Session 22 General Problem Solving

POPS: AN APPLICATION OF HEURISTIC SEARCH METHODS TO THE PROCESSINC
OF A NONDETERMINISTIC PROGRAMMING LANGUAGE

by

Gregory Dean Gibbons

Naval Postgraduate School

Monterey,

Abstract

POPS ts a processor for a simple nondeterministic
programming language, PSL. POPS accepts a problem
stated in PSL and attempts to solve it by finding a suc-
cessful execution of the PSL program, POPS operates by
identifying elements of the input program with elements
of the heuristic search paradigm, analyzing the input
program to obtain information about the problem opera-
tors, and applying methods borrowed from GPS to solve
the problem. In addition to the goal-directed methods
based on GPS, POPS contains the methods developed by
Fikes in his program REF-ARF.

Key words: Problem solving. Heuristic search,
Nondeterministic programming language.

Background

Nondetermlnistic Algorithms

Robert Floyd (Floyd, 1967) suggested that a com-
piler for a nondeterministic programming language (NDPI.)
could be used as a problem solver. His NDPL was ob-
tained by adding to Algol the function CHOICE (N) and
two special labels for exits, SUCCESS and FAILURE.
The value of CHOICE(N) is an unspecified Integer be-
tween 1 and N. Only executions that terminate with a
SUCCESS exit are considered to be computations of the
algorithm. The programmer may impose constraints on
the values of the program variables by inserting, for
example, IF statements that direct the flow of control
to a FAILURE exit unless the constraints are satisfied.
In this way the programmer specifies what constitutes a
solution to his problem.

The proposed problem solver would operate as a
compiler by translating a nondetermlnistic program into
a deterministic one and executing the resulting program.
The deterministic program is so constructed as to simu-
late the input program by enumerating the possible com-
binations of values of the CHOICE function.

Floyd illustrated his proposal with a complete
statement, translation, and solution of a sophisticated
representation of the Eight Queens problem. This ex-
ample shows clearly that programming a problem in his
nondetermlnistic language is much easier than program-
ming the corresponding search in a conventional
language. However, it is also clear that the solution is
obtained by a blind generate and test search. Thus, un-
sophisticated representations of problems having large
search sp.aces would result In unacceptably long

389

California

execution times.

Interpretation of Nondetermlnistic Programs

Nondeterministic programs are convenient for stat-
ing problems because they leave unspecified the order in
which some alternatives are to be considered. Conse-
quently, the process that interprets a nondeterministic
program must determine for itself which alternative to
consider at a given time.

A processor for a language containing a CHOICE
function must select values for the function. If the
language contains a nondeterministic branch instruc-
tion, or if the particular program's flow of control de-
pends on the value of a CHOICE function, the proces-
sor must select possible control paths as well. A
problem represented by a nondeterministic program is,
therefore, a search problem In the space of possible
combinations of values of the CHOICE function and pos-
sible control paths through the program.

Nondeterministic programs fall into two categories:
those in which the flow of control is deterministic, and
those in which it is not. In the former case, the pro-
cessor may be required to select values for the program
variables so that certain constraints are satisfied. If
this selection is made symbolically, the processor can
execute the program until and END statement ts en-
countered, at which time the symbolic selections must
be replaced by actual values. Such problems are refer-
red to as constraint satisfaction problems. Fikes's pro-
gram REr-ARF solves a class of constraint satisfaction
problems of considerable difficulty.

To execute a program having nondetermlnistic con-
flow, a processor must select the control path it will
follow, as well as the values for the program variables.
The problems represented by programs inthe second cate-
gory are heuristic search (HS) problems.

REF-ARF

Richard Fikes (Ftkes, 1968, 1970) implemented a
problem solving system, REF-ARF, based on Floyd's
suggestion, but containing much improved" solution
methods. Tikes represents nondeterministic values sym-
bolically by creating internal variables. Constraints are
represented as formulas involving these variables. This
representation allows the use of algebraic simplification
methods to reduce the size of the space to be searched.
Fikes's most powerful solution method consists of al-
ternating value instantiation and algebraic simplifica-
tion, effectively reducing large spaces to anything from
a few to a few hundred nodes. This method enables
REF-ARF to solve some constraint satisfaction problems
that would not only swamp a system designed along the

lines suggested by Floyd, but would prove very difficult
for humans to solve as well.

P.EF-ARF will accept HS problems, but is essential-
ly limited to a generate and test algorithm in its search
for an executable path through the program. HS prob-
lems can induce REF-ARF to expend thousands of times
more effort than is Intrinsically required by the problem.
For example, tf the Missionaries and Cannibals pro-
blem Is represented by a program with a single loop rep-
resenting a crossing of the river, and the loading of the
boat is selected nondetermintstically, then each path
through the program will represent a constraint satis-
faction problem having two selections for each crossing
of the river. Ref2, an early version of POPS which used
the same search mechanism as REF-ABF, was presented
with such a program. Calculation showed that the solu-
tion would have required over 32 hours of 360/67 time.

POPS

POPS (Procedure Oriented Problem Solver) extends
Fikes's work by including the successful methods of
REF-ARF in a system designed to solve heuristic search
problems. POPS was written in Lisp 1.5 and run on the
360/67 computer at the Naval Postgraduate School using
the Waterloo Lisp Interpreter (Bolce, 1967).

The Problem Statement Language. PSL

PSL is a simple algebraic language, similar to
Fikes's language, REF. PSL contains a nondetermin-
istic choice function SELECT(A), whose value is some
element of the named range A. The user may impose
constraints on the values of the program variables by
using the statement cONDTCION(B), which means that at
the time the statement is executed the boolean expres-
sion B must be satisfied. PSL also contains a nonde-
termintstic branch Instruction, GOTOL (LI,1,2 Ln).
GOTOL is essentially a computed GO TO with the index
unspecified.

An Approach to Heuristic Search Problems: GPS

REF-APF's considerable success with constraint
satisfaction problems is due largely to algebraic simpli-
fication methods which allow it to reduce its search
space without eliminating valid solutions. Unfortunate-
ly, there is no similar way of reducing the space of pos-
sible execution paths when a program's flow of control
is nondeterministic. The alternative is to provide some
mechanism whereby the processor can make informed
decisions in its search for a successful control path.
The GPS work of Newell and others (Newell, Simon, and
Shaw, 1963; Ernst and Newell, 1969) provides such a
mechanism, namely, the selection of operators on the
basis of their apparent usefulness In the current
situation.

A problem statement for GPS contains a set of ob-
jects which are transformable by a given set of opera-
tors. A problem takes the form: given an Initial object
X., find a sequence of operators q such that the predi-
cate P is true of the object q(XJ. GPS attempts to trans-
form the initial object into a desired object by matching
the initial object to the desired object (or to the pro-
perties of a desired object) in order to obtain a dif-
ference; GPS then attempts to reduce the difference by

590

applying an operator to the object. The operator is selec-
ted by means of a table of connections which indicates
the relevance of the operators to the various differences.

The POPS Program

POPS solves heuristic search problems by applying
GPS techniques to the interpretation of PSL. Lke GPS,
POPS operates by transforming an initial object into a
desired object by the application of operators.

The task environment of POPS. In the task environ-
ment of POPS, an object is a path from the beginning to
the end of a PSL program. If the entry and exit points of
the program are given labels, and tf every point in the
program at which control paths join is labelled, then
every execution path corresponds to a string of labels.
The set of such strings of labels can be given by a
grammar.

POPS obtains a suitable grammar by identifying all
simple closed paths in the program and all simple paths
from the beginning to the end of the program. For ex-
ample, the program whose flowchart appears in Figure 1
has possible execution paths given by the following
grammar:

S -
A-A MIfl |

BEGIN A EXIT

AM2 A | JA Mn A

Thus, solving a problem stated as a PSL program can be
considered as searching in the space of strings of labels.
The initial object is (BEGIN A EXIT), and each subse-
quent object results from applying one of the rules of the
grammar for the program to a previously generated object.

The final object is a string of labels representing a
path through the program such that If the path were ex-
ecuted, all the constraints would be satlsfiable. Clear-
ly not all grammatically legal paths have this property.
Thus, the search process must select the rules to apply
at each point, and verify that at each point in the path
the current constraints can be satisfied. Such a path
will be referred to as a legal path.

Because applying a rule of the grammar to a string
can result In an illegal path, the process of applying an
operator in the original problem is represented by apply-
ing a rule of grammar and then executing the PSL program
along the control path represented by the resulting
string. If this execution results in the creation of an
unsatlsfiable constraint, then the operator represented
by rule does not apply to the object represented by the
previous string of labels.

Description of operators. POPS uses a technique
similar to that of GPS to make rational selections of
operators. In place of a table of connections, POPS
uses a description of the effects of the problem opera-
tors. To obtain these descriptions, POPS executes each
operator in isolation, i.e., with no assumptions about
the effects of any prior operators. By examining the
assignments and the constraints so generated, POPS
constructs a simple description of the operator's effects.
Presently, this description consists of 1) a list of the
program variables that are used before they are assigned,
2) a list of program variables that are changed, 3) the

set of constraints that must be satisfied before the
operator may be applied, and 4) the size of the operator,
as measured by the number of symbols in the data struc-
ture generated by the trial execution of the operator.
While the current set of descriptors is minimal. it Is
sufficient to guide POPS directly to the solutions of
several simple heuristic search problems, as will be
seen. More sophisticated analysis of operators would
facilitate more intelligent selection of operators by the
problem solver, and should enable it to solve more sub-
stantial problems.

Differences. Since any complete executable path
is an acceptable final object, the match is accomplished
by attempting to execute the path represented by the ob-
ject. If a path is not executable, it is because at some
point in the execution of the path, the processor en-
counters a constraint that cannot be satisfied. The pro-
cessor then returns a triple (L, R, D), where L is the
portion of the path that can be executed, R is the re-
mainder of the path, and D is the unsatisfiable con-
straint, together with a description of what changes to
the program variables must be made in order to satisfy
the constraint. This description is the POPS version of
the GPS difference.

Selection of operators. To select an operator,
POPS compares the difference with the descriptions of
the available operators, and selects the operator that
appears most promising. Currently, POPS selects the
operator that changes the most program variables need-
ing change. In case of a tie, it selects the operator
that changes the fewest variables having acceptable
values. Finally, if there is sttll more than one candi-
date operator, POPS selects the smallest one.

Example. Consider, for example, the Msnkey pro-
blem, given in Figure 2. The grammar for the PSL pro-
gram is:

S - BEGIN A GET_BANANAS

A - A WALKA (A CARRY A | A CLIMB A

The initial object is (BEGIN A GET_BANANAS). If this
path is executed, a contradiction will be found after
passing A, because the necessary conditions for exit-
ing the program have not been met — the monkey doesn't
have the bananas. The goal then becomes that of mak-
ing the offending constraint TRUE. This requires
changing the values of M(l), M(2) and B(l). Since
WALK changes M{1), CARRY changes M(l) and B(l),
and CLIMB changes M(2), it is reasonable to guess
that rule A - A CARRY A should be applied. The pro-
posed path then becomes:

(BEGIN A CARRY A GET_BANANAS).

When execution of this path is attempted, however, a
contradiction is encountered at CARRY: the monkey
cannot carry the box unless he is located where the box
is, i.e., M(l) = B(l). The subgoal then becomes:
make M(l) = B(l) true. Both WALK and CARRY change
M(I), but CARRY does other things as well, so

A - A WALK A is the move to try. The proposed path is
then:

(BEGIN A WALK A CARRY A GET_BANANAS).
Execution of this path proceeds into GET_BANANAS

591

before finding a false constraint. This one is: M(2)=box,
representing that the monkey must be on the box. The
correct move is A - A CLIMB A. The path becomes:

(BEGIN A WALK A CARRY A CLIMB A GET_BANANAS).

Since this path can be successfully executed, the solu-
tion has been found.

Redundancy Tests

POPS employs tests to prevent two types of redun-
dancy in its search for a complete executable path. A
newly generated path is redundant if it is either identi-
cal with or equivalent to a previously generated path.
Equivalent paths can be generated, for instance, if there
are two operators g; and g, such that cTJd* ™A 929]
achieve the same effect. Identical paths can be gen-
ated as follows:

(AC A)-AA
Here the two operators A -« ABAand A -- A C A have
been used to expand (A) to generate (ABACA) in two
different ways.

POPS tests newly generated paths for equivalence
to previous paths by comparing the state of the program
variables resulting from the execution of the new path
with the results of executing previously generated paths.
This comparison can be rather expensive if the variable
values are formulas; however, the comparison is essen-
tial to limit search.

POPS automatically avoids the generation of identi-
cal paths by restricting the selection of operators ac-
cording to a rule known as the O-size rule. Each opera-
tor Q Is assigned a unique size, denoted |QJ. The
O-size rule provides that an operator Q may be consider-
ed for application to a path P = (L, R, G) only if
[0 < QR and \Q\ < QL, where QL is the size of
the last operator used to‘generate L and OR is the size
of the next operator in R. Intuitively, one may consider
the size of an operator to be its difficulty. The Q-size
rule then predicates that POPS will consider applying
an operator to an object only if the operator is easier
than its immediate supergoal and no more difficult than
the previous goal.

The Importance of the Q-size rule is that it prevents
the catastrophic proliferation of identical nodes in the
program's search space. Without such a test, the num-
ber of redundant nodes can grow as fast as N! , where
N is the number of operators applied to generate a single
node. The redundancy could be eliminated by means of
a direct comparison with previous nodes; indeed, this
Is the usual practice. However, the number of compari-
sons required grows exponentially with N. In contrast,
the cost of the Q-slze rule is only two comparisons per
node generated. These assertions about the Q-size
rule are proved elsewhere (Gibbons, 1972).

POPS flowcharts. The flowcharts for the major prob-
lem solving processes in POPS are given in Figure 3.
POPS itself is an executive routine that analyzes the PSL
program to obtain the grammar and operator descriptions,
and then enumerates the simple paths through the PSL

program until one is found that can be converted into a
legal path. The other programs, TRANSFORM, FIXPATH
and APPLY are similar to the GPS methods TRANSFORM ,
REDUCE, and APPLY, respectively, as given in Newell
and Simon (1963). In FIXPATH, the list of operators is
filtered by the Q-size Pule before an operator is selec-
ted. The operation "assign If appropriate" selects
actual values for nondeterministic expressions under
certain circumstances. Issues surrounding this assign-
ment will be discussed in the following section.

Performance of Pops

The performance of POPS can be easily evaluated
by means of a comparison with the performance of Ref2
on the same problem. Ref2 is the immediate predeces-
sor of POPS, and contains the same basic machinery in-
cluding formula manipulation processes, data repre-
sentation, and constraint satisfaction methods. The
design of Ref2 is sufficiently similar to that of REF-ART,
except in its data representation, that comments about
the performance of Ref2 apply equally well to REF-ARr.
The performances of Ref2 and POPS on the problems dis-
cussed are summarized in Figure 9.

The GPS-like control structure of POPS and the
basic control of search provided by the Q-size rule and
the redundancy test, provide a skeleton of a problem-
solver. The sources of problem solving power in POPS
are the processes that analyze the PSL program to get
a description of the operators, select the operator to
apply during FIXPATH, and decide whether to assign
values to variables during FIXPATH, and if so, what
values to assign. The performance of POPS depends
directly on the adequacy of these description and com-
parison processes. These processes are rather rudi-
mentary at present, yet they suffice to guide POPS to
the solution of some simple US problems that REF-ARF
and Ref2 were unable to solve with reasonable effort.

The Missionaries and Cannibals Problem

is unable to solve the Missionaries and Can-
nibals problem as stated in Figure 4. The problem
statement contains only one operator. Executing the
operator requires that two selections be made from a
range of three possible values. Ref2 approaches this
program by executing directly to the end, where it en-
counters a constraint satisfaction problem. If it finds
no solution to the constraint satisfaction problem,
Ref2 attempts an alternate path to the end. Since the
solution of the problem requires eleven crossings of
the river, and each crossing is accomplished by one
execution of the loop in the program, the first ten con-
straint satisfaction problems will have no solution.
Since each crossing of the river generates two addi-
tional variables, we may estimate the size of the nth
constraint satisfaction problem to be K", where K is
the average number of possible selections generated
by one crossing of the river.

Ref2

On being given this program, Ref2 ran out of time
at eight minutes, having failed to complete the search
on the fifth constraint satisfaction problem. If we as-
sume K = 3, then the total space Ref2 would search
through the fifth constraint problem would contain about
540 nodes, so that the search rate established by Ref2

is roughly 540 nodes per eight minutes. Under these
assumptions, the total space to be searched by Ref2 up
through the tenth crossing of the river is roughly
133,000 nodes. In short, Kef2 would start on the final
crossing of the river after computing for something in
excess of 32 hours on the problem.

Whether the above estimate is accurate is immateri-
al; the point of consequence here is that delaying the
determination of actual values for the nondeterministic
selections causes Ref2 to expend a tremendous amount
of time on redundant search. The space of the Mission-
ary problem is actually remarkably small - only sixteen
distinct legal configurations can be reached from the
initial node.

In contrast to Ref2's estimated time of 32 hours,
POPS solves the Missionary problem in somewhat less
than six minutes. The search conducted by POPS is
shown in Figure 5. This success is based on a method
of assigning actual values to nondeterministic selec-
tions before the end of the program has been reached.

When to assign actual values. An assignment is
made only if failing to do so would deepen the space of
the constraint satisfaction problem at the end of the
program. For instance, if an operator contains an as-
signment such as X = X + SELECT (A), and the current
value of X is already SELECT (A), then the eventual con-
straint satisfaction problem would contain variables
representing both selections. If the range A contains
N elements, the number of possible selections would be
NA, but the number of distinct values of X could be as
small as 2N. Before applying the operator in such a
case, POPS chooses an actual value for the first selec-
tion. Then after the operator is applied, the value of X
still depends on only one SELECT operator. Conse-
quently, In the Missionary problem, each of the con-
straint satisfaction problems encountered at the end of
the program has only two variables, and the constraint
satisfaction problem space searched by POPS in the
first ten crossings contains roughly 30 nodes.

Selection of actual values to assign. In choosing
an actual value, POPS attempts to find the value that is
most likely to be helpful in solving the problem. For
example, in the Missionary Problem, where the selec-
tions determine the number of missionaries and the num-
ber of cannibals to place in the boat for a crossing of
the river, POPS makes selections that maximize the
number of persons being transported to the right side of
river and minimize the number being transported to the
left side of the river. The sense of direction this gives
the search can be seen in Figure 5.

When POPS selects an operator, it is attempting to
find one that will modify the current state of the program
in a direction that will tend to satisfy some currently
unsatisfied constraint. This constraint is also used to
guide the selection of actual values. For example, in
the Missionary problem, the constraint on the exit
branch of the program says, among other things, that
the number of missionaries on the right side of the river,
MR, should be 3. Suppose the current value of MR is
SELECT (A), where A = {0, 1, 2}. Then the first choice
POPS will make for the value of this selection is 2,
since that choice minimizes the difference between the

current and desired values of MR. If the current value
of MR were -SELECT(A), then the first choice would be
0, for the same reason.

The Monkey Problem

The Monkey problem has been formulated in three
different ways. The performance of POPS on these three
problem statements illustrates its dependence on the in-
formation it can derive from the PSL program. Briefly,
one version contains sufficient information that POPS
makes no wrong decisions in the solution process. The
other two formulations require some search. Flow-
charts for these formulations are shown in Figure 6.

MB4 .and MB2. The first version of the Monkey
problem will be referred to as MB4, because the con-
straint on the exit branch of the program specifies what
the values of each of the four variables in the program
must be. The second version will be called MB2, be-
cause it is identical to MB4 except that the constraint
on the exit branch of the program specifies the values
of only two variables. MB4 requires the monkey to be
on the box under the bananas end the box to be on the
floor under the bananas. MB2 requires only that the
monkey be on the box under the bananas, and says
nothing about the box. Of course, because of the struc-
ture of the problem, the box must be under the bananas
and on the floor in order for the monkey to be on the box
under the bananas, so that any solution of MB2 is a
solution of MB4.

POPS does not recognize the necessity of moving
the box in MB2 until it fails to solve the problem with-
out moving the box. Thus, POPS obtains less guidance
from the constraints in MB2 than it does from the con-
straints in MB4; as a result, while POPS goes directly
to a solution in MB4, it is forced to perform some search
in MB2. The executions of MB4 and MB2 by POPS are
shown in Figure 7.

Because M B4 and MB2 are identical except for the
constraint on the exit branch, and because Ref2 gets
no direction from the constraints, Ref2 carries out the
same search on MB4 as it does on MB2. Thus, be-
cause of its ability to use constraints to guide the
selection of operators, POPS not only searches a smal-
ler space than Ref2 on MB2, but is also able to make
use of the additional Information in MB4 to reduce the
search further.

MBF. The third version of the Monkey problem that
POPS has run, called MBF, is a translation of Fikes's
statement of the problem for BEF-ARF. MBT was con-
sidered in order to get a direct comparison of Ref2 and
POPS with REF-ARF, since Fikes does not report running
problems stated like MB2 and MB4. The search carried
out by REF-ARF on MBF generated 28 nodes.

The chief difference between MBF and MB4 is that
the control structure in MBF carries some information of
potential value to the problem solver, whereas MB4 is

*In fact, Ref2 runs one second faster on MB2 than
on MB4; the reason is that the shorter constraint in
MB2 takes less time to evaluate.

593

in strictly HS form. Ref2 performs considerably better
on MBF than on MB4. POPS, however, finds a solution
for MBF after applying only one operator, generating a
space of only two nodes.

Robot and Two Boxes Tasks*

This is a sequence of simple robot tasks with a
single initial situation. In the initial situation, there
is a room, and A, B, O, and D are locations within it.
The robot is at location A, and two boxes, B1 and B2,
are at location B. The following actions are available
to the robot: it can walk to any location in the room; if
the robot and box B2 are at the same location as box B,
the robot can stack B2 on top of Bl; and if the robot is
at the same location as Bl , the robot can push Bl to any
location in the room. Thus, the only way the robot can
move B2 to another location is by stacking it on Bl and
pushing B1. Also, the robot must know whether B2 has
been moved or not.

There are five tasks in the sequence. They are;

The null task

Move the robot to location C

Move Box Bl to location C

Move Box B2 to location C

Move Box 82 to location C and Box BI to
location B

aReON

These tasks were intended to be of gradually increasing
complexity so that some indication of the effect of in-
creasing complexity on the performance of POPS could be
obtained. This sequence of problems was also given to
Ref2 for comparison purposes.

POPS executions of the robot problems. The null
task, problem1, is included in order to determine the
cost of initialization; POPS spends 9.9 seconds solving
this problem. There is no search. The second task re-
quires one operator, WALK. POPS finds and appllestbis
operator in 2,5 seconds. Problem 3, move box Bl to C,
is also simple, because the robot can push the box.
The solution requires two steps, however- POPS first
attempts to apply the operator that pushes B1. Before
that operator can be applied, however, it is necessary
to apply WALK, to get the robot to the same location as
Bl. POPS selects and applies these two operators in
6.9 seconds, or 3.45 seconds per subgoal. To move
Box B2 to C {problem 3), it is necessary to push Bl over
to B2, stack B2 on BI, and then push them both to C,
requiring a total of four operators and taking POPS 17,8
seconds plus initialization, or 4.45 seconds per subgoal.
In the fifth problem, POPS must move B2 to O as in pro-
blem 4 and then unstack B2 from Bl and push Bl to loca-
tion B. After stacking B2 on Bl and pushing them to
location C, POPS erroneously selects WALK Instead of
attempting to push B1, thereby generating seven sub-
goals Instead of the necessary six, for a cost of 35.1
seconds, or 5 seconds per subgoal.

Figure 8 shows the search POPS conducted on these
problems. The performance of POPS on these problems

*These problems were suggested by a similar set of
tasks given by Raphael (1971). Raphael uses these
tasks to illustrate the frame problem.

is summarized in Figure 9.

Ref2 executions of the robot problems. Because
Ref2 performs essentially no preliminary analysis of a
PSL program, it can do the null robot task faster than
POPS. On the more complex task, however, Ref2 be-
comes less effective than POPS. This is to be expected
in problems where POPS is able to derive some guidance
from the problem statement. See Figure 9.

Conclusion

The mafor accomplishment of POPS is the applica-
tion of goal directed methods to the execution of non-
deterministic programs. The analysis of the effects of
operators and the selection of operators on the basis of.
a match between the current situation and the desired
situation allows POPS to display a sense of direction
in its search, and not rely merely on generate and test
search, as other processors for nondeterministic lan-
guages do. POPS contains discrete processes for de-
scribing operators, describing goals, selecting opera-
tors, and selecting values to assign. These processes
may be improved almost independently of each other,
and without modification of the basic system. Con-
sequently, the design will support substantial improve-
ment in problem solving ability.

Bibliography

1. Bolce, J.F., "LISP/360, A Description of the Uni-
versity of Waterloo LISP 1.5 Interpreter for the
IBM System/360," Computing Centre University
of Waterloo, Waterloo, Ontario, Canada, 1967.

2. Ernst, George W. and Newell, Allen, GPS: A Case
Study in Generality and Problem Solving, Academ-
ic Press, N. Y., 19609.

3. Feigenbaum, E. and |I. Feldman (eds.), Computers
and Thought, McGraw-Hill, 1963.

4. Fikes, Richard Earl, A Heuristic Program for Solying
Problems Stated as,Nondeterministic Procedures,
Doctoral thesis, Carnegie-Mellon University,
1968.

5. Fikes, Richard Earl, REF-ARF: A System for Solving
Problems Stated as Procedures, J. Art. Intel.
1 (1) 1970.

6. Floyd, Robert, "Nondeterministic Algorithms, "
J. ACM 14 (4) 1967.

7. Gibbons, G, D., Beyond REF-ARF: Toward an In-
telligent Processor for a Nondeterministic Pro-
gramming Language, Doctoral Thesis, Carnegie-
Mellon University, 1972.

8. Newell, A. and Simon, H. A.,"GPS, A Program that
Simulates Human Thought," in Feigenbaum and
Feldman, 1963.

9. Raphael, B., "The Frame Problem in Problem-Solving
Systems," in Artificial Intelligence and Heuristic
Programming,, Edinburgh University Press, 197].

594

= wh EXIT
/r,___

Figure 1.

In a room 15 & monkey, &4 box, and some bananas hanging from
the ceiling. The moonkey wants to eat the bananas, but he
cannot reach them unless he i{g standing on the box when it
i sltting under che bananas, How can the monkey get the
bananas?

Figure Za. English Statement of the Monkey Problem

Begin

BPut monkey on the floor at X1,
box on the [loor at X2,

A = {XI1, X2, under bananas)

B = {floor, box}

M{1) =unlkcr banana®

M (2} =box GET_BANANAS

M(L}=B 1}
M (2)=lloor
H(2) =floor, M(1)=n(l1}

CARRY

‘I‘A L K
M (1} +SELECT (4)

M) +SELECT
B() <M (1}

M {2)+SELECT{B)

Figure ?b, Flowchart Statement of the Monkey Problem

The English statement of the problem is tmken from Fikes (1968},
In the flowchart, each time the program arrives ac A it may
choose any branch, Set A contains the locations on the floor
of the cage, and ser B is the set of vertical locations {on

the floor and on the box,}

595

inicialize P= npext initial path

FATLURE SUCCESS

TRANFORM (P}

FIXPATH(p) <P=(L,R,5)>

Ser up
difference

Asgipn 11
ppropriate

FAILURE

SUCCESS

p’ Redundant?_;D

=T

FAILURE FALLURE SUCCESS

SUCCESS

Figure 3 POPS Control Structure

596

Miasionaries and Cannibals Problem

y
Start with three migsionaries,

three cannibals, and a boat on
the left side of the river,

r
Ave all missionaries an

cannibals on the right = —=p oxil
side of the river? _‘J *

NO
4

frﬁelcct A = the number of missionarics h
to cross the Yiver

B = the number of cannibals to
cross the river

Assure that 0 <A+E <2,
Transfer the boat, A missionaries and

B cannibals te the other side
of the river,
Agsure that no missionaries are ‘)

Figure &4,

597

MMM (0}
et
B
MMM e (1)
cis ‘
MMM Ic (2)
B CC
MM ‘(;cc (3)
Mml e (4)
C
B \
cC (5) MMM (6}
‘ B clccn
Redundant
=13}
(7 MMM gy
MM ce cch l c S
CB
Redundant
(=4}
93y
M [E MM {(am
CJCCB ccycr
Redundant
{=#6)
{12}
coe| MMM
MY | M (113 <
cce' ¢
Redundant
(=f8) (13}
C] M
CCE
M {14)
cBlce
MMM (15)
cce
Figure 5 FOPS execution of the B
Mi
sslonary Problem Solution

5 min., 55 sec.

MBF

> * Get bananas

Gl G €l

"')

Get bananas

Figure 6. Flowcharts of Thres Versions of the Monkey Problem.

MBF {s the version Fikes programmed for REF-ARF, MBZ and MBa
differ in the condition P on the egit branch: MB4 requires
the monkey to be on the box and under the bananas, and the
bex to be on the floor under the banapas, MB? requires only
that the monkey be on the box and under the bananas, In all
three versions the monkey must le on the floor to be able to
walk, and muat be where the box 1m to be able to climb or
puah the bax,

”/MBZ;,/;I_\
2]NG]:'IEG B
3

I1WWG INCLG IWCG

OUNDANT _"}
& :
7 10

I WCLWE I Wwel CLG IWCCLEG

REDUNDANT REDUNRANT SUCCESS
32.4 Beconds

_I
__E

MB4: IG

IWCCLG
SUCCESS
21.8 Seconds

1

HEF: IWCh G
2

IWCCL G
SUCCESS
14,5 Seconds

Flgure 7. Spaces Searched by POFS on the Three Versiond
of the Monkey Problem,

Each node {n & path through the PSL program, indicated by
sbbreviatfons for the labels on the path. The abbrevistiona
are: I (initializa), W (walk), C (carry, or push), CL (climb},
G (get bananas), POPS chtains sufficient gutdance from the
constraint in MB4 and the control structure of the PSL program
in MBF to go directly to the solution, In MB2, POPS does not
attempt to move the box uutil node 8, because I:he box i# not
mentioned in the conatraint that is used to guide the search.

599

Robot Task

Initielize

Task 1:

10

10

pow Task 2: — Task 3: ..I,.(L
ESS I W O I P 0
9.8 seconds SUCCESS
12.4 geconds A W RO
SUCCESS
16.7 seconds
Tagk 4; 10 Task 5¢ I O
e
P O I PU O
—1——Tm-_ —
I P PU O I P PU ©
I W P PO O Lk B0
LWESPUO IWP S PL0
SUCCESS

27.7 seconds

Figure B.

I1WPSPUWDOD I WP SFUP

REJECT = NO CHANGE

[+

INPSHEUSPD

SUCCESS
45.0 Seconds

Flowchart and Search Spaces Generated by POPS on the Sequence of Robot Tesks,

In the flowchart, the tesk is imposed by the condition P on the exit bremch., The robot may walk to any pint in
the room, stack box B2 on kox Bl or remove B2 Irom Bl if both boxes and the robot are at the same location in the
room, or push box Bl to any locstion in the room 1f the robot and Bl are at the same locatipn, If the robot
pushesa Bl while B2 ia stacked on Bl, than the location of BZ must be updated. The nodes in the search spaces are
pathe through the flowchart. The abbreviations are: I (initialize), W {walk), S (stack or uustack}, P (push},
PU (push and update B2), and O {out),

POPS Ref2
Nodes Time Sec/Node Total Time Time {sec}
with {without) set up time with (without) setup
HMR4 7.26 (5.9 21.8 (15.9) 22,0 sec
HB2 9 3.6 (2.9) 32.4 (26.5) ?B.0 sec
MBF 14.6 (7.6) 14.6 (7.86) 11.7 sec
MISSIONARY 15 23.7 (22.7) 355 (341) Unknown
RZB1 a 2.9 {0} 2.9 sec
R2B2 1 12.4 (2.5) 12.4 (2.5} 7.7 sec
R2B3 2 8.4 (3.45) 16.8 (6.9) 16.9 sec
R2B4 -3 6.93 (4,45) 27.7 (17.8) 34.7 sec
R285 7 5.43 (5.01) 45.0 (35.1) 54.5 sec

Figure 8,

th
R2B1i 18 the i Robot and Two Boxes task,

the problem.

inte a HS problem statement and obtuining a description of the detours.

800

Performance of POPS and Ref2 on Selected Problems.

The times given for Ref2 include the small time Ref2 apends setting up
The setup time in the figures for POPE refers to the iime POPS spends translating the PSL program

