Session 18 Automatic Programming

A GLOBAL VIEW OF AUTOMATIC PROGRAMMING

Robert
UsC

M-

Information Sciences

Ba)zer

Institute

4676 Admiralty Way
California 9C291

Marina del Rey,
Abstract

a framework for
programming systems

This paper presents
characterizing automatic
In terms of how a task Is communicated to the
system, the method and time at which the
system acquires the knowledge to perform the
task, and the characteristics of the resulting
program to perform that task. Jt describes
one approach In which both tasks and knowledge
about the task domain are stated in natural
language In the terms of that domain. All
knowledge of computer science necessary to
Implement the task Is Internalized Inside the
system.

Preface _and Acknowledgement

This
personal

paper represents the author's
vlew of a global description of
Automatic Programming. This view resulted
from the author's dlscussions wlth and
suggestions from numerous colleagues on this
area for which he Is deeply indebted.

This paper Is a condensation of this
view, taken from a larger work [1] which
attempts to structure the field on the
conceptualization expressed here. The
interested reader should consult this work,
which describes the issues In greater detail
and contains supporting evidence for the views
summarized here.

Introduction

The goals of automatic programming are
deceptlvely simple; namely, the effective
utilization of computers. This Implies both

simplicity of use and efficient application of
the computing resources.

Thus, automatic programming is the
application of a computing system to the
problem of effectively wutilizing that or
another computing system in the performance of
a task specified by the user. Although this
is certainly what is meant by automatic
programming, this definition does |little to
restrict the set of applicable computer
systems included in the automatic programming
domain. All compilers, operating systems,
debugging systems, text editors, etc., fall

This research Is
Research Projects
DAHC15 72 C 0308,
Program Code No.

supported by the Advanced
Agency under Contract No.
ARPA Order No. 2223/1,
3D30 and 3P10.

494

into this domain and, In fact, the term
"automatic programming itself was applied to
early compiler systems during the 1950s.

What is needed, therefore |Is to either
appropriately restrict the definition of
automatic programming, or to provide a set of

criteria used for measuring the acceptability
or performance of an automatic programming
system. Such a measure of system merit is

contain
system

extremely hard to arrive at but would
the following man, machine, and
applicability components:

The efficiency of the
program;

resulting

of
In

The amount
resources expended
that program;

The elapsed time used
arriving at the resulting program;

computer
arriving at

in

The amount of effort expended
by the user in specifying the task;

The reliability and
of the resulting program;

ruggedness

which future
incorporated;

The ease with
modifications can be
and finally.

The range
which can

and complexity of
tasks be handled by the

system.

The Basic Model

One goal of any automatic programming
system Is to allow its users to state their
problems and any advice about Its solution In
terms natural to the problem. Although most
problems and their solutions can be most
naturally described in the terrnms native to
their fields, some can best be stated and/or
solved In terms of a different field, such as
mathematics. Occasionally, this other field
is computer science, and the problem or Its
solutlon is expressed in terms of data
structures and their manipulations. Such
descriptions, in terms other than those of the
problem domain, are entirely satisfactory as
long as they are part of the conceptual
repertoire of the user and are not
artificially Introduced to enable the system
to comprehend the problem or process |Its
solution.

We therefore treat both the native terms

of a Held and the terms of other fields which
users have found wuseful to describe and
conceptualize problems and solutions in that
field as the problem domain terms of that

field. With this definition, we conjecture
that the solution of every computable problem
can be represented entirely In problem domain
terms as a sequence, which may involve Iloops
and conditionals, of actions in that domain
which affect a data base of relationships
between the entities of the domain. Included
either as part of the data base or as a
separate part of the model. Is the history of
the model (l.e., the sequence of actions
applied to the model). This logically
completes the model and enables questions or
actions involving historical Information to be
handled. In a strong sense, such a solution
Is a direct simulation of the domain. The
system models at each step what would occur In
the domain.

The important part of the above
conjecture Is that any computable problem can
be solved, and hence described, In problem
domain terms. This enables us to divide the
solution into two parts, an external and an
Internal part. The external part Is the
problem specification given by the user In
completely domaln specific terms. The
requirements for such users is no longer a
comprehensive knowledge of computers, but
rather the ability to completely characterize
the relevant relationships between entities of
the problem domain and the actions in that
domain. In addition, such users should have a
rough awareness of the problem solving
capability of the system so that they can
provide additional help where needed In the
form of more appropriate macro-actions,
recommendations about the wuse of certain
actlons, and/or Imperative sequences which
will solve part or all of the problem In
problem related terms.

The Internal part Is first concerned with
finding a solution In problem related terms.
if this has not already been provided by the
user. Second, this part Is concerned with
finding efficient solutions given the
available computing resources. Such
optimizations occur at two levels beyond what
is normally considered optimizatlon. First,
at the problem level, recognition that certain
entities and/or relation ships are irrelevant
enables their removal from the model. Second,
since only part of the state of the modelled
domain Is required, and only at cerfain points
in the solutlon process, rather than
simulating the model completely at each step,
the system can employ alternative
representations which require less maintenance
and which either directly mirror the required
part of the domain state or allow such parts
to be computationally inferred. Such
representations may also enable more direct
solution of the problem. Is these
optimizations which form the main distinction
between the code generation part of an
Automatic Programming system and current state
of the art compilers.

It

Thus,
Programming

Automatic
accepts a

of an
which

our definition
system Is one

495

problem in terms of a model of the domain,
which obtains a solution for the problem in
terms of this model, and produces an efficient
computer implementation of this solution in
the form of a program.

System Reguirements

There are seven facilities to be provided
by, or criteria to be satisfied by future
Automatic Programming Systems. The first s
an interactive system Interaction between
the system and the user Is required so that
the specification can be given incrementally
and any errors or discrepancies that arise in
or from such specification can be handled as
they occur.

Along with this Interactiveness the
system should be very forgiving. It should
allow great flexibility in the way and time at
which information is specified. It should
also be forgiving by allowing the user to

change or retract previous communications with
the system.

The second criteria is the amount of
non-proceduralness wused In the specification
of the task to be performed. As far as
possible the system should be told what to do
rather than how to do it. There is a
continuum between the statement of a problem

as the transformation from an Initial state to

a goal state, and the specification of how to
perform such a transformation. Most of
computer languge development can be viewed as

a movement from specifying HOV to do something
towards a statement of WHAT is desired. The
level of non-proceduralness achi evable wlthin
an Automatic Programming Sytem is directly
related to the system's capability of turning
goals Into actions and this Is dependent upon
fts knowledge of how to acleve certain results

in the problem domain. The ability of the
system to achieve results in the problem
domain Is used as the main distinction between
non-procedural and procedural languages.
Thus, problems must be stated in a language
appropriate for that domain, Il.e., one that
can express the structure and

interrelationships of the entitles within that
domain, and one that users are familiar with
for discussing and describing tasks and
problems within that domain. Only with such a
language can the system know how to achieve

the desired results rather than being directly
told how to produce the desired result. Some
actions can, however, best be described In
terms of bow to accomplish them rather than by
the resulting state. Such procedural
descriptions are quite acceptable as long as
they are specified entirely in problem domain
terms rather than implementation computer
terms.

In addition to problem oriented
specifications, the amount of Information that
must be specified for the system to correctly
process the problem must be reduced. This can
best be done by removing details from the

specification and allowing the system to fill

them in. As with non-proceduralness there s
a continuum here, but the Ilevel that s
desired is one which omits from the
specification all references to entities not

contained within the problem domain (and which

are not necessary for transferring knowledge
between users of the field). Specifically,
artificial references to the data structures
of computer science (e.g.,lists, rings,
arrays, symbol tables, and the Ilike), that
have been Invented as a means of specifying
"how" rather than "what" to do must be
avoided.

Next, a mechanism Is required for the

modification of specifications that have been

previously entered either because they don't
work, or because the environment In which they
are operating has changed, or because
df fferent behavior Is desired. Such
specifications should be given |In terms of
changes in deslred results, and, entirely
within the language of the problem domain
Itself.

Once a problem has been specified, a
mechanism |Is needed for Insuring that the
system produced Is the one desired. This Is

especially critical since the system will be
greatiy augmenting the specifications.
Discrepancies between the desired system and
the one produced can arise from an Inadequate

knowledge of the system about the domain, from
a mis-statement by the wuser, or from a
misinterpretation of something that was
specified. Whatever the cause. It Is
Important that the user can see the produced
system In operation In his own terms. l.e., In
the language of the problem domain Itself, so
that he <can check the expected behavior
against the behavior produced. In addition,
the system should be able to generate test

Input data so that a wide range of behavior of
the task specified can be observed by the
user. If a discrepancy Is found, the user
additionally requires capabilities to locate
and Isolate the source of the discrepancy, and

then, to modify it to obtain the desired
result.

After a correct program has been
produced, a mechanism Is needed for
transforming It Into an efficient one. Such
efficiency will rest on two kinds of
informatlon. First, knowledge about the
problem domain which enables alternative ways

of performing the same task to be evaluated.
Secondly, Information about efficient ways to
utilize computers so that a total cost can be
assigned to each of the different ways of

solving the problem In domain terms. implied,
but not stated In the above, Is that Automatic
Programming systems don"t just automate
programming. They also provide facilities

which help the user move from an understanding
of a task to be accomplished to a finished
running system which performs that task. An
Automatic Programming system Is a system which
aids the user In all the steps from problem
definition and design to final completed
running programs.

To meet all the above criteria automatic
programming systems require detailed Knowledge
about the problem domain. The requirement for

this knowledge li mits the , system's
applicability to other areas, and hence, one
measure of such systems Is the range of
problem domains which they can adequately

496

handle and their method of

obtaining this
knowledge.

The Four Phases: An Overview

Automatic Programming begins with the
application of problem solving to problem
statements rather than problem solutions;
l.e., with the attempt by a computer system to
obtain an understanding of the task being
specified. Once the task has been understood.
If it is not in process form. It must be
transformed into one. This Is the traditional
area of Artificial Intelligence and human
program design. It must be verified that the

resulting process model Is the one desired by
the wuser and that It |Is adequate for the
user's problem. If not, It must be modified
and transformed by the above steps and
reverified. It must then be made Into an
efficiently running program. This involves
the automation of the ad hoc knowledge of

computer science.

A complete Automatic Programming system
thus consists of four major phases- Problem
Acqulsition, Process Transformation, Model
Verification, and Automatic Coding. Problem

Acquisition Is the process by which the system
obtains (1) a description of the problem to be
solved or task to be performed In a form
processable by the system, and (2) the
knowledge needed to solve the problem. The
result of this phase Is a well formed problem
and knowledge base which can be manipulated by
the system and transformed Into a high level
process for solving the problem during the
second phase. The third phase Is used to
verify that this process is the one desired
and that it is adequate for the problem
solution. The fourth phase, Automatic Coding,
fills In the necessary details, optimizes the
process, and produces the actual code to solve
the problem.

The Automatic Programming Model

One of the most striking and deep rooted
features of the Automatic Programming model

presented here Is the Interface It creates
between a high level external specification of
a problem which omits data structures which
are not part of the domain and the internal
implementation of that specificaton In an
efftclent representation.

This choice of a basic Interface has
predicated large parts of the entire model.
Through this choice as the basic Interface

wlthin the Automatic Programming model four
Important gains are expected.

First, the complete mode] conjecture
states that such a division Is feasible for

stating and solving domain dependent problems.

choice of a data
mat ntenance of s

Second, since the
representatton and the
consistency occupy such a large portion of
current programs, the size and complexity of
spect fications without such representations
should be drastically reduced over those which
retain these representations.

Third, since so much detail has been
removed from the specification It Is easier
for. the system to understand what the task |Is
rather than getting lost |In the details of
what is going on.

Finally, since the problem has not been
overspecified with a particular choice of
representation so that the problem was
expressible, the system Is now free to choose
a representation that will efficiently solve
the problem at hand. The system has been
given Increased flexibility in Its choice and
may well outperform humans In correctly making
representation choices; not because the system
Is more Intelligent than the user, but because
it can cycle through more possibilities and
bring to bear a greater level of effort In
such optimizations than any user Is willing or
able to Invest In such issues.

Problem Acquisitlon

The Problem Acquisition phase Is
concerned with obtaining an understanding of
the users problem and the domain In which It
exists so that the Process Transformation
phase can attempt to find a sequence of
transformations or operations in that domain
which will obtain the solution required by the
user. Thus, the Problem Acquisition phase is
concerned with building a model of the users
domain which represents the interactions
between the entities of that domain and the
effect on those entities by the allowed
transformations or operations applicable
within the domain. It is our primary
contention that only through the development
of such a model of the user's domain can the
Automatic Programming system have any degree
of generality In the domains for which It Is

applicable.

Currently, a]1 such models of user
domains have been coded into a system. It Is
proposed here that such models can be
specified to the system by Its users and that
through these models the system can acquire
the knowledge necessary to solve problems

within these domains and to understand what Is
required for such a solution. The two main
Issues, then, are what constitutes an adequate
and appropriate model and how Is such a model
specified or communicated to the system.

There are basically two types of
models,analogical and fregean. Analogical
models bear a strong resemblence to the
structure of the object being described, such
as the floor plan for a room, or the diagram
model used, by Gerlernter In his geometry
proving program.

Fregean systems, on the other hand, are
linguistic or relation based, [In which
expressions are built up on the relation
.between functions and arguments to those
functions.

Since one of the basic goals of the
Automatic Programming system is the generality
of problem domains that It Is willing and
capable of handling, the fregean model
approach has been chosen.

497

We can now define the adequacy and
appropriateness of the models for an Automatic
Programming system. A fregean model is
adequate If it contains a complete enough
description of the relations between the
entitles in the problem domain that a sequence
of operations or transformations on this model
can be built to solve the problem posed by the
user. This Is what was referred to as the
complete model In the Basic Model Section.
Thus, the adequacy of a model Is dependent
upon the wuse of that model to solve the
problem. Operationall, this requires that
the Automatic Programming system is capable of
finding the complete set of applicable
transformations on the model and can calculate
the consequences of each of these actions.
The appropriateness of the model is a measure
of how well suited the available
transformations are to solving the problem at
hand, |.e., an adequate model can be made more
approprlate by adding to It non-primitlve
transformations made wup of a sequence of
primitive ones, which are suitable building
blocks for the problem being posed. The model
mdy also be made more appropriate by including
recommendatlons about the suitablliy of
alternative strategies for sequences of model
transformations.
reduce the

Users can significantly

well-known problem of building a powerful
general purpose problem solver by tailorlng
the specified model to make It more
appropriate for the problem at hand.

The state of the art In natural language

understanding appears adequate for the
description of problems and of models and
beyond our ability to utilize the information
thus obtained, and hence, should not be a
bottleneck in an Automatic Programming system.
Evidence for this viewpoint comes from the
work of Woods in the Moonrocks Program, from
Winograd in the blocks Description Program,
and from Martin Kay in the Mind System. Each
of these systems represents an alternative
linguistic technology and each Is capable of
handling a wide range of linguistic forms
within the domain of its competence.

The basic viewpoint, then, is to process
the user's natural language communication with
the understanding that It is meant to convey
to the Automatic Programming system a model of
his problem domain. Towards this end the
system can extract entitles and the
relationships between them from the
communication. It can further query the user
as to the relationships between entitles which
have not, as yet, been explicitly specified
but which have been inferred by the previous
communication. Such inferences by the system
about the Incompleteness of the model require
a sophisticated understanding not only of the
communication but of the types of models used
for problem domain specification.
unfortunately, our sophistication In both
these areas Is quite limited. In
communication we need to be able to understand
how Information |Is ordered for presentation,
how context |s established and wutilized, how
the capabilities of the recipient effects the
communication, and how these capabilities are
perceived by the speaker. In modelling we

need to have a space of possible models, an

understanding of how the parts of a model
Interact, a means for recognlzing
incompleteness and inconsistencies In models,
a means for obtaining all the allowed

operations on the model, and the means for
transforming the models with these operations.

Process Transformation

Our contention Is that the main activity
In programming Is not finding a solution but
In finding a solution which drops out the
Irrelevancles and which abstracts the
necessary processing so that it can be
efficiently implemented. It is recognized
that this Is a strong contention, but In most
programming problems It Is felt that a
solution is known and the main concern is In
finding a more efficient one. This Is not
optimization In the normal sense of the term.
The concern, rather. is with finding
irrelevancies in the complete model and
representational abstractions based on the
required processing of that model. Once these
logical representations have been found they
must be efficiently Implemented.

The above contention. If true, greatly
shifts the emphasls within the Process
Transformation Phase from that of a general

problem solver solving problems In a domain
Independent way to modifying a solution so
that it does not maintain any irrelevant
portions of the complete model and which
abstracts the relevant portions into a more
effident representation for the processing
required. Together with Problem Acquisition,
the ability to find representational
abstractions and transform complete model
solutions into ones which utilize these
representations represent the mat n

technological deficiencies with
Automatic Programming system.

obtaining an

Model Verification

Although the Automatic Coding phase will
produce only correct code. Program Testing
cannot disappear. This Is because the Problem
Acquisiti on Phase and the Process
Transformation Phase will undoubtedly employ a
number of heuristies and may very well
Incorrectly Interpret either the problem
statement or the allowed transformations that
can occur In the user's model. Because of
this, the user must verify that the system
created is the one that he desired.

The technology for this is at hand. It
consists of today's methods wherein a test
case is given to the system and its
performance |Is used to validate the model that
it constructed. Additionally, the system can
aid the process by generating test cases of
its own which probe areas of which It s
uncertain and which could have led to either
misunderstanding or incompleteness in the
original model. One might also expect that
program debugging would disappear, but for
very similar reasons It too will remain under
Automatic Programming. if there is a
disparity between the wuser's model and the
system's model, then the reason for this
disparity must be obtained.

498

Automatic Coding

Automatic Coding Is concerned with
finding an effletent computer implementati on
of the process description obtained from the
proceeding phase. This description does not
yet Include a choice of data representations,
but does specify the major processing elements
and sequences. It Is intended that this phase
will not need any domain specific knowledge
except for input frequency and distribution
information. The major logical representation
and processing decisions have already been
made by the Process Transformation phase.

Of all the phases in the Automatic
Programming System, the Automatic Coding one
is the one essential component of any
Automatic Programming System. Without it the
system cannot produce programs, and hence,
though It may be useful It Is not an Automatic
Programming System.

Most people are not truly creative when
they reorganize sections of their program to
increase efficiency. Rather than inventing
totally new representations, they appear to
select one out of an Ill-defined set of such
possible representations and to adapt and
modify It to function In the current
situation. This is probably the main
challenge to the Automatic Coding phase, the
ability not only to cycle through a set of
alternative representations but to adapt and
modify them to the existing situation. Such
an ability would vastly increase the
appl[cableness of a small set of alternative
representations.

From such Automatic Coding studies, one
would expect to see both a set of heuristics
and a calculus, eventually, for data
representation choices.

Summary _and Conclusions

The definition of automatic programming
started with a goal, namely, reducing the
effort required to get a task running on a

computer. From this a framework was adopted

in which the external characteristics of

Automatic Programming Systems could be

described in terms of:

1. The terms in which the problem is
stated;

2. The method and time at which the
acquires the knowledge of
domain;

system
the problem

3. The characteristi ¢ of the
program.

resulting

The choices we made are;

1. problem statement In natural
terms of the problem domain.

language in

2. Know | edge about the domain
i nteractively in natural
terms of the complete
problem domaln.

acquired
language in
model of the

3. Resulting programs which are optimized
with respect to data representations,
control structure, and code.

This approach requires significant
advances In Artificial Intelligence
techniques, in such areas as knowledge
representation, Inference systems, learning,

and problem solving, and In the codification
of programming knowledge in the areas of data
representations, algorithm selection, and
optimization techniques.

Other choices could certainly be made,
and the resulting systems might look very
different. One particular set of choices,
suggested by. Al Perils, represents a system
based on a completely different paradigm. His
system is predicated on incremental growth
from an accepted base, namely, FORTRAN. This
Idea Is to Increase the declarative parts of
the language at the expense of the procedural.
The declarative parts are In turn replaced by
a series of questions from the system which
specify how a defined concept Is to be used.
For instance, the concept "array” might
generate queries to see whether the size was
dynamic at run time, whether insertions or
deletions are being done, whether the elements
are homogeneous, and whether they are accessed
sequentially. From such questions and the
programs which use these concepts, an optimal
representation can be chosen.

In this system, higher levels occur when
enough example systems have been generated and
understood by humans that someone can codify
this knowledge and |Introduce a new level of
semantics and questions.

There Is no doubt that such a system
would be useful, and It has the appealing
attribute that the facilities of the system
can be incrementally expanded from a widely
distributed and available base. Also, such a
system could Instantly be wused by existing
programmers who could gradually learn to use
the new facilities on top of their ability to
use FORTRAN.

On the other hand. it Is not clear how
far such a technique can be pushed, and
whether this Is the best way to achieve the
goal except In the short-term.

Automatic programming systems, however
realized, would substantially reduce the
effort and training required by Its users and
would enable the subsystem produced to more

closely reflect the intents of their
designers.
So much time, money, and effort is

currently being expended, and even greater
amounts forecasted In the future, for the
creation of software products, that the
potential benefits from automatic programming

systems are enormous. Therefore, since the
required technologies seem feasible, such
systems, utilizing either the approach

outlined In this paper or various others,
should be extensively Investigated.

References

499

R M. Balzer, Automatic

I'nstitute

Programming.

Technical

USC/Information
September 1972.

Sciences

Memorandum.
Institute,

