l i zed scan. Other candidate 
moves are suggested by advice from d i f f e r e n t dimensions 
known to the st rategy node ( e . g . , " increase l eng th " ) . 
F i n a l l y , if good move candidates which were prev ious ly 
considered are s t i l l in working memory, a re-analys is 
of these candidates may be performed. The number of 
candidates is o f ten small in h igh ly constrained s i t u a ­
t i o n s , such as dynamic piece exchange. Since working 
memory size is constant, a small number of candidates 
enhances the depth of lookahead. 

Hypothet ica l Moves. Since the array represent ing 
the board is regarded as an external memory, imaginary 
moves do not a f f ec t t h i s ar ray . A hypothet ica l move is 
made by asser t ing a p ropos i t ion which includes (among 
other th ings) a "beg inn ing -s ta te , " an "end -s ta te , " and 
the move which causes the t r a n s i t i o n between the two 
s ta tes . The end-state fo r a given move is the resu l t 
of augmenting the beginning-state f o r that move w i th 
the changes caused by tha t move- The beginning-state 

fo r a move is simply the end-state of the preceding 
move, if such a preceding move ex is ted . The beginning-
s ta te fo r the f i r s t imaginary move is empty, since no 
changes have yet been imagined. During lookahead, the 
board scanning rout ine scans the real world array as 
described e a r l i e r , but i t also consults the l a tes t as­
serted end-state in order to co r rec t l y locate imaginary 
pieces. If many changes are imagined, there is the dan­
ger that o ld ones w i l l be los t as working memory f i l l s 
up, in which case board scanning errors w i l l occur. 

Progressive Deepening. The search path fol lowed by 
humans during lookahead is best character ized by the 
term "progressive deepen ing . " 8 ' 1 8 This term re fe rs to 
the tendency of people to r e v i s i t a given lookahead path 
in order to explore a s ing le new side path or to extend 
the depth of the o r i g i n a l path. The search path of a 
subject so lv ing a chess problem thus looks l i k e a suc­
cession of many s t r a i gh t paths, w i th only a few cases of 
t rue backup to pos i t ions one or two moves back in the 
p a t h . 1 8 If the model has to back up, it may do so 
e i ther by going back to the rea l board and beginning 
another lookahead, or by undoing the la tes t hypothet ica l 
move (only the most recent ly asserted propos i t ion is ac­
cess ib le , and the sequence of moves cannot be deduced 
from the end-states) . 

Old proposi t ions are recognized by a pat te rn match­
ing p r i m i t i v e i f they are s t i l l w i t h i n working memory 
when re-asserted by the model. A simple " te rm ina t ion" 
f l a g on old proposi t ions allows the model to inves t iga te 
other move candidates and thus avoid fo l low ing the exact 
same path each t ime. Proposit ions become flagged as 
soon as t h e i r end-state imaginary board pos i t ions evalu­
ate to some c r i t e r i o n l e v e l . Upon r e - i n i t i a t i n g look-
ahead, the model re-explores par t of the most recent 
path , branching o f f when i t t r i e s to re-asser t a propos­
i t i o n which has been f lagged as te rmina l . 

Plans. Beginning wi th the current rea l board pos i ­
t i o n , each asserted propos i t ion is connected by a " f o r ­
ward" l i n k to the asserted propos i t ion which fol lows i t . 
One-move backup resu l t s in mu l t i p le l inks extending 
forward from the target of the backup, but a return to 
the s t a r t i n g pos i t i on causes a brand new sequence to be­
come l i nked . Thus, if the sequence of imaginary moves 
A,B,C,D is fol lowed bv a re tu rn to the o r i g i n a l pos i t i on 
and then by the sequence A,B,C,E, the two structures 
symbolized by 

AthenB3thwizCthen>0 

a n d A , t h e n - * E ' t h e n > C ' t h e n > E 

w i l l be constructed. A' and A w i l l be complex s t ruc ­
tures represent ing two instances of the verb "move" 
w i th i d e n t i c a l arguments. The other l e t t e r s have a 
s im i l a r connotat ion. These l inked sequences are the 
model's representat ion of p lans. The r e s t r i c t i o n to 
forward l inks may be regarded as a r e s u l t of the way 
events are perceived in the rea l world ( e . g . , i t i s v i r ­
t u a l l y impossible to wh is t le a tune backwards). 

Means-ends Analys is . The lookahead mechanisms de­
scr ibed above were presented mainly in the context of a 
forward-search analysis of a board p o s i t i o n . Not a l l 
move select ions are a r r i ved at in t h i s way. One or 
more of the dimensions under the st rategy node may sug­
gest a goal s ta te ra ther than an actual move ( e . g . , 
" t r y to capture a p iece " ) . Since the d e f i n i t i o n of 
moves such as "capture" includes the not ion of a t rans­
i t i o n from a peginning-state to an end-state, the model 
regards the beginning-state in such d e f i n i t i o n s as a 
precondi t ion which must be at ta ined before the r e ­
commendation may be car r ied out . For example, in the 
game of chess the p r i o r s tate fo r "x captures y" is 
"x bears on y . " I f the p r i o r s ta te ex is ts on the board, 
then the spec i f i c recommendation leads to the asser t ion 
of a new move candidate. If the s ta te does not e x i s t , 
then that s ta te is t rea ted as a new subgoal, and i t s 
precondit ions are searched f o r in a s im i l a r manner. 
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The actual search is constrained in the same way as 
forward search, and therefore we re fe r to it as " r e ­
gressive deepening" search. 

Since the concept of " forward" l i n k i ng refers to 
the order in which the imaginary proposi t ions are as­
ser ted , an actual sequence of moves leading to a goal 
s tate a r r i ved at through means-ends analysis w i l l be 
stored in reverse order ( i . e . , s t a r t i n g move l a s t ) . 
The correct sequence may be rederived at each stage. 
This reder i va t ion may occur a move at a time during 
the course of the game, or may occur in lookahead by 
i n i t i a t i n g a forward search from the i n i t i a l move af­
t e r it has been discovered by means-ends analys is . In 
p rac t ice we expect the model to be able to begin a 
forward search, and then i n i t i a t e a means-ends analysis 
from some hypothet ica l pos i t i on which is embedded with­
in the forward s.earch. 

Finding a Reason fo r the Opponent's Move 

The opponent's l a tes t move is examined to see 
whether i t is par t of a current plan sequence. I f so, 
then it is classif ied as an "expected" move. We then 
assign to that move a "reason" taken f rom the reason 
fo r which the model generated t h i s expected move dur­
ing i t s ear l ieT planning sequence. This reason may 
not be why the opponent ac tua l ly made that move. This 
egocentric oversight may cause the model to miss some 
important con f igura t ions , but we be l ieve that humans 
su f fe r from exact ly t h i s f a i l i n g . 

If the opponent's move is unexpected, the model 
checks to see whether the change between the previous 
board and the current board has been favorable fo r the 
opponent. If e i t he r a mater ia l change or a pat tern 
i d e n t i f i e d by t h i s check has a value which surpasses 
the s a t i s f i c i n g c r i t e r i o n , then the model assumes it 
has found the proper reason fo r the opponent's move. 
As before, t h i s may be wrong if there were mul t ip le 
outcomes of the move. If no sa t i s fac to ry reason has 
yet been found, the model t r i e s to see what the op­
ponent can do on h is fo l low ing move, by looking at the 
current board and pretending to be i t s own opponent. 
The most favorable outcome f o r the opponent a f t e r a 
"lookahead" evaluat ion is regarded as being the reason 
for the questionable move. 

Note that whi le a l l of these processes lead to a 
seemingly shor ts ighted and subject ive determination of 
the reason, the model may become more sophist icated by 
not stopping these procedures upon the discovery of 
some s ing le high-valued reason, but rather doing a l l of 
them, thus f i nd ing mu l t i p l e reasons. 

Learning to Play a Better Game 

Playing a game may be viewed as an attempt to modi­
fy a current s ta te i n to some goal s tate by means of 
some operator (or a p lan) . Improving one's s k i l l in 
p laying a game involves the emergence of the a b i l i t y to 
i d e n t i f y states fo r which operators e x i s t , and to f i nd 
operators which are appl icable to already known s ta tes . 
States and operations which transform states can be ac­
quired by means of both experience and ins t ruc t ions 
from an external source (books, a t u t o r , e t c . ) . 

The Lookback Mechanism 

The main mechanism fo r learning through experience 
proposed here is tha t of " lookback." Whenever the model 
encounters a s i t u a t i o n which looks d e f i n i t e l y be t te r 
(or worse) than the s i t u a t i o n ex i s t i ng before, i t re ­
constructs the former s i t u a t i o n and t r i e s to i d e n t i f y 
what operations were performed which transformed i t i n ­
to the present s t a t e . The model may not ice a change in 
states but be unable to reproduce the way in which the 
change has occurred, espec ia l ly when it has taken many 
moves to produce a change. As wi th lookahead, the deptn 

of lookback is l im i ted by working memory and aided by 
the a b i l i t y to encode whole segments of moves in to one 
meaningful chunk. 

Since winning and los ing cons t i tu te d e f i n i t e chang­
es in s ta tes , at these points the model looks back and 
t r i e s to i d e n t i f y what has made the s i t ua t i on j us t pre­
ceding the completion of the game so powerfu l . This 
s i t ua t i on now becomes a subgoal s ta te . The model also 
attempts to character ize the las t move along the dimen­
sions employed during move evaluat ion. This character­
i za t i on serves as a plan fo r transforming the newly 
found subgoal i n to a win. Moves that would prevent the 
win from occurr ing can also be considered. Winning (or 
losing) is not the only case where a d e f i n i t e change in 
states occurs, but it is the most s t r i k i n g one. When­
ever the model not ices that an already known state has 
been achieved, the same evaluat ion process may take 
place. The resu l t of a successful lookback is the cre­
at ion of a new node representing the newly i d e n t i f i e d 
subgoal. In addi t ion to a descr ip t ion of the subgoal, 
th i s node includes a po in ter to the goal , and to the 
sequence of moves leading from the subgoal to the goal . 

Whenever an ex is t ing operation is about to be exe­
cuted, the player has d e f i n i t e expectations about the 
outcome. If that outcome f a i l s to mate r ia l i ze , then 
the operation can be Te-evaluated and modi f ied, or even 
discarded. 

Lookback can occur whenever one encounters a f am i l ­
i a r pa t te rn . This is t rue regardless of whether that 
f am i l i a r pat tern is ac tua l ly there on the board ( i . e . , 
consists o f rea l p ieces) , or whether i t p a r t i a l l y or 
wholly consists of imaginary pieces ( i . e . , pieces "add­
ed" to the board by the lookahead process). The work­
ing memory constra ints ac t ing upon lookahead w i l l make 
the detect ion of an imaginary f am i l i a r pa t te rn somewhat 
less l i k e l y than the detect ion of a rea l f a m i l i a r pat­
t e r n , but once such a pat te rn is detected the learning 
process may proceed in the regular way. 

The I d e n t i f i c a t i o n of Patterns and Operations 

So fa r the discussion has i m p l i c i t l y assumed that 
plavers engaged in lookback know what they are looking 
f o r , and that the i d e n t i f i c a t i o n of new patterns and 
plans occurs a f t e r the f i r s t occurrence of an opportuni­
ty to learn which the player is aware o f . That assump­
t i o n is f a r from being t r ue . Progress in game p lay ing 
s k i l l is very slow and of ten f r u s t r a t i n g . Working mem-
ory constra ints arc one reason for the slow progress. 
Often players jus t cannot r e c a l l the i n i t i a l s tate or 
the sequence of moves which led to the f i n a l s ta te . 

An even more important obstacle to fas t progress 
(and one which may also great ly increase working memory 
load) is the p layer 's i n a b i l i t y to d is t ingu ish between 
relevant and i r r e l evan t in format ion which ex is ts on the 
board. The i n i t i a l s tate (which eventual ly becomes a 
f a m i l i a r pat tern and a possible final s tate) is not on 
the board by i t s e l f . The board often contains many i r ­
relevant pieces. Even the relevant pieces may have 
proper t ies which are i r r e l evan t fo r the i d e n t i f i c a t i o n 
of a p a r t i c u l a r subgoal. 

This s i t ua t i on is analogous to the one ex i s t i ng in 
psychological experiments on concept learn ing , and our 
model goes about learning patterns in a way s im i l a r to 
that in which human subjects learn concepts. Studies 
of concept lea rn ing 1 4 ind ica te that people usual ly gen­
erate a hypothesis about the concept they have to learn 
on the basis of avai lable instances. They regard t h i s 
hypothesis as the correct concept u n t i l they encounter 
a d isconf i rmat ion of the hypothesis, in which case they 
t r y another one. 

Whenever a subgoal is achieved, the lookback mechan­
ism reconstructs the preceding s i t ua t i on (the " i n i t i a l 
s ta te" ) unless the subgoal has been the r e s u l t of the 
app l ica t ion of a plan ( i n which case no lookback and 
re-evaluat ion w i l l occur). Those features which have 
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changed serve as a c l u e as to wh ich f e a t u r e s may be 
r e l e v a n t t o t he d e s c r i p t i o n o f t h e i n i t i a l s t a t e . T h i s 
d e s c r i p t i o n i s t h e mode l ' s c u r r e n t concept f o r t h e 
s t a t e p r e c e d i n g t h a t s u b g o a l . When t h e same subgoa l 
occu rs a g a i n a new d e s c r i p t i o n o f i t s i n i t i a l s t a t e i s 
g e n e r a t e d . A g e n e r a l i z a t i o n r o u t i n e compares t h i s new 
d e s c r i p t i o n w i t h t he c u r r e n t concept f o r t h e i n i t i a l 
s t a t e w h i c h precedes t h i s s u b g o a l . The common f e a t u r e s 
found by t h i s compar ison fo rm a new g e n e r a l i z e d concept 
f o r t h a t i n i t i a l s t a t e . A s i m i l a r p rocess i s a p p l i e d 
t o t h e sequences o f moves wh ich have l e d t o t h e f i n a l 
g o a l . The s t a t e s and p l a n s i d e n t i f i e d a t t h e e a r l y 
s tages o f t he game are g r e a t l y m o d i f i e d over s h o r t 
p e r i o d s o f t i m e , b u t t h e y r a p i d l y s t a b i l i z e . 

T u t o r i n g 

The p r e c e d i n g s e c t i o n has d e s c r i b e d t h e way i n 
wh ich t h e model l e a r n s to p l a y a b e t t e r game on t h e 
b a s i s o f e x p e r i e n c e o n l y . People can become b e t t e r 
p l a y e r s by u s i n g e x t e r n a l sources o f knowledge . Zo-
b r i s t and C a r l s o n 2 4 emphasize t h e impo r tance o f a d v i c e -
t a k i n g f o r a model o f game p l a y i n g . Our model has t h i s 
c a p a b i l i t y and can b e g i v e n a d v i c e i n a f a i r l y n a t u r a l 
way. For example , t h e p a t t e r n ''openfour,'1 wh ich i s 
c r u c i a l i n Gomoku, can be t a u g h t to t he model by e n t e r ­
i n g t h e s t a t e m e n t : 

"OPENFOUR" LOOKS LIKE A SEQUENCE OF A 

BLANK SQUARE, A ROW OF FOUR PIECES, AND 

A BLANK SQUARE. 

"LOOKS L IKE" is a p r e d i c a t e wh ich adds a p o i n t e r f r om 
t h e name o f t h e p a t t e r n t o i t s d e f i n i t i o n . "SEQUENCE" 
builds a structure with i t s members ordered along one 
a x i s , and i s a l s o a p r o c e d u r e f o r i d e n t i f y i n g t h e 
e x i s t e n c e o f a s i m i l a r s t r u c t u r e on t h e b o a r d . "ROW" 
i s s i m i l a r t o "SEQUENCE," excep t t h a t i t a l l o w s p e r ­
m u t a t i o n s o f i t s members a l o n g a g i v e n a x i s . 

The " m e a n i n g " of OPENFOUR f o r t h e game of Gomoku 
may be added by s a y i n g : 

"OPENFOUR" SUGGESTS FOR GOMOKU THAT YOU 

PLACE A PIECE ON ANY UNOCCUPIED MEMBER 

OF THE "OPENFOUR." 

We a re c u r r e n t l y imp lemen t i ng p rocedu res f o r g i v i n g 
a d v i c e i n v o l v i n g f u n c t i o n a l d e f i n i t i o n s and l ookahead . 
For example , we wou ld l i k e to be a b l e to d e f i n e a PIN 
i n chess as f o l l o w s : 

X PINS Y TO Z 

ISWHEN: X SEARS ON Y. 

IF Y MOVES, X, WHICH DOES NOT BEAR ON Z, 

WILL BEAR ON Z, 

THE VALUE OF X CAPTURING Z FOR X'S OWNER 

IS GREATER THAN THE VALUE OF ANY MOVE 

OF Y FOR Y 'S OWNER. 

The o p e r a t o r "VALUE" t akes i n t o accoun t t h e v a l u e o f an 
exchange p l u s t h e v a l u e o f p a t t e r n s r e s u l t i n g f rom a 
g i v e n move ( i t may have t o c a l l l ookahead t o d o t h i s ) . 

Notes and References 

1 . The r e s e a r c h r e p o r t e d i n t h e p r e s e n t paper i s sup­
p o r t e d by g r a n t GB 3223SX f rom t h e N a t i o n a l Sc ience 
F o u n d a t i o n . 

2 . We w i s h to thank Donald A. Norman f o r h i s h e l p f u l 
comments o n a n e a r l i e r d r a f t o f t h i s p a p e r . 

3 . The a s s e r t i o n t h a t b e g i n n e r s d o n o t p l a y randomly i s 
s u p p o r t e d b y t h e f o l l o w i n g r e s u l t : A n e x p e r i e n c e d 
Gomoku p l a y e r was a b l e to d i s c r i m i n a t e between r a n ­
domly g e n e r a t e d ( l e g a l ) moves and moves made by b e ­

g i n n e r s f o r 4 1 o u t o f 4 4 i n s t a n c e s (93* ) t a k e n f rom 
t h e f i r s t Gomoku games p l a y e d by each of 5 beg inne rs . 

4 . Gomoku is u s u a l l y p l a y e d on a 19x19 b o a r d , a l t h o u g h 
o t h e r s i z e s a re o f t e n used . Two p l a y e r s a l t e r n a t e l y 
p l a c e one o f t h e i r p i e c e s on any vacan t s q u a r e . The 
f i r s t p l a y e r t o ge t f i v e o f h i s p i e c e s i n a row , 
h o r i z o n t a l l y , v e r t i c a l l y , o r d i a g o n a l l y , w ins t h e 
game. 

5 . The scan thus f i n d s i t s n e a r e s t h o r i z o n t a l and v e r t i ­
c a l n e i g h b o r s b e f o r e i t s n e a r e s t d i a g o n a l n e i g h b o r s , 
b u t f i n d s a n e i g h b o r i n g d i a g o n a l p i e c e b e f o r e f i n d ­
i n g a p i e c e wh ich is 2 squares away f rom t h e o r i g i n 
h o r i z o n t a l l y o r d i a g o n a l l y . T h i s conforms n i c e l y 
w i t h t h e f o l l o w i n g datum: 67% o f t h e l osses o f sub ­
j e c t s p l a y i n g t h e i r f i r s t 6 games o f Gomoku can be 
accoun ted f o r by a d i a g o n a l s t r i n g o f 5 , even 
though t h e number o f p o s s i b l e d i f f e r e n t d i a g o n a l 
s t r i n g s o f 5 i s o n l y 37% o f t h e t o t a l number o f 
p o s s i b l e s t r i n g s o f 5 on t h e 9x9 b o a r d on wh ich t h e 
games took p l a c e . The f o l l o w i n g d a t a i n d i c a t e t h a t 
t h i s i s because d i a g o n a l squares a re f a r t h e r a p a r t 
t h a n h o r i z o n t a l and v e r t i c a l squares (by /2~:1) and 
n o t because s u b j e c t s scan h o r i z o n t a l l y and v e r t i ­
c a l l y f i r s t : When t h e b o a r d was r o t a t e d 45" ( t o 
f o rm a d iamond) , s u b j e c t s s t i l l l o s t 59% o f t h e i r 
games on t h e " d i a g o n a l s " (now r u n n i n g h o r i z o n t a l l y 
and v e r t i c a l l y ) . I n a d d i t i o n , when p l a y i n g o n r e c ­
t a n g u l a r boards w i t h s i des i n t h e r a t i o o f 2:1 , 
s u b j e c t s l o s t 4 t imes as many games on t h e l ong a x i s 
( r e g a r d l e s s o f whe the r i t was t h e v e r t i c a l o r t h e 
h o r i z o n t a l one) as compared to t h e number o f games 
l o s t on t h e s h o r t a x i s . As e x p e c t e d , most o f t h e 
games on t h e r e c t a n g u l a r boards were s t i l l l o s t on 
d i a g o n a l s (69% o f t h e m ) . 

6 . I f t h e f a m i l i a r p a t t e r n s wh ich d i r e c t t h e top-down 
scann ing r o u t i n e s d i f f e r f r om game to game, t hen we 
shou ld be a b l e to c o n s t r u c t ambiguous p a t t e r n s when 
d i f f e r e n t t ypes of games a re p l a y e d on the same 
b o a r d w i t h t h e same p i e c e s . We have done t h i s w i t h 
human game p l a y e r s by u s i n g t r a n s f o r m e d ( r o t a t e d 
and r e f l e c t e d ) v e r s i o n s o f t h e same c o n f i g u r a t i o n 
of p i e c e s to r e p r e s e n t b o t h a Go p r o b l e m and a Go­
moku p r o b l e m . S u b j e c t s were f i r s t asked t o s o l v e 
t h e "Go" p r o b l e m , and t h e n immed ia te l y a f t e r w a r d s 
t o r e c o n s t r u c t t h e "Go" boa rd c o n f i g u r a t i o n f rom 
memory. N e x t , t h e s u b j e c t s were asked t o s o l v e t h e 
"Gomoku" p r o b l e m , and t h e n t o r e c o n s t r u c t t h e " g o ­
moku" board c o n f i g u r a t i o n f rom memory. I n r e a l i t y , 
t h e "Go" p r o b l e m and "Gomoku" p rob lem were e x a c t l y 
t h e same r e l a t i v e c o n f i g u r a t i o n o f p i e c e s . H a l f 
t h e s u b j e c t s were g i v e n t h e prob lems i n t h e oppos i te 
sequence. A compar ison o f t h e r e c o n s t r u c t i o n s 
showed t h a t t h e s u b j e c t s remembered d i f f e r e n t con­
f i g u r a t i o n s o f t he p i e c e s f o r each game. The 
p i e c e s t h a t were remembered were t h e ones c r u c i a l 
to the particular game from which they were told 
t h a t t h e p r o b l e m had been t a k e n . 

1. The p r i n c i p l e o f s a t i s f i c i n g i s t h a t we make t h e 
f i r s t move wh ich has a v a l u e above some c r i t e r i o n 
level. One node among the ordered set of nodes 
w i t h i n each d imens ion i s tagged a s b e i n g t h e " s a t i s ­
f i c i n g " node f o r t h a t d i m e n s i o n . Moves wh ich have 
a v a l u e above t h e s a t i s f i c i n g node w i t h i n any d i ­
mension a re s a i d t o b e "above s a t i s f i c i n g l e v e l . " 

8. DeGroot , A. D. Thought and Choice in Chess. The 
Hague: Mou ton , 1965. 

9 . E i n - D o r , P . Elements o f a t h e o r y o f v i s u a l i n f o r ­
m a t i o n p r o c e s s i n g . U n p u b l i s h e d d o c t o r a l d i s ­
s e r t a t i o n , Depar tment o f P s y c h o l o g y , C a r n e g i e -
M e l l o n U n i v e r s i t y , 1971 . 

10. Evans , T. G. A g r a m m a r - c o n t r o l l e d p a t t e r n a n a l y z e r . 
I n A . J . H . M o r e l l ( E d . ) , I n f o r m a t i o n P r o c e s s i n g 
6B, Proceedings of the IFIP .Congress 1968, Vol.2. 
Amsterdam: N o r t h - H o l l a n d , 1968, 1592-1S98. 

1 1 . K o f f k a , K . P r i n c i p l e s o f G e s t a l t Psycho logy . New 
Y o r k : H a r c o u r t Brace J o v a n o v i c h , 1935. 

462 



12. Ledley, R. S. High-speed automatic analysis of b io ­
medical p i c tu res . Science, 1964, 146, 216-223. 

13. Leeper, R. W. A study of a neglected por t ion of 
the f i e l d of learn ing: The development of sensory 
organizat ion. Journal of Genetic Psychology, 
1935, 46_, 41-75. 

14. Levine, M. Hypothesis theory and nonlearning de­
sp i te idea l S-R reinforcement contingencies. 
Psychological Review, 1971, 78, 130-140. 

15. Menninga, L. D. A. syntax-d i rected approach to pa t ­
tern recogni t ion and descr ip t ion . P_roc._ AFIPS 
FJCC, 1971, 39, 145-151. 

16. M i l l e r , G. A. The magical number seven, plus or 
minus two: Some l i m i t s on our capacity fo r pro­
cessing in fo rmat ion . Psychological Review, 1956, 
63_, 81-97. 

17. Murray, A. M. & Elcock, E. W. Automatic descrip­
t i o n and recogni t ion of board pat terns in Go-
Moku. In E. Dale & D. Michie (Eds. ) , Machine 
In te l l i gence 2. New York: American Elsev ier , 
1968. 

18. Newell, A. & Simon, H. A. Human Problem Solv ing. 
Englewood C l i f f s , N .J . : P ren t i ce -Ha l l , 1972. 

19. Rumelhart, D. E., Lindsay, P. H. § Norman, D. A. 
A process model f o r long-term memory. In E. 
Tulv ing 5 J. Donaldson (Eds.) , Organization of 
Memory. New York: Academic Press, 1972. 

20. Rumelhart, D. E. & Norman, D. A. Act ive semantic 
networks as a model of human memory. Proceed­
ings of the Third In te rna t iona l Jo in t Conference 
on A r t i f i c i a l I n t e l l i gence , Stanford, CA, 1973. 

21. Ryder, J. L. Heur is t i c analysis of large trees as 
generated in the game of Go. Report No. CS-245, 
Computer Science Department, Stanford Universi ty, 
1971. 

22. Shaw, A. C. Parsing of graph-representable p i c ­
tu res . J.A.C.M., 1970, 453-481. 

23. Simon, H. A. & G i lmar t i n , K. A s imulat ion of mem­
ory fo r chess pos i t i ons . Complex Information 
Processing Working Paper #206, Department of 
Psychology, Carnegie-Mellon Un ive rs i t y , 1972. 

24. Zob r i s t , A. L. & Carlson, F. R., J r . An advice-
tak ing chess computer. S c i e n t i f i c American, 
1973, 228(6), 92-105. 

463 



The empty ovals represent tokens of the "act" to 
which they point. Empty brackets represent argument 
slots which are f i l l e d in with information either 
exp l ic i t ly mentioned or derived from the rules of spe­
c i f i c games. The English equivalent of this network is 
as follows (note that statements in brackets are c la r i ­
f ications rather than part of the description i t s e l f ) : 

"Games are played by players. The goal 
of playing is for one of the players to 
achieve some winning state. Games have some 
setup [e.g. board, pieces]. Games have legal 
moves which are made by players. A legal move 
specifies some object [e.g. 'knight, ' 'bishop'] , 
i t s starting location [ i . e . current location], 
and i t s f inal location. [The f inal location 
can be defined in terms of i t s spatial relation 
to the starting location, and can include any 

special conditions concerning the path be­
tween the two locations (e.g. , 'along an un-
blocked diagonal to either an unoccupied 
square or a Square occupied by an opponent's 
piece') , ] Games have moves which must be 
legal moves. Moves have a goal and a 
result. 

The "must-be" relation between MOVE and LEGAL-MOVE has 
the following implications: For each node W such that 

W-^MOVE and W relat ion( i) | > x > 

there exists a node Y such that 

Y -J^ i LEGAL-MOVE a n d y r e l a t i o n ^ 

and X is within the range defined by 2, 
The result of each move is a new configuration on 

the board, plus whatever changes occur in the player's 
conceptions of the game which are the result of a re-
evaluation of the board. The goal of each move is de­
rived from the strategies for generating good moves. 
If present, such goals are regarded as being the rea­
sons for which particular moves are made. 
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