Session 18 Automatic Programming

HEURISTIC METHODS FOR

MECHANICALLY DERIVING

INDUCTIVE ASSERTIONS

Ben Hegbreitt

Bolt Beranek and Newman Inc.
Cambridge, Massachusetts
ABSTRACT
Current methods for mechanical program Elspas, Green, Levitt, and Waldinger® have

verification require a complete predicate
specification on each loop. Because this is
tedious and error-prone, producing a program
with complete, correct predicates is reasonably
difficult and would be facilitated by machine
assistance. This paper discusses heuristic
methods for mechanically deriving loop predi-
cates from their boundary conditions and for
mechanically completing partially specified
loop predicates.

Introduction

Mechanical verification of program
correctness is desirable and possible.” Given
a program, a first-order axiotnatization of its
semantics, and predicates on the input, output,
and each loop, verification of the output
predicate is a mechanical process, (c.f. [2]
and [3] for recent surveys).

Input and output predicates are necessary
and natural for a programmer to supply.
However, completely specifying the predicates
on loops is tedious, error-prone, and redundant.
It is tedious due to the large amount of
stereotyped detail required. It is error-prone*
partly because of the tedium and partly because

the notation is less natural than that for
procedural steps. It is redundant since the
predicates repeat information which is manifest

in the program. The purpose of this paper is
to show that loop predicates can be derived
mechanically** and that partially specified

loop predicates can be completed mechanically.

*An example may lend some weight of experience.
In his thesis”, King presents nine programs
submitted to the verifier; the most complex of
these (Example 9) has an incorrect loop predi-
cate, i.e. the inductive assertion is too weak
to be consistent or to imply the desired output
predicate. (Since the theorem prover rejected
the loop predicate due to an inability to
handle multiple quantification, the predicate
error was overlooked.)

**In one sense, this is trivial. All well-
formed predicate expressions for each loop can
be enumerated and proofs of correctness
dovetailed until one succeeds. If every valid
theorem of the subject domain is provable, this
will eventually verify the program; otherwise,
mechanical verification is not possible in
general. Such a procedure is, however,
computationally intractible.

tAlso at Harvard University, Cambridge, Mass.

independently worked on this problem using
difference equations as an aid to specifying
assertions. Cooper’ has previously studied
the problem and observed that an inductive
assertion can be obtained by hand by construct-
ing the first few terms in the loop expansion,
which generally shows what the infinite union
must be.

Our method uses a different approach. To
generate loop predicates where none are
supplied, the output predicate is dragged
backward through the program and modified when
passing through program units, to produce
trial loop predicates. Trial loop predicates
which are loop inconsistent are modified
according to various heuristics, to generate
better trial predicates. Hence, it is also
possible to accept a programmer-supplied

inductive assertion which gives the "essential"
idea of some loop and mechanically fill in the
details to arrive at a complete, correct loop

predicate. Many of the heuristics are domain
specific, this paper uses integers and integer
arrays as the subject domain.

The paper is divided into five sections.
Section 2 illustrates our approach with two
simple examples. Section 3 discusses the
general method, domain-independent heuristics,
and heuristics specific to the integers.
Section 4 treats a number of complex examples
to show how the heuristics are used and
exhibit their coupling. Section 5 discusses
implementation and application of this method.

Notation. Throughout, a simple flowchart
language is used. The input predicate is
denoted by o; the output predicate by w.

Unprimed (primed) variables and predicates

denote values and predicates on these values
before (after) control flows through a set of
flowchart boxes. The transformation due to a
flowchart path A*i A£2-'*Ain is denoted by
6{i,i|,,i2,...£ .

Simple Examples

The flowchart of Figure 1 (taken from [1])
computes the quotient Q and remainder R of
integer X divided by integer Y. $={X>0 A Y>0),
*={X-QY+R A 0<R A R<Y>. * at the entrance
implies that at arc Ay the predicate
P«-{X>0 A Y>0 A Q«0 A R-X} holds. To verify
the flowchart, it suffices to find a loop
predicate P* at arc A" such that

A 6(1,2,3,1) - P

P, A 6(1,4)

1

The standard means for generating a loop
predicate is to use E3 and start with trial
choice of P»{6(1,4) m* *' Here,

. this gives
P-{R<Y ++ (X-QY+R A 0OsR A R<Y) }.

Converting



to disjunctive form and simplifying,

P4={R2Y¥ v (XsQY+R A O<R}}. To varzfy the
flowchart, it suffices to prove that with this
choice of Py, El and E2 are each valid., El is

(X280 A Y>0 A Q=@ A ReX} -~ {(R2Y v (XwQU+R A
g=R) }

which is wvalid, Howewver, E2 is

{R2Y v (X=0Y+4R A PSR} )} A RZY A R™=R-Y A R =@+l
= [R'2Y v [X=Q°Y+R* A P=R"}}

which, while satisfiable, is not valid. Since
E2 igs satisfiable, this suggests that the
trial choice for Py be replaced by a stronger
one. Dropping a dlajunct is a possible
strengthening transformation; plausibility
arquments Buggest that the disjunct to drop is
the one arising from 6(1,4). Hence consider
the next trial choice Pi=(X=0Y+R A 6=R}. El
remaing valid; E2 bhecomes
{¥=0Y+R A @=R} A R=¥ A R"=R-Y¥ & Q7 =0+l -
{X=0°Y+R" » B=R"}

which is also valid. Hence, this choice of Py
is said to validate E]l and E2, and the flow-
chart is verified.

The flowchart of Figure 2 (taken from i4])
computes A® by a binary decomposition of B,
¢mf{XmA A YmB A Yzf}, ¢y={2eAtB}, From ¢ it
follows that P,={X=A A Y=B A Yz§ A =1} holds
at arc A,. Using the exit condi¢ion E3, the
first trial choice for Py is (Y=l > Z=AtB),
This validates the entrance condition El. The
loop condition E2 generates an implication for
each loop path. The one on A3ApAghghrrl is
valid. The one on AjAaA3AgAgAyA] requires

{¥#P v Z=A4B)} A Y#8 A Y MOD 2wl A I7=2+X A
Y 'uY:2 o X'mXeX = {¥7gP v 2°=AtB}

which is pot valid but ias, however, satisfiable.

The occurrence of ap invalid but
eatinfiable E2 implication indicates that the
first trial loop predicate is too weak. Hence,
heuristics are used to generate a stronger P;
from the approximation (Y=f - z=a4B}. The
appearance of antecadent Y=f with a consequent
equality suggests three likely candidates for
a stronger Py: {Z=A+B+K-Y}, {2Z=(AtB)*» (X1Y) ]},
and {Z+{K4Y)}=htB}, where K is unknown. El and
E2 are used to declde which, if any, of the
three are consistent loop predicates and to
solve for K in the consistent cases. Using
the third chojce for P} in Ey givas
{%=A A YwB A Y2f A %=1} « {2:(K4¥)=AtB}
which is valid if K=h or F=X. Using the choice
X=X in Py, E2 gives

[2+(X4Y}mA+B)} A Y#f A ¥ MOD 2#1 A Y'=¥3:2 A
X 'mXeX « {Z2+({X"+Y")=mAtB}

and

{2+ (X4Y)=A+B} A Y#0 A ¥ MOD 2=1 A 27%ZX A
Y o¥i2 A X =X+X ~ ({Z*(X"+Y")}=AtB}

both of which are valid. GHence, P1=
{2+ (X4Y)=A+B} verifies the flowchart.

it is tested in E1,

Determining Tha Loop Predicates

General Considerations for Single-Loop
Flowcharks

Consider a flowchart belonging to tha
gchema of Figure 3. The ipitializatien,
loop-body, and terminal-computation are
arbitrary loop~free computations, From ¢ and
the initialigation, the strongest predicate
P, on arc A, can be derived mechanically,
verify the flowchart, it suffices to find a
loop predicate Py at arc Aj such that

To

{(E1} P, -+ Pl'
(E2) P A 6(1,2,3,1) =+ ?,°
(Es] Pl A 6(1]‘:5) - ‘V

In view of E}, tha weakest possible
cholce for Py is By={6(1,4,5) - y"}. Should
El be invali& with this cheoice of Py, the
flowchart is not verifiable, E2 gensratas an
implication for each path between As and Aj:
if al) are valid, the flowchart is verified;
if any are unmatisfiabla, the flowchart is not
verifiable; if all are satisflable but scme
are invalid, then P; must be replaced by a
stronger inductive asgertion.

There are two domain-independent
hepristics for obtaining a Etronger loop
predicate from a previous approximatien.

(G1) Convert to disjunctive form and drop some
of the disjuncts which come from the exit
predicate D. Typically, drop those diajuncts
which cannot be used in any of the domain-
specific heuristics described in the next
section.

(G2} If {Py; A §;, « P1” | i=k],,..kp} are the
invalid but satisfiable E2 implications, then
replace P by P3 4 (Gki +~ P17} A cuaA

{8xq » P17 )}. If applied b indly and
repeatadly, this can lead to an infinite
seguence of trial P)'s; hence, this must be
used to limited depth, in concart with
heuristice for “simplifying" the expresiions.
(&.g. Il through I4 below}

Whenever a new choice for P; is obtained
by some heuristic from a previous approximation,
E2, and E3. E1 not valid
indicates that the choice is too strong. This
is generally a good filter giving a quick
reaject to incorrect predicates; since the set
of trial predicates should be pruned whenever
possible, this is useful. E3 not valid
indicates that the choice is too weak. An
unsatisfiable implication due to E2 indicates
that the choice is too strong. An invalid
but satisfiable E2 implication indicates only
thnat the choice i= wrong,

There are three other useful domain-
independent heuristics:

{(G3) To verify a predicate, convert to con=
junctive form and verify each conjunct
separately. This may be a losing atrategy if
twe or more conjuncts are coupled and can

only be proved in concert, but when this worke,
it reduces the size of the formulas to be
manipulated and hence cuts the computation for
a proof and the search space for other
heuristics. This indepandent procesaing of
conjuncts applies both to y and te the results
of G2. In the latter case, the new trial loop

525



predicate is the conjunction of the previous
one and a sat Of new clauses, 20 this is a
nataral situation in which to try separation.

(G4) If the application of G3 rasults in
varifying some but not all of the conjuncts,
record those which do verify as consistant
loop predicates at that arc. When subsequently
searching for the proof of an inductive
asgertion at some arc Ay, the list of
predicates previously verified at Ay may be a
useful source of lemmas. Suppose, for example,
that a trial predicate at Ay is {Cyl A 052}
and that Cyl i3 loop _consistent while )2 is
not. If {Ckl A C 2} is mot verifiable, and
a naw trial predicate iz formed, verification
of tha naw predicate may ba aided by knowing
that €, 1 holds at Ay.

{cs) Each predicate which is found to hold at
gome arc Ay is propagated to all successors
As under tﬁe transformation 5(k,j}. This
includes both the input predicate ¢ and the
results of GAd.

Because of G5, the first step of flowchart
vaerification is to extend ¢ Boc far as possible,
forming the assertion P, at one input to the
first loop jundtion (¢.f. Figures 1 and 2).
Whanever, becauss of G4 or G5, it is known
that some predicate P; holde at Ay, Py is
cojoinaed as a clausa on tha left fiand aide of
E2 and E3,

Integer-Specific Haurilstics

Turning to domain-gpecific methods, the
heuristics are richer and more powerful. The
following hauristics apply to the integers
{and to the realsg, excapt as noted otherwise).
They each replace a predicate by a weaker one;
when uded inside a negation (as is Commonly
the case} thelr application results in a
stronger inductive assertion.

(I1) In a conjunction of inegualities, form
trangitive closures and drop the conjuncts
used., For example, replace™

{A<B A BsC A ...} by {A<C A ...},
{MB A BEC A .!l} bY {Lﬁc A l'l}!
{A<B A B<C A ...} by {A+l<C A ...}.

(x2) In a conjunction of an equality and an
axpression : equal to zero, a term in ¢ may be
added to cne side of the equality, s.g. replace

{X=@ A A=B-C} by {(A=B-C+K-X}

whare K is unknown. IlLess common, but possible
is: multiply one side of the equality by K&,
e.9. replace

{X=@ A A=B-C} by {A=B-C:(R+X)} or
{{EtX) «A=mB-C}.
(A gimilar casa is the conjunction of an
equality and an expression & equal to I:

aither aide of the aguality may be multipled

by ¢. In practice, this turns out to be
useful less frequently than the zero case.)

¥Th the case Of reals, the Last of these i
changed to: replace

{A<B A B<C A ...} by {R<C A ...}.

528

(I3} In a conjunction of an inequality and an
exiatentially quantified conjunction, use
transitivity to extend the range of the
quantified variable, and drop the inaguality
conjunct., For example, replace

fH=L A 3IR[R<W A Q{KI] A ...} by
(3R [K<L A QIK}] A ...},

(I4) In a conjunction of an inequality and a
universally quantified disjunction, use
transitivity to extend the range of the
quantified variable and drop the inegquality
conjunct, For exampla,

{IsN A YR[K2N v Q(K)) A ...}
may be replaced by the weaker form
{YKIE<I =+ Q(K)] A ...}.

Multiple Loops

The naxt level of loop complexity beyond
the single loop aschema is the class of

simglg-nested loop programe, in which the
cop- vy o igure 3 containg inner loops.

Consider, for example, the schema of Figure 4
where the inner-body and outer-body are loop
free. To verily this, it suffices to find an
inductive assertion P, auch that:

(E4) P, A §(8,1,2,2,4) ~+ Pg°

{ES) Pq A 6(4,5,6,4) ~ P,°

(E6} Pq A 6{4:71331112:3,4, - Pq‘

(E?) P4 A 5[4;7;3;1;9;1”) nd w'

The weakast possible choice for P, is
Py={6{(4,7,8,1,9,10) ~ y7},

This class of flowcharts is of interest
for two reasons. (1) It and ite generaliza-
tione to depth n ocour frequently, (2) Obtain-
ing a solution for Py requires no new
techniques, since E5 and E6 each have the same
form as E2 - the set of implicationg they
ganerata cover the set of possible paths from
arc A4 to itself - and the nesting is otharwise
irrelevant. These considerations extand to
simply-neated flowcharte of arbitrary depth,

In general, the gituation is less clean.
Consider, for axample, the schema of Figure 5.
Here, there is no single innermost arc: A;
and Aq are earh innermost. The verification
conditions are

-

(E8) P, A 6(0,1,2,3) =+ P,

[E9) P3 A §(3,4,5,3) =+ P3”

(E1f) Py A &(3,4,6,7) ~+ Py~

{E11) PFq A 6(7,08,9,7) = £y

(E12) P, A 8(7,8,10,1,2,3) = Py~

(E13) P, A §(7,8,18,1,11) ~+ ¢°
Finding P, and P3 1& complicated by the coupling
due to E1P and El12. Loops such aas these can

sometimes be daccupled by the following
heuristic,

{Gé]} Approximate the firat loop by a finite
axpangion to soma depth i -—- one disjunct par
time around the loop. Use this to find a
valid inductive assartion on the second loop.
Than use that assertion to obtain the assertion
for the first loop. For example, the loop
<3,4,5,3> may be approximated to depth i=1 by

bim]={By A ~Dp) V [Bp 4 Dy A az‘ A “Dz"



Py muat validate

{E1"}) PO A NDI A ﬁi - Pj’

(25"} Py A 6(7,8,9,7) = By~

(Eﬂb‘) Pa A 6(7,8,18,1,2,3) A by P,'
{E3") Pq A 6(7,8,1£,1,11}) <« ¢~

which ie in standard form., With Py obtained,
Py is determined by EB, E%, E10, and El2.

More Camplex Examples

The flowchart of Figure 6 {taken from
[4]) sets the flag variable J to for 1 aa &
is or is not prime, P,={p22 A Iw2},
y={[J=f + YK(25K<A + A MOD K#8)] A
[J=l - A MOD I=§] }. Using E3, the weakest
poasible inductive assertion at arec Ap is

{{{IZA A J7=f} v (I<A A A MOD Is=@ A J°=1}1}

Py=
- ¥’}

Simplifying this, and converting teo disjunctive

form
Pym{I<A v YR{25K<h -+ A MOD K#f)}.

(The disjunct J“#¢ has been dropped, singe it
involves primed vaxrjables,) Since p, » Pp,
El is validated. Py s 6(1,2,3,4,1) » Pt’ is
invalid but satisfiable. To obtain a stro
inductive aseertion, I3 is used to replace
~{I2A A FK(2%Keh A A MOD K=f} by the stronger
predicate ~{3K(2sK<I A A MOD Km#}. That is,
the next trial Py is

{YK (2=K<I A MOD K#6)}.

This validates El and E2, so the flowchart is
verified.

The flowchart of Figure 7 {taken from
[2]} computes* the fractional guotient P/Q to
within tolerance E. ¢={#sP<Q A #<E] so that
Po={fsP<Q A O<E A A=0 A B=Q/2 A Dwl A Y=B};
= {P/O0-E<Y=P/Q}. Ueing E3, the weakest
poseible loop predicate at Ag is

§6 = {D<E =

w{(D<B A P/Q-B2Y) v (D<E A Y=PE/Q) .

This validates implication E1, since

Po A 5(’;1t2p3n5r6) + PG: .
and P, A &6(#,1,4,5,6) ~ Pg”) E2 gensrates two

-

-

implications
{7.1) ps A 6‘607r1!2:3r5!5} - PG‘
{7.2) Ps A 6{6:7)1:4;5:61 - Péd

With P, neither of thege is valid but both
are sagisfiahle, hence P, must be xeplaced by
a stronger predicate.

In determining the correct Pg, it is
helpful to ume heuristic G3: break ¢ into
two conjuncts and verify each separately.
consider first

Pglun{DcE A P/Q-E2Y).

In this axampIe, the domain is the reals,
rather than the integers. The techniques
carry over with only minor changes in tha
treatment of transitivity.

nger

527

With this choice of P;, both 7.1 and 7,2 are
invalid but satisfiabie. In replacing Pgl by
A Btronger predicate, heuristic Il is used to
get ~{P/Q-D>¥}, i.e. {P=QY+QD}. With thia
choice of Pg, E1 and 7.1 are each validated,
while 7.2 is invalid but gatisfiable, Since
7.2 is (P=QY+QD A D2E a P<A+R + P=QY+QD/2},
heuristic G2 suggests the next trial choice
for Pg is

{{P=QY+QD] A [D2E A P<A+B PQY+(D/2) },

while heuristic G3 suggests verifying the two
conjuncte separately. When G2 and G3 are
applied together, it suffices to verify the
new conjuncts {here, second conjunct). With
Pg={D<E v PTA+B v P3QY+QD/2}, El is validated
while 7.1 and 7.2 are each invalid but
satisfiable. This suggests using a heuristic
to get a gtronger predicate; I1 and Gl applied
to ~{DZE A P<A+B A P>QY+(QD/2} give
~{A+B>QY+2D/2}.
Using this for Pg, El ia validated while 7.1
and 7.2 are each invalid but satisfiable,
Using 62, 11, and then G3, 7.1 and 7.2
respectivaly give rise to the new conjuncte
{(B=QD/2} and {B=Qbh/2}.
Cotbining these into the single conjunct
{p=QD/2} and using this for Pg, El, 7.1 and
7.2 are sach validated. Hence thas out;
conjunct yl={P/Q-E<¥} Is verified with the loop
predicate Pgl=({P<QY+QD A A+B=QY+QD/2 A B=QD/2}.

The second putput conjunct ¢2e{Y=p/Q} is
simpler. Successive conjuncta generated for
sz are {Y<P/Q), then {A+B=QY+QD/2}, and finally
{B=Qp/2}, A8 in the case of Pgl, the primary
choice at each step is between using G2 to
add another conjunct and gome other heuristic
to simplify by strangthening a conjunct.
Since ¥* is verified by Pet for i=1,2, the
flowchart is verified. Combining Pgl and Pg2
gives Pe=(P/Q-DsY¥=P/Q A BsQD/2 A k-&!}.

FPigure 8 {taken from [4]) gives a Bimple
exchange gort,
Pomé! yw{¥M 2=MzN -+ A[M-1]zA(M]},
As Ay is the unique overlap arc of the two
loops, the inductive assertion is formed thers
{c.f, Section 3.3}, From E3,

Pae{I>N A Juf = §°} = ~{I>N A J=fl A IM(25M=N &
AfM=11>a[M1} ),

This validates El, trivially.
three inplications:

-

E2 generates

{8.1)  P3 a 6(3,18,11,1,2,3) = Py°
{8.2)  P3 A 6(3,4,5,6,8,9,3) - Pp3°
(8.3)  P3 A 8(3,4,7,8,9,3) =+ By

With $,, these are invalid but matisfiable,
Hence, "it is necessary to replace Py with a
stronger agsertion.

Using heuristic I3,

Pye ~{Ju=f A IM(2<M<I A A[M-1]>A[M])}
= {J#0 v ¥M(2=M<I ~ A(M-1]2A(N]}}.

This choice of P, validates E] and the three
implicationa of E2. The most difficult proof
is for 8.3:

{J20 v YM{2=N<I = A[M-1]=A[M])}
A I=N A A[E-112A[I} A I°=1+1
{T#8 v YM(2:=M<I” - A[M-11=A[M]) ).

which requires a case analysis on the quanti-
fied variable M.

-



Conclusion

Having shown that it
number of cases to derive
assertions by heuristics,
application of this
tion system.

Implementation

is possible in some
the inductive
we turn to the
in a mechanical verifica-

We have not yet implemented this
and the above examples are the result of hand
simulations. It appears that programming this
is reasonable, although by no means trivial.

Modifying the trial loop predicates and
searching the space of possible modifications
is the heart of this method. A problem-solving
language (e.g. [7], [8] or [9]) with facilities
for pattern-matching, backtracking, and
multiple environments is the preferred
implementation tool. The need for pattern-
matching to invoke heuristics, and backtracking
to make retractible trials should be clear.
Experience with hand simulation suggests that
additionally a breadth-first search capability

technique

(i.e. multiple environments) is required,
since an incorrect choice of heuristic often
leads not to a recognizable failure but rather

to a non-convergent series of loop predicates

- each inconsistent.
The theorem-proving required is within
the range of contemporary domain-specific

theorem provers
programmed in

The interface between heuristic predicate
generation and theorem proving can be
organized in two ways. A disjoint organization
would separate the two and use the theorem

(e.g. [10]). This can also be
the problem-solving language.

prover as an oracle returning one of four
replies for any formula submitted to it:
valid, unsatisfiable, invalid-but-satisfiable,
or can't-tell (escape clause for undecidable
domains). A better organization is based on
the observation that the heuristics used in
trial predicate generation and in theorem

proving are often the same and that this can

be exploited by combining the two more
closely. Further, in seeking to validate an
E2 implication with some trial predicate, the
theorem prover may generate a number of
clauses which are invalid but satisfiable; it

is often useful to take these as new goals
and try them as additional conjuncts in the
next trial predicate (i.e. a variation on G2) .

Application

We do not believe that the proposed
techniques will be capable of generating all
inductive assertions on a large, complex
program in a reasonable time scale. Rather,
we assume that a program submitted to a
verifier will have its loops tagged with
assertions of varying degrees of completeness:
some complete, some partial, and some untagged.
In general, interaction will be required in
developing correct assertions and proving
very difficult lemmas. It is desirable,
however, to do mechanically as much as
practical. The proposed technique allows
completing certain loop predicates and

generating certain inner predicates from outer
ones. This should suffice to fill in a
significant portion of the inductive

526

assertions mechanically and,
expedite the

therefore, should
task of proving programs correct.

ACKNOWLEDGEMENTS

The author would like to thank L. Peter
Deutsch, carl Hewitt, Ralph London and Jay
Spitzen for discussions concerning various
aspects of mechanical program verification.
Ralph London is the source for the observation
of predicate incompleteness in the example
discussed in Section 1.

This research was supported by the Advanced
Research Projects Agency of the Department of
Defense under Contract No. DAHC-71-C-0088.

REFERENCES

1. R.w. Floyd, "Assigning Meanings to
Programs," in Proc. of a Symposium in
Applied Mathematics, Vol. 19, ed. by J.T.
Schwartz, AMS, pp. 19-32 (1967) .

2. B. Elspas, K.N. Levitt, R.J. Waldinger and
A. Waksman, "An Assessment of Techniques
for Proving Programs Correct," Computing
Surveys, Vol. 4, No. 2, pp. 97-147 (June
1972).

3. R.L.

London, "The Current State of Proving

Programs Correct," Proc. ACM 25th Annual
Conference, pp. 39-46 (1972).

4. J. King, A Program Verifier, Doctoral
Dissertation, Computer Science Dept.,
Carnegie-Mellon university, Pittsburgh,
Pennsylvania (1969) .

5. B. Elspas, MW. Green, K.N. Levitt and
R.J. Waldinger, "Research in Interactive
Program-Proving Techniques," SRI,

Menlo Park, California (May 1972) .

6. D.C. Cooper, "Programs for Mechanical
Program Verification," Machine

Intelligence
£, American Elsevier, pp. 43-59 (1971).

7. J.F. Bulifson, J.A. Derksen and R.J.
Waldinger, "QA4: A Procedural Calculus
for Intuitive Reasoning," SRI, Technical
Note 73 (November 1972).

8. D.V. McDermott and G.J. Sussman, "The
CONNIVER Reference Manual," MIT, A.l. Lab.,

Memo No. 259 (May 1972).

9. C. Hewitt, "PLANNER: A Language for
Proving Theorems and Manipulating Models

in a Robot," Ph.D. Thesis, MIT, Department
of Mathematics (January 1971).

10. L.P. Deutsch, "An Interactive Program
Verifier," Ph.D. Thesis, Department of
Computer Science, University of California
Berkeley (forthcoming, June 1973) .



:STA RT ;

$={xz20,v>0}

ag ¥ {xcov+R,05R Rev}

Figure |. Division by Repeated Subtraction

529



:START ;

$:{x=a,v.B,v20}

Rr{x:A,v-0,v20,2:1}

Yo Y+ 2
Xo— X # X

Figure 2. Exponentiation by Binary Decomposition



\sTART 7
$

r
| SNITIALIZATION]

Aq

TERMINAL
COMPUTATION

Figure 3. Single Loop Schema

531



; START 7

¢
INITIALIZATION,

TERMINAL
COMPUTATION m

INNER BODY

| ouTer BODY |

.

Figure 4. Simply Nested Loop Schema



; START7

¢

L
[ INITIALIZAT1ON |

Figure 5. Muitiple Loop Fiowchart

533



L] C YES | Ag

V= {[J-o-\ﬂ( (2SS K<A=e A MODK!O)];.
[4#1 = & moD 1=0]}

Figure 6 Testing for Prime

534



Az

Figure 7.

; START;

¢

A0
B=—Q/2
D=1
Y0

NO

Ao
A

P<A+B YES
Az

Y o Y& D/2
A= A+DB

] Az
Ag

Be— B/2
De—D/2

Ag

‘ L<g

NO

:{otp<a,0<E}

Ay

{ HALT\

v - {pra-e <v <pa}

Wensley's Quotient Algorithm

535



| Ae
(alz-1]>al1] )—
x e A[1-1]
4 A1) e—a1] Az
A 1]~ X
Jeo1

yr{vm2smsn=a[mM-1]<a[m}

Figure 8 Simple Exchange Sort

536



