Session 18 Automatic Programming

AUTOMATIC PROGRAM SYNTHESIS IK SECOND-ORDER LOGIC

Jared L

. Darlington

Gesellschaft fur Mathematik und Datenverarbeitung

Bonn, Germany

Abetract

A resolution-based theorem prover, incorpo-
rating a restricted higher-order unification algo-
rithm, has been applied to the automatic synthesis
of SNOBOL-4 programs. The set of premisses in-
cludes second-order assignment and iteration axi-
oms derived from those of Hoare. Two examples are
given of the synthesis of programs that compute
elementary functions.

Descriptive Terms

Higher-order logic
Program generation
Program synthesis
Resolution

Theorem proving
Unification algorithms

The automatic synthesis of computer programs,
like their automatic verification, requires a set
of rules or axioms to account for such typical
program features as assignment, iteration and
branching, and a program capable of making appro-
priate deductions on the basis of these rules or
axioms. .Following current work of Luckham and
Buchanan and Manna and Vuillemin we have chosen
a set of axioms based on those of Hoare®, and we
are employing a resolution-based theorem prover
incorporating a reetricted higher-order unifica-
tion algorithm to generate SNOBOL-4 programs from
this set.

To aid the formulation of statements about

programs, Hoare invented the notation
PIdl ®
whose interpretation 1st "If the assertion P is

true before initiation of a[piece of)program Q,
then the assertion R will be true on its comple-
tion'"*. ThUs, his "axiom of assignment"

P, {x,- f] P

says that if P is true before f is assigned to x
then P will be true after this assignment, where
"x la a variable identifier", "f is an expression"”
and "P is obtained from P by substituting f for
all occurrances of x"j and his "rule of iteration”

DO

D5 IfFPAR {8} P then FP jwhile B do S} 1BAP
Bays that if P is "an assertion which is always
true on completion of S, provided that it is also
true on initiation", then "P will still be true
after any number of iterations of the statement S
(even no iterations)". The controlling condition
B or the "while loop" may be assumed to be true
before exeoution of S, and will be false upon
termination of the loop.

The above notation is, for all its elegance,
not the most convenient for use by a predicate
calculus theorem prover. Accordingly, we have

53?

written our axioms for assignment and itersation {
tarme of the variables Xyp Ty 6t ranging over
progras variables and expressions; Byr By ato.
ranging over stutess, and f1. f,, eto. ranging ova
preadicates or fynctionm of thaza objeats, depen=
ding on sontext, Since the variablss x, and s
&re taken tc be of type "individeal®, tin uae
the implicitly universally quantifisd varishles
f, ranging over predicates or functions of thess
aijscta means that our language 1s sscond-order.
The notation

[+3 4

IH(!‘.‘ (11), 31)

is uped to indicate thet the aswertion 11(11) is
true in the stets L while

Iﬁ{f1(x1). !1('2))

meane that f,(x,} is true in the etate consistiing

of 8, followed by o {this is the reverse of the
nauni practice of rznﬁing the order of satates fr¢

right to 18ft, or “inslds oDut“). In terms of thi

notetion, our assignment eaxiom
o’ Il(f.‘(x.l). a1) 31!(1‘1(12). 0,(x,t" 11])

sayes that if sesartion f.{x.) is true in state »
then ssasrtion £, (x,) will B true in the state
resulting from assigning the program variable or
exprassion x, to the program variable z,, follow-
ing s.. DO’ ‘may be related toc DO by nugine that
'f1{x J' corrssponds to 'P ', 'f (x.)! to 'P',
1x.? %o 'F oand 'x,.? te 'x7. Its neaning may he
iliultrnted by the inatance

IN({TDENT(J, *BTRING'), &)
O IN(IDENT(K, STRING'), s,(K:= 3))

darived from DO’ by instentiating 'x,' and 'x,*,
reapactively, by the program varisblee 'J' an
t5', and ’f1' by the lambda-function

Au.IDENT(u, 'STRING')

where IDENT is & primitive SFOBOL function that
tegte whether two obieots of any data type have
the same valus, Ths atatemant says that 1f
IDENT J,‘STRIIG'; is positive in s, then

IDENT(X, 'STRIRG') will be positive if J is ae-
algnsd to X in the atate following a,.

In applying DO’ to program synthesis, ve hay
iound it necesssary to supplement it with axioam
expressing properties of IDENT, samelr

It IH(IDE!‘I‘(:1.22). a1)
D IN(IDEFT(f (2,0, £o(x,))0 0y)
D2 IH(IDEIT(:1,21), 5,)

In practics 1t im simpler to umse two corollariss
of DO’ , napely

LA IN(IDER?(x,,%,), 8,)
D IN(IDERT(xg, £(2,))s 84(xye= £4(2y)))
cL2 IN(IDEIT(:1,x2}, 11(:11- 32))
darived by resolving
Il(fz(xB), 5,) 3 IH(£2(14), ‘2(34" xs))

{obteined from DO’ by changs of wvariable) with ID1
to yiseld CL1, under the aubstitutions

£, = Au IDERT(u, 0, (,))
Xy = 51(:1)
'2 - -1
and with ID2 tc yileld CL2, under +the substitutions
£, = Ru1.IDElT(u1,x1)
Xy =X,
By =8,

foliowed by rentandardieing the yariables of the
reacivents.

The iteratict axiom used by cur program jo
related to Hoare's D3, but is baned mors directly

on the induotive prinoiple for natural nuombers.
Ve start with the formuls

D3’ IN{r, (z,), s,)

A Vs!,(Il(q(:,). a,)o Ill(f1(x1), -5-2))

2 1e(r,(x) ALy(x,), l1(\rh11nr2(32) do 8,))
whers 'f (11}' corresponds to 'P' im D), '12(32)1
to "B’ end a_' t0 '§S)'. W then replace-ix:!
in D3’ by a prscruu vaTiable 'J', whioh in fas
serves a3 & counter taking only intagar values,
replace 'x,' by a program wariable 'N', and par-
tially Skolemise the result, in ths processs re-
placing 'l}' by a oonatant 'lc', thersby obtaining
3’ 1!(:1(4), 31)

N IN(£,(3), 8.} 2 IN(L,(3), a,8,)
) I!(I‘.,(J) Arz(n). s‘(vhih -lfz(l} do la)) .

Resolving on the underscored literal with the fol-
lowing instance of DO

I8(1, (341), a,8,) D IN(L,(3), 8, (s, (31-341)))
yislde
D377 IN(£, (3}, e,)
A TH(r (1), e) DTN(L,(341), b s,)
3111(:1(.1)/\:2(1), :1(vh110 -ttz(l) do .2(J=-J+1)))
thereby introdusing the aperation of imorementing

J intc the while loop, The Litaration axion used
in our program,

538

CL} IN{IDENT(J_ +0)s »,)
A 1R(f,(0),)
A TR(E,(3,)0 3.) D IA(E, (341)0 w s,)
2 IR{€, (I) AL, (K), e, ((RULE, T (N) +8(EXIT,))
(ap((I, = 3J, + 1 +(RULE,)){EXIT)))))

in derived from D3’’’ by edding a aubascript 'a’
to 'J', adding the literal ‘II?IDE]T{J 0), B,)
sand then replacing 'J. ' im the sretwhile first
literal by '0°, thnrogy astting the counter J_ to
0 in the entering atate a_,, and finally rnplaﬁin‘
the “while® notstion by the corresponding SEOBOL
terminology of rule names and go-to's. The aub~-
script 'a', in the aontexta 'J ', ‘RULBn' and
‘EXIT *, is instentiated by an integer, the sarial
nuzbel of the clsuse gensrated, whenever CL? en-
ters into a rescolutiocn.

The use of axioms like Cl1 - Cl3 in & resclu~
tion-haned theorem prover requires a unifioation
procedurs capable of handling funetional varia-
biss. Pistrzykowaki and Jensen) have formulated
at algorithm that gZensrates all unifilis for any
two strings in w-ordesr logie, and Huet® has an al-
goritbm that generates all the unifiera reguired
by his deductively complete w-order syatem of
"constrained resolution®, but since {(am previcusly
indicnted) we ars dealing with & second=order lan-
guage 1%t iw sufficient for our purposes to use an
algorithm devised primarily for first- and second-
order logic. The unifiowmtion algorithm that we
employ is bassd on that for first-order 10'1°T|
but it iptroduces the highsr-order opsrations of
lambda-abatraction, in unifying for exemple P{a,b)
and f,(x.)} under the substitutions x. = &, £, =
Au, .P(u,,b), and lambda-normalisation, in nnlf:ins
for sxasple Au,.P(u,,b}.a and P(x ,x,) under the
substitutions x, = 1. X, = b, In debcribing the
algorithm, we barrov frgn Pletrzykowskl and Jemmsen
the notion of a “progress triples"

{4, B, &Y

vhers A and B are two strings to be unified and
whers < is the set of unifying subatitutions, if
any, 80 far generated. In our usage, 4 and B nesd
not be aingle well-formed-formulme but zay be
stringe of wf{s, m0 any progresss triple <i, B, ¢/
may be writien as

<l1 80 By by, o)

whare a, and b1 ars reapectively the lefimecat wifs
in A nna B and whers s, and bz are respectivaly
the remaining stringme gf wifn in A and B. The
plrﬁathclilation of A apd B follows that of Robin-
son mocording to whioh, for example,

(a + {b . 0a))

i written as
((+0)((.0)}e)}

though, in contrast to the aystem described im his
papar, we retain the lambda-notation. 4ia & pro-
gramming convenisnce we may diasregard any pravi-
cusly unified subsirings of A and 3, so that st
any given atage in the unifipcation 4 and 3} reaprs-
sent the pot-yst-unifisd remaindars of the origi-
Bel A and B. The object of unifiostion ias to re-
duce A and B simultaneously to the null string,

under & set of unifying eubstitutions oo. In the
first-order case thers will be at mont one way of
doing this, represanted by the terminal progress
triple { _s _+o) while in the higher-order case
there will normslly be sevaral, and sometimes in-
finitely many (as in the case where A = £ (F{a)),
B = F(r,{(a)), & $» of type "individual® apd ¢

F are o} type "individual = individual"), avccesa-
ful unifications

<_l 4 H‘1>. --...,<_' ot o,.n'> .

The baaio way of unifying two subobjests e, mnd b1
is to st b, equal to &, where &, im & variabls
(or vioe varsa if b, is a variahla), provided that
a, snd b, agres in iype. In our aystam the varj-
ables x, agres in type with other x, and with ax-
pruloioia denoting program variuhl-i or integers)
ths a, agree with other s, and with expresaions
dcnoting ataten, and the ii agree with other [

and with lambda-funotione.™ The actual algoritiﬂ
iz given below; it is the current vereion of what
we have called "fematching" in esarliar publica-
tions.

To unify twe strings A wnd B, dafine S as the
atring of progress triples ao far genarated, and

set

S alay B,V
where o is null. GOTO START.
Resd in w progreas triple T =i, B, o)

from S.
SUCCEED:

START

GOTO 81. FAIL: GOTO EXIT.
31t If 4 and B are null, T representies & suc-
oeesful unificetion.
SUCCEED: GOTO START. FAIL: GOTO 82,
521 If A and B are hended by oppoeing con-
siantes, T represents an unsuccsasful
unification.
SUCCEED: GOTD START, FAIL: GOTO S3.
83 T a8, By b bz,r>vhore a, and b, are
rispeclivolx %he leftoost wile in A and B
and a, and b, are respectively the (pos-
sibly“null) Pemaining strings of wifs in
A and B, If a, = b1. or if &, = x or
b1 - X, where 1u in & dunmy vsriabfo, set

T '(‘zc bz! >

SUCCEEDy @QOTO S§1. FPAIL: GOTOC 54.
544 I£ T =(f s Ru B b, o>

", &

fora the itriﬂg E? proir-n- g;ipla-

T --<'1‘1 R4y 8oy %po» luj..ﬁ(uj/%) €y bge
<’£1 8y 8y 8500 lua.i(uj/cn) eg Bpe

wheare o, ... 0. ares the diatinct ocour-
rences of wifs (sther_then varisbles bound
DYy A} 4in B and whers B(uJ/’c } results from
E by replacing o, by u,.d Ada T’ to 5.
Switoh a, with b and A, with b, and re-

1 2 2
sxscuts §4,
GOTO S5.

E5 If a, 19 & variable, if s, and b, agres
in t}pu, and if a, doss not ocour in b1o
substitute b, for a, in a, sod by, using

539

lapbda-normalisation whare possible, and

set
T ‘l(lz, bzoo.! By, = h1>
SUCCEED: GOTO S1. FAIL: GOTO 56.
561 Switch a, with b, and s, with b, and re-
g 1 2 2
sxacuts S55.
SUCCEED: GOTO S1. FAILi1 GOTO S7T.
5T If T =<(n,, a,5) 8y by By, 0D

where the head of a 1 in ri. form the
string of progress 1riplol

’

T =<ay, 87 80

Aug g Bo(ug /o)) oy b)

Kaqy 842 S
-

)-un+1.b.| (“n+1/°n} oy by >
where R is the largeat subscript on a 'u’
occurring in b1, By v»e C, OFe the dip-
tinct ocourrences of wffs" (othet than wvar-~

iables bound byA) in b,, and b1(“u+1/°i)
reaults from b, by replacing o, by

] 4" Add T' lo S. Switeh l1 with b1
lﬂt a, with bz and re.sxacute 57.
goro $s,

581 If a, = {(a,, 512) snd b, = (b11 b12), set
T =Cogy by 8y byy Dy By o)

If not, T represants an unsuccesaful
unification.
SUCCEED: GOTO 81.

FAIL: GOTO START.

It aay be noted that thie algorithm is, sxgept for
54 and 57, equivalent tc the uwsusl first-order
upification algorithm.

To give an example, applying the slgorithm to

<(f1x131 &8 . >
¥ioelde the interzediate progress triples
<f1 xys Ay, & _ P
{1, Xe Augem x, Y
and finally the upnifiers
<’_, - f1 alu1.u1; z, = a)

<_, - 1‘1 - 2\11-1 >

By wey of comparison with Pletrzykowski mnd Jen-
ssn, these ars the ssme unifiers thet mnre gener-
ated by their "imitation™ and "projection" rules,
which operate directly on the dimagreeing objacte
to readuce the areas of disngrespent, but our algo-
rithe has no equivalent of their “elimination”
and "iteration™ rules, which cperatea on variables
outside the ares of disagreement. Thus, it will
not handle the triple

< (r1‘)- (f1b)| - >

pince slimination is reguired to produce the
unifier

& v o £ = Augexy >

In the application of second-order logic to pro-
gram synthesis we have so far found no need for an
equivalent of the elimination rule, nor do we need
an iteration rule since by definition this applies
only to languages of order higher than two (see
Pietrzykowski and Jensen8 for the formal defini-
tions of these rules). Huet9 also dispenses with
these latter two rules, but in a way that pre-
serves deductive completenees. Our algorithm is
actually an incomplete one for w-order, rather
than just second-order, logic, the essential re-
striction being that, since the unification of
fj(x.,x,,..,,x) and B proceeds by trying to match
the xi with well-formed pieces of B, B must ac-
tually contain well-formed pieces of the same type
as the xi. Our program has in fact proved some
theorems of order higher than two, such as the
example in section 5 of Pietrzykowski's and Jen-
sen's paper1

The generation of resolvents, like the uni-
fication algorithm, is based on the first-order
prooedure, in that the substitutions generated in
the course of unifying two literals are applied to
the disjunctively connected "remainders" (that is,
literals not being resolved on) of the two clauses
being resolved, the one important difference being
that lambda-normalisation is applied during the
substitution prooess in order to eliminate lambda-
funations from the resolvent wherever possible.
The order of generating resolvente is based on the
"S-L resolution"” method for first-order logic of
Kowalski and Kuehner11, and is essentially a
"depth-first" search strategy with resolution only
on first literals of clauses, but with the aid of
a set of reductive rules that perform algebraic
simplifications or transformations on the clauses
generated. Among the problems solved by our pro-
gram are the construction of SNOBOL programs for
computing the faotorlal function and for iterative
division! the computer printouts are given fol-
lowing the text. By way of explanation, axioms

CL1 - CL3 are equivalent to those given in the
text, but with the order of literals changed and
with some implications expressed in terms of con-

Junction and negation, for more effective appli-
cation of "first-literal resolution" and for en-
suring that the resulting proofs will be linear.
CL4 in each of the examples formulates the prob-
lem) H and N are input variables, and J and K
are output variables. In example 1, CL4 says that
if there is a state S1 in whioh K has the same
value as J | where J has the same value as N (in
other words, if K has the same value as Nt), then
s1 is an answer. In example 2, CL4 says that if
K has the same value as H - (Jn N) where the value
of K is less than that of N (in order wordB, if
HweJ N+ K, K<N) in s1, then s1 is an answer.
Both of these examples were taken from Manna and

Waldinger13. Of the reductive rules exhibited by
the examples, Rule 2 transforms (x+1)! into
(x!).(x+1); Rule 3 transforms x - ((y+1).z)xinto
{x - y.z) - z; Rule04 reduces 0.x, x.O or 0 to
0] Rule 5 reduces x or 01 to 1t Rule 6 reduces
0+x, x+0 or x-0 to x, and Rule 8 is a "frame" rule
that reduces IN(IDERT(x.,x2), e.(s2)) to

IN(IDENT(X1,X2), s1), provided that s2 "does not
affeot" x. or x2. Host of these rules are purely
ad hoo and are chosen with the particular examples
in view; for serious program synthesis one would
need a more systematically organised algebraic
aimplifier. Finally, there is a routine called
"ANSPRIST" that polishes up the answer and prints
it out in the correct SHOBOL line-by-line format,
though it may be noted that the sample programs
are not as "simple" as they could be. Running

540

times for examples of this general type are three
to five minutes on the IBM 360/50 at the QWD in

Bonn. The theorem-proving program, like the pro-
grams generated, is coded in SHOBOL-4* Apart from
line divisions, the output is an exact transcrip-

tion of the computer printouts.
References
1. Luckham, D. C. and Buchanan, J. R. Automatic
Generation of Simple Programs; a Logical
Basis and Implementation. Artificial Intelli-

gence Projeot Report,
1973.

Stanford University,

2. Manna, Z. and Vuillemin, J.
to the theory of computation.

Fixpoint approach
Comm. ACM 15.

526-536, 1972.

3. Hoare, C. A. R. An axiomatio basis for com-
puter programming. Comm. ACM 12, 576-580,
583, 1969.

4. Reference 3, p. 577-

5. Pietrzykowski, T. and Jensen, D. A Complete
Mechanization of w-order Logic. Report
CSRR-2060, University of Waterloo, 1972.

6. Huet, G. P. A Unification Algorithm for
Type Theory. IRIA Laboria, 1973.

7. Robinson, J. A. A machine-oriented logic
based on the resolution principle. Jour.
ACM 12, 23-41, 1965.

6. Reference 5.

9. Huet, G. P. Constrained Resolutioni A Com-
plete Method for Higher Order Logic. Report
1117, Case WeBtern Reserve University, 1972.

10. Reference 5* PP. 30-32.

11. Kowalski, R. and Kuehner, D. Linear resolu-
tion with selection function. Artificial
Intelligence 2. 227-260, 1971 -

12. Robinson, J. A. A note on mechanizing higher-
order logic Machine Intelligence 5. ed.
Meltzer, B. and Michle, D., Edinburgh Univer-
sity Press, 123-153, 1969.

13. Manna, Z. and Waldinger, R. J. Toward auto-

matic program synthesis. Comm. AOM 14«

151-165, 1971.

Example 1. Comatruot & program to compute E such that £ = NI
L1 » (~({AND((IF{(IDENTX1)X2)})81))(~((IN((IDENTXY) (F1X2)))(81(X3 = (F1X1)))))) AXIOM
cL2 » ({IN((IDENTX1)X2)}(S1{ X1 = x2)))} AXIOM

eLY = %i%E%E§¥§ §1§§}§§§§?2)Ef?ﬁfﬁ???fﬁn;1§§§?%cszi g EXITR))(82{{ 3% « 0 + 1 ¢(RULEN)){EXITH})))))
~{{IN
(1N

F10))89
{IDENTIN}O})S1)) AXION
CL4 = Eq((IH%(AHD((IDEHTK)(FhCTORIALJ!)))((IBEﬂTJK)N)))S1))
ANSS1) AXTOM

IDENTJ5)0))$2))

CL5 = i(nln(EIH((IDE]TK)(FACTORIALJS)3;80))(q((IN((IDENTK)(FncTORIAL((+J5]1)})){5081)}))
(RULE5 ((IDENTJ5)E) «B(EXIT5))(S1((J5 = I5 + 1 {RULE5))(EXITS5)})})) FROM CL3 CL4

S((IN EIDEHTK)(FACTORILLO)))Sz
ANS(52

Pl = E*LU1{EIDEKTK)(F&CTDRIALU1)))
F2 » {*LU1((IDENTJIN}T1))
55 = (S1((RULEN ((IDERTIE)N) S{EXITN))(S2({ JN = J§ + 1 1{RULEN))(EXITN))}))

CL6 = (Ann{ IN((IDENTK)(FACTORIALIS)})SC)) (~{ (IN((IDPENTK } ({. (FACTORIALJ5)){(+J5)1)))){(8C81))})
IDERTX)(FACTORIALC)))82
IN IDENTIS)0))52))

ARS(?? (RULES {(IDERTISIN) oS(RXITS})I(S54((J5 « J5 + 1 +(RULES))(EXIT5)))})) FROM RULE2
£L

CLT = (AHD[IK({IDENTK) (FACTORIALIS)) ISC)) (a{ (IN((IDENTK) ({. (PACTORTALIS)) ({+35)1)))){sCS1))))
IH((TDERTK)1))52}

~((IN({ IDENTJ5)0))82))

ARS(52

(RULES (2IDENTJ5}H) 1S(BXITS))(S1((J5 » J5 + 1 1(RULES}){EXIT5)}))}) FROM RULES

cLé

CLE = qfﬁzx IDENTK}1)§S1)E
3 IX {IDENTJS)O)51)
sFs(s1((rRuLES ((IDENTIS)N) «S(EXITS)){(& o ((.KX((+35)ANN(35 = 35 « 1

1 (RULES))}(EXITS)))))) FROM CL1 CL7

X =X
X2 = {FACTORIALJS)
81 = 8C

" oa (I ()
F1 = (=L [} +J
55 « E {{. K)((+:5; ;))

oL = Elﬁéi"éﬁﬁnaxﬁJf’?ﬁgi?ﬁ%nssx '(Z%%%nwasgn; 1SERITH(Ko ((.5)((+I5)1)))
({' 35 = J5 +1 s(ROLES))(EXIT5)})))) FROM CL2 CL®

X1 = K
X2 = 1
BS = (B1(K = 1))

0 P2 s ((ommmas)i). es(EOITS))((K = ((N((33)12))
(E J5 = J5 + 1 -(Runss))(sxstgg)g)) FHOM RULEB CL9

- - - 5 s(EXIP5) (X = ((.x)}({+35)1)))
. (*'?é(‘slg = i? + ?3)(n(R§LE5;g%Exggg??)})§(ID§:0H éf% GL1D(('

1 = J5
X2 = O
85 « (81(J5 = 0))
ANS
a1
JS = D
K=1

ROLES Inxnw(as,ng 13{EXIT5)
KuwgE*® (J5 +1
J5 = J5 + 1 :{RULES)

EXITS

END

541

Exagple 2. Construot a program to compute K euch that M » J.¥ + K, E<¥
CLY = (- {AED(({IN({IDBUTX1}X2))S1)){={(IN((IDENTX3)(FI1X2))})(S1(X3 = {F1X1))))})) AXIOM
CL2 = ((IN((IDERTX1)X2))}(S1{ X1 ~ X2))) AZXIOM

CLY = }EI'(E§:£ ::g:!iég§?gzgig;éé$¥?f:’)1§§§?gcs2;?§?xzrn))(sz((IJN « J¥ + 1 (RULEN))(EXITN)}))))
IK{F10))51
siIl (InzirJl 0})81}} AXIOM
CL4 = Ea((rlg(A!B{(IDEHTK)((-M)((-Jl)l))))((LTK)N)))Sf))
ANSS1) AXIOM

cLs = ((AND({IR((IDEWTR){{-M){{.J5 K)))50))(((xn((IoErE) ((-M)((. ((+35)1))M))))(sc81 1))
S({T({Toemex)} { (-B)}{{.0)H})))
-({IR((1DENPIS)0)})S2)
ARS(S2((RULES ({LTE)E) +S(EXIT5))}(S1{(J5 « 35 + 1 s{(RULE5)){EXIT5)))))) FROM CL3 CL4

Flow iﬁLU1é Innurxg((-n)((.u1)n))))
¥2 = (*LUt{(LTR)U1
85 - (8V((RULER ({LTK)N) :S{EXITH))(52((JN = JK + 1 +(RULEN)){EXITN)})}))

cLé = ({a¥D(In(trnmnwx)(;-n)((JS}H)JR}SCDJ(~{(xx({1pEwTE) ({~({-n}((.35)¥))}N))){8c81})))
+{ (TA({{ IDERTK) { (-} (
+((I¥ Innumasjo

ARS(s2{(RULES er ¥y aS{EXIT5)){81{{ J5 = J5 + 1t «{RULES}}{EXITS}})}}) FROM RULES CL5

CL7 = {(AND(IN((IDENTK)(g-H ((-95)533)38¢)) {+((x((XOERTE) ((-~ ((-M){{.55)%)))H}}) (5C34))))
ﬂiEIl ?IDENTK)((-H §2))
-

IDEWPI5)0))52
A¥3{s2((ROLES wa o aS(EXITS))(S4({ J5 = 35 « 1 (RULES))(EXITS)))))) T¥ROM RULE4 CLé

cLe = ((aND(Il((IDElTI’((-M)((-35)8))))8¢)) (4((¥ ({IDENTK) ((-((-¥)}((.T5)%}))®)}) (sC81) }))
1 In %rnsnwx)u §2))

. Ix IDERTJIS)C) J82)
AN3(52((RULES (LTE)N)} sS{EXITS))(S1{(({ JI5 = J5 + 1 :(RULES))(EXITS))}))) FROM RUL®S CLY}

€Ly = (o IDENTE)M})S1)
g % EZIDEITJS)O;)S13;
A¥5{s1{(rULES ((LTK SEXITS{(K = ((-K)$){(J5 = 35 + 1 +(RULES)){EXITS))))

FRDH CL1 CL8
11 - K
12 2 (H(35I0)
S1 =
By ((-01)8))
F1 = (#LU1({=
I LI

CL10 » (4((IN((IDENTIS)O}}{S1(K =« HM)))
ARS((B1{ X « M}Y((RULES ((LTEON) sS(EXITS)I({ K = ({«E)E))((J5 « J5 + 1
1(RULE5) }(EXIT5)}}}}) FROM CL2 CL9
X1 =X
X2 = M
85 = (81(X = M)

HALI E,((Iu((rnnnwas)o}
Ansi LuM
RULES)) (EXITS

CL12 - (;us}((s1(J5 =0} X = u})((annzs ((LPE)M) AS{EXITS)I({ K = {(-E)N))
{ J5 = J5 + 1 1(RULES)J(EXIT5)))))) FROM CLZ CL11

Xt = J% X2« 85« {51 J9=0}}

iggggnns (L)) oS(EXIT)M(K = ((E)MM(J5 « J5 + 1
})) = FROM RULES CL10

ANE
81
J5 =0
K=NM
RULES LT{K,W) 15(EXITS)
E-K-=-1X
J5 = J5 + 1 :(RULRES)

EXITS
¥FD

542

