ITERATED LIMITING RECURSION AND THE PROGRAM
MINIMIZATION PROBLEM.

L.K. Schubert

Department of Computing Science,
ofAlberta, Edmonton, Alberta,

University
Canada.

ABSTRACT: The general problem of finding

minimal programs realizing given "program

descriptions" is considered, where program

descriptions may specify arbitrary program

properties. The problem of finding minimal

programs consistent with finite or infinite

input-output lists is a special case (for

infinite input-output lists, this is a variant
of E.M. Gold's function identification
problem; another closely related problem is

tne grammatical inference problem). Although

most program minimization problems are not

recursively solvable, they are found to be no

more difficult than the problem of deciding

whether any given program realizes any given

description, or the problem of enumerating

programs in order of nondecreasing length
(whichever is harder). This result is
formulated in terms of k-limiting recursive

predicates and functionals, defined by

repeated application of Gold's limit operator.

A simple consequence is that the program

minimization problem is limiting recursively

solvable for finite input-output lists and 2-

limiting recursively solvable for infinite

input-output lists, with weak assumptions

about the measure of program size. Gold

regarded limiting function identification
(more generally, "black box" identification)
as a model of inductive thought. Intuitively,

iterated limiting identification might be

regarded as higher-order inductive inference

performed collectively by an ever growing

community of lower-order inductive inference

Session 18 Automatic Programming

machines.
KEY WORDS AND PHRASES: function identification,
minimal programs, limiting recursion, inductive
inference, program length measures, program
properties, degree of unsolvability.
1. INTRODUCTION

A question considered by Gold [1] was for
what classes of computable functions there
exist machines which succeed in "identifying
in the limit" any member of the class.
Identifying a computable function in the limit
consists of generating a sequence of "guesses"
(integers) convergent to an index for the

function, successive guesses being based on

successively larger portions of an information

sequence which lists all elements of the

function. An example of a practical problem

to which these concepts are relevant is the

learning problem in pattern recognition.

Typically an adaptive pattern recognition

system is caused to "learn" a mapping from

patterns to responses by presenting to it a

sequence of labelled patterns, i.e., patterns
with their appropriate responses. All of the
machine's responses will conform with the
desired mapping once it has identified that
mapping, in the sense that it has found an
algorithm (equivalently, an index) for it.
Two of Gold's main results were that any r.e.

class of total recursive functions is
identifiable in the limit, and that the class
of total recursive functions is not identi-
fiable in the limit (hence also the class of
partial recursive functions is not identi-
fiable in the Ilimit).

Here a modified version of Gold's problem

is considered. The first modification is the

replacement of information sequences by

(finite or infinite) "program descriptions”

which may specify arbitrary program properties.
Descriptions which list input-output pairs are
then regarded as a special case. The second

modification is that iterated limit procedures

(It-limiting recursive functionals) are
admitted for program-finding, since finding

suitable programs in the non-iterated limit
is impossible for many classes of program
descriptions. For this purpose k-limiting
recursiveness is defined by straight-forward
generalization of Gold's concept of limiting
The third modification

recursiveness. is the

added requirement that programs found in the
(iterated) limit be minimal according to some
prescribed measure of program size.
Accordingly problems of this modified type are
called program minimization problems.
There are various reasons for an interest
in finding minimal-length programs. In work
on grammatical inference closely related to

Gold's identification problem, Feldman [2]

considers inference schemes which try to find
"good" grammars consistent with available
information about a language. One measure

of goodness is the intrinsic complexity, or

size, of a grammar. In terms of the function

identification problem, this corresponds to
finding programs which are small according fro

to some measure of program size. Indeed, the
use of small programs for inductive inference
is a recurring theme in the literature

3-5);

(see

for example Refs. allusion is usually
made to the scientific maxim knows as
"it is

"Occam's Razor", according to which

vain to do with more what can be done with
fewer" in accounting for known phenomena.

The special importance of minimal programs

514

is also suggested by the work of Kolmogorov
[6],

the number of symbols

Martin-Lof [7] and others, showing that
in the shortest program
for generating a finite sequence can be taken

as a measure of the information content of the

sequence, and this measure provides a logical
basis for information theory and probability
theory.

In the following the unsolvability of most

nontrivial program minimization problems is

first noted. After establishment of some

basic properties of k-limiting recursive

predicates and functionals, it is shown that

any program minimization problem is k-limiting

recursively solvable if the problem of determ-

ining whether any given program satisfies any

given description is k-limiting recursively

solvable and programs are k-limiting r.e. in

order of nondecreasing size. Simple conse-

quences are that the problem of finding

minimal programs for finite functions is

limiting recursively solvable, and that the

problem of finding minimal programs for
arbitrary computable functions (given an

explicit listing) is 2-limiting recursively

solvable, with weak assumptions about the
measure of program size. Lower bounds on the
difficulty of these problems are already known

(8] (11

in the

m the work of Pager and Gold

Finally, the point is emphasized

concluding remarks that limiting recursively

solvable induction problems, though strictly

"unsolvable" in general, are nonetheless with-

in the reach of mechanical procedures in the

important sense described by Gold, and that
even problems unsolvable in the limit may be
regarded as solvable in a weakened sense by an

expanding community of mechanisms performing

limit computations.

2. PROGRAM MINIMIZATION PROBLEMS of

To fix ideas, any programmable machine M

may be thought of as a 2-tape Turing machine,

with one tape regarded as input-output (1/0)
tape and the other as program tape. One or
both tapes also serve as working tape. A

computation begins with the finite-state
control of the machine

and with a program on the program tape and an

In

times

in a unique start state

input on the 1/O tape. If and when the machine
halts, the 1/0 tape expression gives
put. It is assumed that there is an effective
1-1 coding from tape expressions (same syntax

for both tapes) onto the integers N. The

program(orl/Otapeexpression)correspondingoftheelementsofe,isanexampleofacodenumber(index)Xbewrittenasmi.i.~prc

other’

assumed to be effectively enumerable in order

n°ndecreasing length. For example, the

number of elementary symbols in a program

provides such a length measure,

the following, obviously machine and

length-measure dependent concepts will some-

be used without explicit reference to a
particular machine or length measure. This
should be kept in mind for a correct inter-
pretation of the results.

a minimal Program for a function O is one

the out- Whose length does not exeed the length any

Program for 4, The problem of finding a

minimal program (or all minimal programs) for

function O given a (possibly infinite) list

tocodenumber(index)xw illbewrittenasx.Programproblem-generally

TC - . -y N .. . T o ssu__»
If M eventually halts with output z when

TR

supp.lied’ wi-tr.{ program X and‘ i'nput- y, one n’"lay

M
write 4%(/"(3/') z. 'If M does not halt, ﬂg)'((\")\
. -, m- - i. i

is undefined. Thus M computes a partial
M

function S}SX With’ program x.

- A

.. m,i
However, it will

be convenient to think of x not merely as a

M
program for $,

M
subset of $

but as a program for any

In other words, x i.s a program

“ e — M, .

for a function $ provided only that cp IyJ
v s = M, .
<My) for all y in the domain of < *,(y>

need not be undefined for y outside that

domain. If such an x exists for a given o~ <r5

*

w.iII‘ b,e sai’d to be grogrammab’le‘ ((;n “M)' . ‘ A

machine on which all partial recursive

s
functions are programmable is universal.

A program length measure assigns a non-

negative integral length to each program such

that only a finite number of programs are of£

any particular length. A length measure need

not be recursive, though this is a ’frequent
assumption;

furthermore, programs are often

515

a program minimization problem is the problem

r m» c e
of findin% a minimal program (or all minimal

programs) meeting the conditions listed in any

"program description"
vV *»

belonging to some class

of such descriptions. Program descriptions

are loosely defined as follows. Suppose that

a (possibly infinitary) logical system is

qiven along with an interpretation based on a
y

fixed M such that every wff in tne system

expresses some program property (i.e., every

wff is a unary predicate over programs). Then

the wfis comprising the system will be called

program des
c—*-.
description might specify

criptions. Typically a program

relationships between

inputs and outputs (e.g., particular input-out-

put pairs), structural properties (e.g., the

number of occurrences of a particular symbol

in the program), operational properties (e.g.,

computational complexity), or combinations of

such properties. If 6 is a program description,

realize 6 if

J.

a program x will be said to

N A

X

properfcy expressed by

mere briefly, §(x} will be writtan

for "x remlizes §"., If an X exists such that
T(x), then § will be said to be realizable.
For some descriptions (such as listings of
input=output pairs) the truth value of the
agsartion & (%) depends cnly on the function
computed by M with program X, i.e..

[¢: = ¢$]¢[3[§}¢# &{yyl. BSuch descriptions
will be termed I/0 descriptions. As axamples
of I/0 descriptions which do not merely list
functions, consider the following expressions
{in a2 quasi - logical notation with the

obvious interpretation):

W ol 3me v ¢M(2)=117 & #0(5) divergent

(ii) (Vy}wzty) converaent & even]

(1ii) (wy)Leh(y) = 655 ()] v (vy) (8 (y+5)
= 4o (y)+6],

Gold's identification problem can evidently

be reformulated in terms of infinite

descriptions (i.e., wffs belonaing to an

infinitary logical system) such as

i M M Mooy
{iv) ¢,(0)=0 & ¢ (1}=l & 6, (2)=4 &

Pei3)m9 & ... etc.

It is assumed that descriptions can ke
coded numerically. If only finite
descriptions are invelved, an effective
coding of descriptions into integers is
appropriate, If infinite descriptions are
inveolved, these can be coded as total number-
theoretic functions on N by means of a 1-1
mapping from elementary symbols into integers.
For example, consider illustration {iv) above;
if the numbers from 1 to 5 are used to encode
the symbols ¢7,(,),=, and &, respectively,
and numerals within the degeription are
repregented by adding 6, the code secuence

1,2,6,3,4,6,5,1,2,7,3,4,7,5..., is obtained;

516

expressed as a total function this is

{<0,1>,<1,2>,<2,6%,23,3>,<4,45,<5,6>p4..).

Thus a mapping whose domain contains coded

representations of infinite descriptions is a

functional.
The coded version of a description o,

whether it is finite or infinite, will be

written as 6. Since no confusion can result,

coded representations of descriptions will also
simply be called descriptions. A set of
descriptions will be called infinitely

diverse if no set of programs realizina the

descriptions is finite.

Theorem 1 is concerned with 1/O descriptions

only, while Theorems 3 and 4 will apply to
arbitrary program descriptions.

Theorem 1. Let M be a universal
programmable machine and let a recursive
length measure be given. Then the program

minimization problem is not recursively
solvable for any effectively enumerable,
infinitely diverse set of

(8]

fact for the case when

I/O descriptions.

Proof: Pager previously noted this

I/O descriptions

specify finite functions, and remarked that

the proof involves the Recursion Theorem. |

formulated Theorem 1 independently and proved

it, in outline, as follows. The negation of

the theorem allows the construction of a

program which enumerates descriptions and

corresponding minimal programs until it finds

a minimal program longer than itself; it then

simulates that program, and contradiction
results. The possibility of a program
measuring its own length and then performing
other arbitrary calculations follows from the

existence of a recursive function g such that

¢§{x} « Az[o] (g(x);2)] for all x. This can

be proved from the S-m-n Theorem and the For example, suppose the minimal programs are

Recursion Theorem. required to operate within a certain bound on

To demonstrate the unsolvability of a the computational complexity, apart from an

program minimization problem (for a universal grpitrary additive constant. Then it is clear

machine), it is therefore sufficient to show that the proof of Theorem 1 is applicable

that the descriptions concerned include an without change.

effectively enumerable, infinitely diverse These unsolvability results do not mean

set of I/O descriptions. This implies, for that all interesting program minimization

example, that the program minimization problems are entirely beyond the reach of

problem for the singleton functions, for the mechanical procedures, as Theorem 3 will show.

finite decision functions, and even for the The following definitions generalize the

decision functions of cardinality 2 is concept of limiting recursion introduced bv

unsolvablez, whenever the length measure is Gold [1].

recursive. Definitions: Let 5 be a subset of ¢1x...x¢rxNB
Pager [9] has shown that the last-mentioned where the ®. are sets of unary total functions

problem is unsolvable even when the length and r,sz0. A functionals F is k-limiting

measure is not recursive. Further, he racursive on 4 if there exists a functional G

established the surprising fact that the recursive on Mmk such that

minimization problem is unsolvable for a (¥6eha) (aml){vnlml),..(gmk) (vnkn-mk)[p(a] =

certain finitely diverse set of decision G{S,nypa.e,n]l

functions, regardless of the length measure Equivalently one may write

employed [8]. =F(5]]."

{VGEA)[limn ...limnkG{G,nl,...,nk)

In view of Pager's results it may be R R
9 Y Similatly a predicate P is k-limiting
asked whether the requirement that the length \ .
decidable on &4 if there is a predicate @

measure be recursive is superfluous in R k
decidable on AxN~ guch that (VGE&}{Hml)[anrml}
Theorem 1. The answer is no (although the

,...(jmkj (b’nkﬁmk)[P(é) z Oté,nl,....nk)l. A
requirement can be weakened somewhat). To

set of descriptions 4 will be called uniformly
prove this, it is only necessary to specify L. .

k-limiting decidable (with a particular M
some sequence of finite decision functions))) o

understood) if there is a predicate P k-limiting
such that any program is a program for at .

decidable on AxN such that for Sea, P(6,x)
most one of these functions, plus an) - - . . L
holds iff &é(x). A set of integers is k-limiting
arbitrary procedure for obtaining a o)

r.e. if it is empty or the range of a function

particular program for each function in the 5

sequence; then the length measure can readily K-limiting recursive on N. O-limiting

be defined to guarantee the minimality of recursive is the same as recursive, and 1-

these particular programs. limiting recursive is abbreviated as limiting
recursive.

It is interesting to note that Theorem 1

still holds for certain non-1/0 descriptions. Gold (also Putnam [10J) has shown that

517

limiting decidable is eanivalent to membership

and Hz of

It can be

in the intersection of classes I,
the Kleene arithmetical hierarchy.
ghown that if P is k-limiting r.e., then it is
in Iy, and if P is k-limiting decidable, it
is in zzanZk’ for all k. The converse
statements are conjectured to be false for

k»>1; the proof (or disproof) of this conjecture
is an open problem.

Lemma 1. If P and (are predicates of at
least one number variable {and possibly
additional number and function variables),
thep am) (Yn>mIP{n,...) & (ym) (¥nemO{n,...)

Em (vrem)TP(n, . .0) & Oin,a0)]
Proof. >: Suppose the antecedent holds.
Let m = max{ml,mz} where m,.m, are number s
such that (Yn>m,)P(n,...) and {¥n>m,)0{n,...).
Then clearly (¢n>mi{P{n,...} & Qln,...)

c: Immediate.
Corollary 1.1. Tf P and Q are predicatas
of at least k number variables {(and possibly

additional number and function variables),

then {3ml){Vn1>ml)...{3mk)(Vnk>mk)P(n1.---a
nk;-»J
&[Hm1)(an>m1)---[3mk)(Vnkimk}g(nlr-v-r
nk.---)

F@Em) nyomyh.., Gm) (v om) [P{nyseeeePprees)

& Q{nl,...,nk,...)ﬁ.
Lemma 2. Composition of k-~limiting
recursive functionals yields a k-limiting
recursive functional.
Proof. Consider the special case
F' = Apyxy[F(g,x,H{p,y))), where F and H are
functionals ke-limiting recursive on ¢ x Nz
and 1 x N respectively, and ¢ VY are sets of
total functions., The pzroof is easily
extended to the case where F is r-ary and s

of its arguments are values of k-limiting

racursive functionals HyvHorovorH o, Since F
and H are k-limiting recursive, there exist
functienals & and X recursive on ¢ x Nk+2

and Y x Nk+1

respectively such that

{v¢s¢)(Vx)(Vz)IEml)(an>ml)...{3mk)(Vnk>ka
[F{p,x,2) m G(¢.x,z,n1,...,nk)]. and (1)
{V¢s“)(¥y}13mll!anﬁmlj...{Hmkl{Vnk>mk}[H(¢:y]
(2)

Since H{Y%,v) is defined for all Ye ¥ and all v,

= K(le;nlf--ornk}].

a consecuence of (1) is
EV¢E¢)(Vweql{Vx]Evy)EEmlllvnl>m1)...(3nm)
ank>ka[F(¢.x»Hf¢:le -
Gf¢,x,H(¢pY};n1;...,nk} 1. ‘3’
By Corollary 1.1, (2) & (3) then aive
{V¢s¢]{szq){Vx)(Vy)(3m1)(an>ml)...(?mk)
{Vnk>mk)rp‘¢rxrnf‘l’r}f” = G(¢:er(¢J;Yan1; - -;nk)r
nl,...,nk}],
so that F' is k-limiting recursive on

tx ¥x Nz.

Note that it has also been shown
that a recursive functional whose iterated
limit is the desired composed functional can
be chtained simply hy composing the recursive
functionals whose iterated limits are the
given functionals,.
Corcllary 2.1.

charactaristic function{al) is expressible as

A predicate whose

a compesition of k-limiting recursive
functien(aljs is k-limiting decidable.

For example, let the unary predicates P
and Q have k-limiting recursive characteristic
functions cP and CQ, and let f(x,y) = xy for
all x and y; then R defined az Re{x|P({x)&Q{x)}
is k-limiting decidable, since CR{x} = f(cptx},
co{x}) for all x and f is recursive and hence
k=limiting recursive for all k.

Lamma 3, Application of the minization
operator to a k=limiting decidable predicate

yields a k-limiting racurazive functicnal,

518

provided the requisite minimal value always
exists.

For example, if P is k-limiting decidable
on ¢ x Nz, where ¢ is a class of total
functions, then ipxfuyPld,x,y)] is k-limiting
recursive on & x M, provided (yoed) lrx) (3y)

P{¢,x,y}. The notation "uy..." stands for
"the least y such that...".

Proof. Consider the ternary predicata P
above (extension to the general case is
straightforward]. Let Yox be the Skolem
functional in the existence critericon above,
i.e., (V¢a¢](¥x}?(¢.x,y¢x). Since P is
k-limiting decidable, {V¢E¢J(Vx)(Vy}{3mll
(Vn1>ml}...{3mkl(Vnkbmk}[P(¢,x,yJ =
Q(¢;x,y,nl,...,nk)3 where) is decidable on

0 x Nk+2

Restrict y to y¥y¢x, so that the
{ry) guantifier becomes (Vysy¢kl. This
bounded guantifier may be passed through the
others: (V¢e¢](Vx}{Hml)[vn1>m1)...{3mk)
{Vnk>mk)Evysy¢x}[P{¢,x,Y) £
Q(¢,x,y.n1,....nk}].

Henge

(voe & (¢¥x) {3my) (vny>my).) (Vo >my)
[Cuysy JP {9, %, 7] (uysy, IO X, Y rnys e e B) 1
Now since P(¢,x,y¢x} holds, (uy5y¢x}P(¢.X.y} =
WP {d,x,y). But [uyP(¢,x,y} =
{UY5Y¢x)Qf¢.x,y.nl,...,nk}] is eguivalent to
luyB{$,x,y) = UYQ(¢.x,y,n1,...,nk)] from the
definition of and this is in turn
equivalent to [uyP(9,x,yv)=pylQ(d, %X, ¥.Dy. e camy)

v y=n1]] provided n Since the ricght

1>Y¢x'
side of the bracketed eguality expresses a

+
functional recurgive on ¢ X% pk+l

and since my
can be chesen *Y pxe? uyPi{p,x,y} is k-limiting
recursive on ¢ x NW.

Theorem 2. For any k-limiting recursive

length measure, programs are (k+l)-limiting

519

r.e. in order of nondecreasing length.
Procf. There exists a recursive function
f such that {Vxltﬁmll[yn1>m1)...t?mk}(Vnk>mkl
[f(x,nl,...,nk} = |xi]l. (4}
Let g(i) = (uxcsi}tVyesi)rlxISIvl1 for all i,
where §,=N, Si+l=Si*[g[i]}. Thus g enumerates
programe (actually, their indices) in order of
nondecreasing length. Analogously let
hti,n,nl,...,nk) = (uxesin){Vyasin}
{f{x.nl,...,nk)Sf{y.nl,...,nkiJ for all

= {0!"‘!n}lS>

i,n,nl,...,nk. where 5 5

on +1,n

= isin—{h(i,n,nl,...,nk}})u{n] for all i,n.

As 8 is finite feor all i,n and f is

in
recursive, h is also recursive.

FPor x=n the first ouantifier in (4) 1s
bounded and can be passed through the others:
C?ml)tvn1>ml)...[3mk](Vnk>mk)IVx<n]
Ff(x.nl..‘.,nk] = 1x[1, (5)
FProm the definition of h
(Vi](Vn){jml)Kan>ml)...tumk)(wnkwmk>
(hil,nyngseeuny) = (uxesin){vycsin}
[f{x,nl,...,nkiSf(y,nl,....nk)J}. (6}

By Corellary 1.1, (5) & (&) give
ﬂViJ(Vn){amllEvnlbmlj...(amk}KVnk>mk)
[h(i,n,nl,....nk) = {uxesin]{vyesin}
_Ef(x,nl,...,nk}ﬂf{y,nl,...,nk)J &
(FxﬁnJ[f(x,nl,...,nk] = x|] &
[Vyzn}[y,nl,...,nk) = |yl 11,
Since, x,y~n in the definition of h,
(Vli{Vn?{Eml?(Vn1>m1}...{3mk}{vnk>mk}
Fh[i,n,nl,...,nk} = (uxtsin)llxislytl}. {7
For any given i, let m = max{g{3)1i-i}.
Then for all n>m, all 451 and all choices of
Oyreseyny which guarantee the ecuality in (7),
it is eagily shown hy induction on j that
5.
m
Hence

- Sj-{x!x>n} and h(j,n,ny,...0n) = giil.
[Vil(3m}(Vn>m){3ml)(Hn1>m1}...

Gmy b trny >m) Thid,nng, .,)egti)],

so that g is (k+1)-limiting recursive.

Roughly speaking, Theorem 3 states that
finding minimal programs is no more difficult
than enumerating programs in order of non-
decreasing length or deciding whether a given
program realizes a given description

where the "difficulty"

(whichever is harder),

of a k-limiting recursive functional is k.

Theorem 3. Given: a programmable machine

M, a length measure such that programs are k-
limiting r.e. in order of nondecreasing

length, and a set A of realizable, uniformly
k-limiting decidable program descriptions.
Then the program minimization problem for
A is k-limiting recursively solvable.
Proof: Since programs are k-limiting r.e.

in order of nondecreasing length, there is a
k-limiting recursive function f which maps N
onto M such that j»i & {£(j)tzI1£{i)}. Also,
since program descriptions are uniformly k-
limiting decidable, there is a predicate P
such that for all §c4 and xeN, P(4,x) @ J(x}.
Let i, = ViP(5,f(i)); thus ETi,Y is the
first minimal program realizing § in the

sequence £ (0),E(1V,... .

is k-limiting recursive on A.

By the lemmata, iﬁ

Theorem 4. Given: a k-limiting recursive
length measure such that programs are k-
limiting r.e. in order of non-decreasing
length and a set A of realizable, uniformly
k-limiting decidable program descriptions.
Then the problem of finding all minimal

programs realizing any 6eA is k-limiting

recursively solvable.

Procf: Define :’L6 ag in the proof of

1
Theorem 3 and let i, = pill£(i}] >1f(i6) 11
The predicate expressed by the bracketed

inequality, i.e. {<6,i>llf(i)lﬁlf(is)l.

ded,ieN}, is k-limiting decidable by Lemma 2,
as £, ié' I, and the characteristic function
of {<x,y>Ix>y] are all k-limiting recursive.
Hence by Lemma 3 i; ig k=1limiting recursive

on 4.

Now if the set of indices of the minimal

programs realizing 6 is expressed by its

canonical index

L, s
8 Jf{d) .
15 = limg 2 TCpUBEULY)

where C, is the characteristic function of P,

with P defined as in Theorem 3, then

application of Lemma 2 shows i. to be k-
limiting recursive on 4.

Note that because of the assumption in
is k-

Theorem 4 that the length measure

limiting recursive. Theorem 3 cannot be
regarded as a consequence of Theorem 4.
Note also that any (k-1)-limiting recursive
length measure satisfies the conditions of

Theorem 4 (by Theorem 2).

Theorems 3 and 4 are the main results of

this paper. The remaining theorems illustrate
their application.

Theorem 5. For any recursive length
measure, the problem of finding all minimal

programs for finite programmable functions

is limiting recursive (each finite function
is assumed to be specified by a program
lists

description which the argument-value

pairs of the function in any order).
Procf: By Theorem 2, programs are
limiting r.e. in order ¢f nondecreasing
langth. Let the finite function encoded by
any particular des be {<yi,zi>lisn5] . Let
o=(<38,x,n>| for all isng, M with progzam X

and input §f halts within n steps with output

Ei}. Clearly Q is decidable and
(¥8ed) (yx) (Im) (¥n>m) [Q(§,x,n)EP(6,x)],

where P{&,%} (> §(X}). Hance the problem of

finding all minimal programs for any finite

function is limiting recursive.

Theorem 6. Given a recursive length

measure and a machine M which computes total
functions only, the problem of finding
minimal programs for functions programmable

on M is limiting recursive (each programmable

function is assumed to be specified by a
program description which lists the argument-

value pairs of the function in any order).

Proof: For all i, let «yj,2}> be the
i'th argument-value pair specified by any
description 6,.and let O={ <&,%,n>| for all
izn, M with program x and input }-ri computes

output Ei}. 0 is deridable since M always

haltg; if there is an m such that M fails to
output E:: with pregram % and input ?i, then

Qlé,x,n) will be false for all n-»m; if there
is no such m (so that x realizes §), then
0(,%,n) is true for all n. Evidently the
descriptions are uniformly limiting decidable
and the theorem follows.

Gold had already shown that the problem
of finding any programs {not necessarily
for members of a class of total

minimal) r.e,

functions is limiting recursive, and Feldman
in an
e
programs

[2] remarked that this can be extended
obvious way to finding minimal

when programs are r.e. in order of non-

decreasing length. Theorem 6 strengthens

this result slightly, as there are recursive

length measures for which programs are not

r.e. in order of nondecreasing length

(e.g.,

define | } so that the sequence 101411(,121.

enumerates a r.e., nonrecursive set without

repetition).

Theorem 7. For any M and any limiting

recursive length measure, the problem of

finding minimal programs for functions

programmable on M is 2-limiting recursive (as

in Theorem 6, the problem is interpreted in

terms of program descriptions, where any

description lists the argument-value pairs of

a programmable function in any order).

Propf: LlLet Q={<6.x,n1,n2>1 for all isnm,,

M with program x and input ;f_ halts within
n, staps with output Z;}, with yi, 2} defined

as in Theorem 6. TFor fixed f,x,n

1!’

Qid,x,nl,nz} holds in the limit of large n,

iff X is a program for {(yi,:i’lisnl]. If
¥ is a program for {<yg,zg>lien}. then
anl)liman(G,x.nlpnz): if not, there iz a
palr «yi,zi>, contained in 2ll sets

hyi.zf»lisnl} for which n;>m, such that M

§

with program x fails to compute cutput Em

lanz) .

It follows that the descriptions are uniformly

for input 37:1; hence (’r‘nlm) limn 0{8,.%x.n
2

2-1imiting decidable. Sinc¢e programs are 2-
limiting r.e. in order of nondecreasing length
by Theorem 2, the program minimization wroblem

Ais 2~limiting recursive.

Note that it is known from the work of Gold

that the problem is not in general limiting
recursive.

The theorem is readily generalized to
descriptions which prescribe divergent
computations for some inputs. The
minimization problem remains 2-limiting
recursive.

Induction and

4. Remarks on Ilterated Limiting

Recursion
Deduction is concerned with the derivation

of particular conseauences from oeneral

521

premises, while induction

proceeds in the opposite direction. The

problem of finding an algorithm {minimal or

otherwise) for a function, after inspection

of some but not all values of the function, is

clearly of the inductive type: the complete

algorithm proposed on the basis of incomplete
information expresses a generalization about

the function sampled. Non-trivial inductive

problems are inherently "unsolvable" in the

sense that no terminating procedure exists

for generating "correct" generalizations; any

unverified consequence of a proposed

generalization may turn out to be in error.

This motivated Gold's definition of limiting

recursive predicates and functionals, which

are more powerful than their non-limiting

counterparts. He noted that a "thinker"

employing a procedure for function (or "black-

box") identification in the limit and using

the current guess of a function's identity as
a basis for goal-directed activity would be
acting on correct information eventually.

In this sense, therefore, some unsolvable

problems are within the reach of mechanical

procedures, The most general function
identification problem, however, is 2-limiting

recursive. Can any mechanical system be

conceived which in some sense "solves" a 2-

limiting recursive problem? Not if attention
is restricted to a single "thinker" generating
a single sequence of guesses; however, suppose

that instead of a single thinker, each of an
ever growing number of such thinkers Tp,T.,...
with universal

computational power observes

the non-terminating sequence

<Y0'Z20>,<Y1Z4>,...... Which

partial

enumerates some

recursive function O. At any time

the i'th thinker T. regards as his best

guess the shortest program (if any) he has

been able to find which, in the time

available, has given correct outputs for

inputs Yo, Y an(* either no output or

a correct output for any other argument

tested. It is clear that each thinker will

eventually be guessing a program for a subset

of $; furthermore, all but a finite number of

the thinkers will be guessing programs for <

eventually. In this iterated limiting sense

the expanding community successfully

identifies *. Of course there is no strategy

effective in the limit for deciding in general

which thinkers are guessing programs for $ at
any time. To interpret third-order limit
processes, one might envisage a growing

number of expanding communities of the above
type, each committed to a distinct value of a
certain parameter. At most finitely many of
the unbounded communities would in,, general

be "unsuccessful". Similarly still higher-

order processes could be interpreted.

Acknow1edgement

I am indebted to C.G. Morgan for several
stimulating and helpful discussions and to
J.R. Sampson for his many useful comments on
the manuscript. |.N. Chen's help on some
aspects of the paper is also gratefully

acknowledged. The research was conducted

under a National Research Council postdoctorate
fellowship.

Footnotes

i

A code into total functions would also be

used for a mixture of finite and infinite

descriptions; one digit, say 0, would be

reserved as terminator and all function values

corresponding tp points beyond the end of a

finite description would be set to O.
2

For the finite decision functions, note that
the functions computed with any finite set of
programs can be diagonalized to yield a finite
decision function which requires a program
not in the given set. To prove infinite
diversity for the 2-element decision functions,
it is sufficient to show that no set of n
programs can include a program for each 2-
element decision function whose arguments are
in a fixed set of 2 integers; but for this
many arguments at least 2 of the programs
that

must give identical results {if any), so

two unsymmetric decision functions are missed.
3

Functions are regarded as a special case of
functionals.
The equivalence follows from the fact that

F(6) is independent of n.,...,n,, so that the

iterated limit of G must exist.

5

This differs from Gold's definition, which

expresses limiting recursive enumerability

in terms of limiting semi-decidability.
However, the definitions can be shown to be
equivalent (for k=1).

Actually, Feldman was concerned with "occams

enumerations" of formal grammars, but the

problem of finding minimal grammars for
languages is essentially the same as that of
finding minimal programs for decision

functions.

References

1. E.M. Gold, "Limiting Recursion," J.
Symb. Logic 30, 28-48 (1965).

2. J. Feldman, "Some Decidability Results

on Grammatical Inference and Complexity,"

Stanford Artificial Intelligence Project

10.

Memo AI-93 (1969); also Inf. and Control

2.0, 244-262 (1972) .

R. Solomonoff, "A Formal Theory of

Inductive Inference," Inf. and Control 7,
1-22, 224-254 (1964),

G. Chaitin, "On the Difficulty of
Computations," IEEE Trans. Inf. Theory
IT-16, 5-9 (1970).

D.G. Willis, "Computational Complexity

and Probability Constructions," J. Assoc.

Comp. Mach. 17, 241-259 (1970).

A.N. Kolmogorov, "Three Approaches to the
Information,”
(1965);

157-168 (1968).

quantitative Definition of

Inform. Transmission 1, 3-11 also

Int. J. Comp. Math 2,

P. Martin-Lof, "The Definition of Random

Sequences," Inf. and Control 9, 602-619
(1966).
D. Pager, "On the Problem of Finding

Minimal Programs for Tables", Inf. and

Control 14, 550-554 (1969) .
D. Pager, "Further Results on the Problem
of Finding the Shortest Program for a

Decision Table," presented at Symposium

on Computational Complexity, Oct. 25-26,

1971; abstracted in SIGACT News, No. 13
(Dec. 1971) .
H. Putnam, "Trial and Error Predicates

and the Solution of a Problem of
Mostowski," J.

(1965).

Symb. Logic 30, 49-57

