
Session 22 General Problem Solving
POPS: AN APPLICATION OF HEURISTIC SEARCH METHODS TO THE PROCESSINC

OF A NONDETERMINISTIC PROGRAMMING LANGUAGE

by

Gregory Dean Gibbons

Naval Postgraduate School
Monterey, Cal i forn ia

Abstract

POPS ts a processor for a simple nondeterminist ic
programming language, PSL. POPS accepts a problem
stated in PSL and attempts to solve it by f inding a suc
cessfu l execut ion of the PSL program, POPS operates by
ident i fy ing elements of the input program wi th elements
of the heur is t ic search paradigm, analyzing the input
program to obta in informat ion about the problem opera
t o r s , and apply ing methods borrowed from GPS to solve
the problem. In addi t ion to the goal-directed methods
based on GPS, POPS contains the methods developed by
Fikes in h is program REF-ARF.

Key words: Problem so l v i ng . Heur is t ic search,
Nondetermlnis t ic programming language.

Background

Nondetermlnis t ic Algorithms

Robert Floyd (Floyd, 1967) suggested that a com
pi ler for a nondetermlnist ic programming language (NDPI.)
could be used as a problem so lver . His NDPL was o b
tained by adding to Algol the funct ion CHOICE (N) and
two specia l labels for e x i t s , SUCCESS and FAILURE.
The value of CHOICE(N) is an unspeci f ied Integer be
tween 1 and N. Only execut ions that terminate wi th a
SUCCESS ex i t are considered to be computations of the
a lgor i thm. The programmer may impose constraints on
the values of the program var iables by i nse r t i ng , for
example, IF statements that d i rect the f low of control
to a FAILURE ex i t un less the constra ints are sa t i s f i ed .
In th i s way the programmer speci f ies what const i tutes a
so lu t ion to h is problem.

The proposed problem solver would operate as a
compiler by t rans la t ing a nondetermlnist ic program into
a determin is t ic one and execut ing the resul t ing program.
The determin is t ic program is so constructed as to s imu
late the input program by enumerating the possib le com
binat ions of values of the CHOICE func t i on .

Floyd i l l us t ra ted his proposal w i th a complete
statement, t r ans la t i on , and solut ion of a sophist icated
representat ion of the Eight Queens problem. This e x
ample shows c lear ly that programming a problem in h is
nondetermln is t ic language is much easier than program
ming the corresponding search in a convent ional
language. However, i t is a lso clear that the solut ion is
obtained by a b l ind generate and tes t search. Thus, u n
sophis t icated representat ions of problems having large
search sp.aces would resu l t In unacceptably long

execut ion t imes .

Interpretat ion of Nondetermlnist ic Programs

Nondetermlnist ic programs are convenient for s ta t
ing problems because they leave unspeci f ied the order in
which some al ternat ives are to be considered. Conse
quent ly , the process that interprets a nondeterminist ic
program must determine for i t se l f which al ternat ive to
consider at a g iven t i m e .

A processor for a language contain ing a CHOICE
funct ion must select values for the func t i on . I f the
language contains a nondeterminist ic branch ins t ruc
t i o n , or i f the part icular program's f l ow of control d e
pends on the value of a CHOICE func t ion , the proces
sor must select possible control paths as w e l l . A
problem represented by a nondeterminist ic program i s ,
therefore, a search problem In the space of possible
combinations of values of the CHOICE funct ion and pos
sible control paths through the program.

Nondeterminist ic programs f a l l into two categor ies:
those in which the f low of control is de termin is t i c , and
those in which i t is not . In the former case, the pro
cessor may be required to select values for the program
var iables so that certa in constraints are sa t i s f i ed . If
t h i s se lec t ion is made symbo l i ca l l y , the processor can
execute the program un t i l and END statement ts e n
countered, at which time the symbolic select ions must
be replaced by ac tua l va lues . Such problems are refer
red to as constraint sat is fac t ion problems. F ikes 's pro
gram REr-ARF solves a c lass of constra int sa t is fac t ion
problems of considerable d i f f i c u l t y .

To execute a program having nondetermlnist ic con-
f l o w , a processor must select the contro l path i t w i l l
f o l l ow , as we l l as the values for the program var iab les .
The problems represented by programs i n the second c a t e
gory are heur ist ic search (HS) problems.

REF-ARF

Richard Fikes (Ftkes, 1968, 1970) implemented a
problem solv ing system, REF-ARF, based on Floyd's
suggest ion, but containing much improved" so lu t ion
methods. Tikes represents nondeterminist ic values sym
bo l i ca l l y by creating internal var iab les . Constraints are
represented as formulas invo lv ing these var iab les . This
representat ion a l lows the use of a lgebraic s imp l i f i ca t ion
methods to reduce the size of the space to be searched.
F ikes 's most powerful so lut ion method consis ts of a l
ternat ing value ins tan t ia t ion and algebraic s i m p l i f i c a
t i o n , e f fec t ive ly reducing large spaces to anything from
a few to a few hundred nodes. This method enables
REF-ARF to solve some constra int sa t i s fac t ion problems
that would not only swamp a system designed along the

389

l ines suggested by F loyd , but would prove very d i f f i cu l t
for humans to solve as w e l l .

P.EF-ARF w i l l accept HS problems, but is essen t i a l
ly l im i ted to a generate and tes t algori thm in i t s search
for an executable path through the program. HS prob
lems can induce REF-ARF to expend thousands of t imes
more effort than is In t r ins ica l l y required by the problem.
For example, t f the M iss ionar ies and Cannibals p ro
blem Is represented by a program w i t h a single loop rep
resent ing a cross ing of the r i ve r , and the loading of the
boat is selected nondetermin ts t i ca l l y , then each path
through the program w i l l represent a constraint s a t i s
fact ion problem having two select ions for each crossing
of the r i ver . Ref2 , an early vers ion of POPS which used
the same search mechanism as REF-ABF, was presented
w i t h such a program. Ca lcu la t ion showed that the s o l u
t i on would have required over 32 hours of 360/67 t ime .

POPS

POPS (Procedure Oriented Problem Solver) extends
F ikes 's work by inc luding the successfu l methods of
REF-ARF in a system designed to solve heur is t ic search
problems. POPS was wr i t ten in L isp 1.5 and run on the
360/67 computer at the Naval Postgraduate School using
the Water loo Lisp Interpreter (Bolce, 1967).

The Problem Statement Language. PSL

PSL is a simple algebraic language, s imi lar to
F ikes 's language, REF. PSL contains a nondetermin-
i s t i c choice funct ion SELECT(A), whose value is some
element of the named range A. The user may impose
constra ints on the values of the program var iables by
using the statement cONDTCION(B), wh ich means that at
the t ime the statement is executed the boolean expres
sion B must be sa t i s f i ed . PSL also contains a nonde-
termints t ic branch Ins t ruc t ion , GOTOL (LI,1,2 . . . Ln) .
GOTOL is essent ia l l y a computed GO TO w i t h the index
unspec i f i ed .

An Approach to Heur is t ic Search Problems: GPS

REF-APF's considerable success wi th constra int
sa t is fac t ion problems is due largely to algebraic s i m p l i
f i ca t ion methods which a l low i t to reduce i ts search
space wi thout e l iminat ing va l id so lu t i ons . Unfor tunate
l y , there is no s imi lar way of reducing the space of pos
sib le execut ion paths when a program's f low of control
is nondetermin is t ic . The a l ternat ive is to provide some
mechanism whereby the processor can make informed
dec is ions in i ts search for a successfu l control pa th .
The GPS work of Newe l l and others (Newe l l , Simon, and
Shaw, 1963; Ernst and N e w e l l , 1969) provides such a
mechanism, namely , the se lec t ion of operators on the
basis of the i r apparent usefulness ln the current
s i t ua t i on .

A problem statement for GPS contains a set of o b
jects which are transformable by a g iven set of opera
to r s . A problem takes the form: g iven an In i t i a l object
X . , f ind a sequence of operators q such that the p r e d i
cate P is t rue of the object q (X J . GPS attempts to t r ans
form the i n i t i a l object into a desired object by matching
the i n i t i a l object to the desired object (or to the p r o
pert ies of a desired object) in order to obta in a d i f
ference; GPS then attempts to reduce the di f ference by

apply ing an operator to the ob jec t . The operator is se lec
ted by means of a table of connect ions which ind icates
the relevance of the operators to the various d i f fe rences.

The POPS Program

POPS solves heur is t ic search problems by apply ing
GPS techniques to the interpretat ion of PSL. L k e GPS,
POPS operates by t ransforming an i n i t i a l object into a
desired object by the appl icat ion of operators.

The task environment of POPS. In the task env i ron
ment of POPS, an object is a path from the beginning to
the end of a PSL program. If the entry and ex i t points of
the program are g iven l abe l s , and tf every point in the
program at which control paths jo in is l abe l l ed , then
every execut ion path corresponds to a str ing of l a b e l s .
The set of such str ings of labels can be given by a
grammar.

POPS obtains a sui table grammar by ident i fy ing a l l
simple c losed paths in the program and a l l simple paths
from the beginning to the end of the program. For e x
ample, the program whose f lowchart appears in Figure 1
has possib le execut ion paths given by the fo l low ing
grammar:

S - BEGIN A EXIT

A - A M l f l | A M 2 A | . . .) A M n A

Thus, solv ing a problem stated as a PSL program can be
considered as searching in the space of str ings of l abe l s .
The i n i t i a l object is (BEGIN A EXIT), and each subse
quent object resul ts from apply ing one of the rules of the
grammar for the program to a previously generated ob jec t .

The f ina l object is a str ing of labels representing a
path through the program such that If the path were ex
ecu ted , a l l the constra ints would be sa t l s f i ab le . C lear
ly not a l l grammatical ly lega l paths have th is property.
Thus, the search process must select the rules to apply
at each po in t , and ver i fy that at each point in the path
the current constra ints can be sa t i s f i ed . Such a path
w i l l be referred to as a lega l path .

Because apply ing a rule of the grammar to a str ing
can resul t ln an i l l e g a l pa th , the process of apply ing an
operator in the o r ig ina l problem is represented by app ly
ing a rule of grammar and then executing the PSL program
along the control path represented by the resu l t ing
s t r i ng . I f t h i s execut ion resul ts in the creat ion of an
unsat ls f iab le cons t ra in t , then the operator represented
by rule does not apply to the object represented by the
previous str ing of l a b e l s .

Descr ip t ion of operators . POPS uses a technique
s imi lar to that of GPS to make rat ional se lect ions of
operators . In place of a tab le of connect ions , POPS
uses a descr ip t ion of the ef fects of the problem opera
t o r s . To obta in these descr ip t ions , POPS executes each
operator in i s o l a t i o n , i . e . , w i th no assumptions about
the ef fects of any prior operators. By examining the
assignments and the constra ints so generated, POPS
constructs a simple descr ip t ion of the operator 's e f f ec t s .
Present ly , th is descr ip t ion consis ts of 1) a l i s t of the
program var iables that are used before they are assigned,
2) a l i s t of program var iables that are changed, 3) the

590

set of constra ints that must be sat is f ied before the
operator may be app l i ed , and 4) the size of the operator,
as measured by the number of symbols in the data s t ruc
ture generated by the t r i a l execut ion of the operator.
Whi le the current set of descr iptors is m in ima l . i t ls
su f f i c ien t to guide POPS d i rec t ly to the solut ions of
several s imple heur is t i c search problems, as w i l l be
seen. More sophist icated analys is of operators would
fac i l i t a te more in te l l i gen t se lect ion of operators by the
problem so lver , and should enable it to solve more sub
s tan t ia l problems.

D i f fe rences. Since any complete executable path
is an acceptable f ina l ob jec t , the match is accomplished
by attempting to execute the path represented by the ob
j e c t . If a path is not executab le , it is because at some
point in the execut ion of the path , the processor e n
counters a constra int that cannot be sa t i s f i ed . The pro
cessor then returns a t r i p le (L , R, D) , where L is the
port ion of the path that can be executed, R is the r e
mainder of the pa th , and D is the unsat is f iab le c o n
s t ra in t , together w i th a descr ip t ion of what changes to
the program var iables must be made in order to sat is fy
the const ra in t . This descr ip t ion is the POPS version of
the GPS d i f ference.

Select ion of operators. To select an operator,
POPS compares the dif ference w i th the descr ipt ions of
the avai lab le operators, and selects the operator that
appears most promis ing. Cur rent ly , POPS selects the
operator that changes the most program var iables need
ing change. In case of a t i e , i t selects the operator
that changes the fewest var iables having acceptable
va lues . F ina l l y , i f there is s t t l l more than one cand i
date operator, POPS selects the smal lest one.

Example. Consider, for example, the Msnkey pro
blem , g iven in Figure 2. The grammar for the PSL pro
gram i s :

S - BEGIN A GET_BANANAS

A - A WALK A (A CARRY A I A CLIMB A

The i n i t i a l object is (BEGIN A GET_BANANAS). If t h i s
path is executed, a contradic t ion w i l l be found after
passing A, because the necessary condi t ions for e x i t
ing the program have not been met — the monkey doesn' t
have the bananas. The goal then becomes that of mak
ing the offending constra int TRUE. This requires
changing the values of M (l) , M(2) and B (l) . Since
WALK changes M { 1) , CARRY changes M (l) and B (l) ,
and CLIMB changes M(2) , i t is reasonable to guess
that rule A - A CARRY A should be app l ied . The pro
posed path then becomes:

(BEGIN A CARRY A GET_BANANAS).

When execut ion of th i s path is at tempted, however, a
cont rad ic t ion is encountered at CARRY: the monkey
cannot carry the box unless he is located where the box
i s , i . e . , M (l) = B (l) . The subgoal then becomes:
make M (l) = B(l) t r ue . Both WALK and CARRY change
M (l) , but CARRY does other th ings as w e l l , so
A - A WALK A is the move to t r y . The proposed path is
then:

(BEGIN A WALK A CARRY A GET_BANANAS).

Execut ion of th is path proceeds into GET_BANANAS

before f ind ing a false const ra in t . This one i s : M(2)=box,
representing that the monkey must be on the box . The
correct move is A - A CLIMB A. The path becomes:

(BEGIN A WALK A CARRY A CLIMB A GET_BANANAS).

Since th is path can be successfu l ly executed, the s o l u
t ion has been found.

Redundancy Tests

POPS employs tests to prevent two types of redun
dancy in i ts search for a complete executable pa th . A
newly generated path is redundant i f i t is ei ther i d e n t i
ca l w i th or equivalent to a previously generated pa th .
Equivalent paths can be generated, for ins tance , i f there
are two operators q1 and q2 such that cTJd^ an (^ q 2 9]
achieve the same ef fec t . Ident ica l paths can be g e n -
ated as fo l lows :

(A C A) - ^ ^
Here the two operators A -• A B A and A -• A C A have
been used to expand (A) to generate (A B A C A) in two
di f ferent ways .

POPS tests newly generated paths for equivalence
to previous paths by comparing the state of the program
var iables resul t ing from the execut ion of the new path
w i th the resul ts of execut ing previously generated paths.
This comparison can be rather expensive if the var iable
values are formulas; however, the comparison is essen
t i a l to l im i t search.

POPS automat ical ly avoids the generat ion of i d e n t i
ca l paths by res t r ic t ing the select ion of operators a c
cording to a rule known as the O-s i ze ru l e . Each opera
tor Q Is assigned a unique s ize , denoted | Q J . The
O-s i ze rule provides that an operator Q may be cons ider
ed for appl icat ion to a path P = (L, R, G) only if
|0 | < QR and \Q \ < Q L , where QL is the size of
the las t operator used to generate L and OR is the size
of the next operator in R. I n t u i t i ve l y , one may consider
the size of an operator to be i ts d i f f i c u l t y . The Q-s i ze
rule then predicates that POPS w i l l consider applying
an operator to an object only i f the operator is easier
than i ts immediate supergoal and no more d i f f i cu l t than
the previous goa l .

The Importance of the Q-s i ze rule is that it prevents
the catastrophic pro l i ferat ion of ident ica l nodes in the
program's search space. Wi thout such a tes t , the num
ber of redundant nodes can grow as fast as N! , where
N is the number of operators appl ied to generate a s ingle
node. The redundancy could be e l iminated by means of
a direct comparison w i th previous nodes; indeed, th i s
ls the usual prac t ice . However, the number of compar i
sons required grows exponent ia l ly w i th N. In cont ras t ,
the cost of the Q-s l ze rule is only two comparisons per
node generated. These assert ions about the Q-s i ze
rule are proved elsewhere (Gibbons, 1972).

POPS f lowchar ts . The f lowcharts for the major prob
lem so lv ing processes in POPS are g iven in Figure 3.
POPS i t se l f is an execut ive rout ine that analyzes the PSL
program to obtain the grammar and operator desc r ip t ions ,
and then enumerates the simple paths through the PSL

591

program un t i l one is found that can be converted into a
lega l pa th . The other programs, TRANSFORM, FIXPATH
and APPLY are s imi lar to the GPS methods TRANSFORM ,
REDUCE, and APPLY, respec t i ve l y , as given in Newel l
and Simon (1963). In FIXPATH, the l i s t of operators is
f i l te red by the Q-s i ze Pule before an operator is se lec
t e d . The operat ion "ass ign I f appropr iate" se lects
ac tua l values for nondeterminist ic expressions under
cer ta in c i rcumstances. Issues surrounding th i s a s s i g n
ment w i l l be d iscussed in the fo l low ing sec t i on .

Performance of Pops

The performance of POPS can be eas i l y evaluated
by means of a comparison w i th the performance of Ref2
on the same problem. Ref2 is the immediate predeces
sor of POPS, and contains the same basic machinery i n
c lud ing formula manipulat ion processes, data repre
senta t ion , and constra int sa t i s fac t ion methods. The
design of Ref2 is su f f i c ien t l y s imi lar to that of REF-ART,
except in i ts data representat ion, that comments about
the performance of Ref2 apply equal ly w e l l to REF-ARr.
The performances of Ref2 and POPS on the problems d i s
cussed are summarized in Figure 9.

The GPS-l ike contro l structure of POPS and the
bas ic control of search provided by the Q-s i ze rule and
the redundancy t e s t , provide a skeleton of a prob lem-
so lver . The sources of problem so lv ing power in POPS
are the processes that analyze the PSL program to get
a descr ip t ion of the operators, select the operator to
apply during FIXPATH, and decide whether to ass ign
values to var iables during FIXPATH, and i f so , what
values to a s s i g n . The performance of POPS depends
d i rec t l y on the adequacy of these descr ip t ion and com
par ison processes. These processes are rather r u d i
mentary at present , yet they suf f ice to guide POPS to
the so lu t ion of some simple US problems that REF-ARF
and Ref2 were unable to solve w i t h reasonable e f fo r t .

The Miss ionar ies and Cannibals Problem

Ref2 is unable to solve the Missionaries and C a n
n iba ls problem as stated in Figure 4. The problem
statement contains only one operator. Executing the
operator requires that two select ions be made from a
range of three poss ib le va lues . Ref2 approaches th is
program by execut ing d i rec t ly to the end , where i t e n
counters a constra int sa t i s fac t ion problem. If i t f inds
no so lu t ion to the constra int sa t i s fac t ion problem,
Ref2 attempts an al ternate path to the end . Since the
so lu t ion of the problem requires e leven crossings of
the r i ve r , and each crossing is accompl ished by one
execut ion of the loop in the program, the f i rs t ten c o n
st ra int sa t i s fac t ion problems w i l l have no so lu t i on .
Since each cross ing of the r i ve r generates two a d d i
t i ona l va r iab les , we may est imate the size of the nth
constra int sa t i s fac t ion problem to be Kn , where K is
the average number of poss ib le se lect ions generated
by one crossing of the r i ver .

On being g iven th is program, Ref2 ran out of t ime
at eight minutes , having f a i l e d to complete the search
on the f i f t h constra int sa t i s fac t ion problem. I f we a s
sume K = 3, then the to ta l space Ref2 would search
through the f i f t h constra int problem would conta in about
540 nodes, so that the search rate estab l ished by Ref2

is roughly 540 nodes per eight m inu tes . Under these
assumpt ions, the to ta l space to be searched by Ref2 up
through the tenth crossing of the r iver is roughly
133,000 nodes. In short, Kef2 would start on the f i na l
crossing of the r iver af ter computing for something in
excess of 32 hours on the problem.

Whether the above est imate is accurate is immater i
a l ; the point of consequence here is that de lay ing the
determinat ion of ac tua l values for the nondeterminist ic
select ions causes Ref2 to expend a tremendous amount
of time on redundant search. The space of the M i s s i o n
ary problem is ac tua l ly remarkably smal l - only sixteen
d is t inc t legal conf igurat ions can be reached from the
i n i t i a l node.

In contrast to Ref2's est imated t ime of 32 hours ,
POPS solves the Miss ionary problem in somewhat less
than s ix minutes . The search conducted by POPS is
shown in Figure 5. This success is based on a method
of ass igning actual values to nondeterminist ic se lec
t ions before the end of the program has been reached.

When to ass ign actua l va lues . An assignment is
made only if f a i l i ng to do so would deepen the space of
the constra int sa t i s fac t ion problem at the end of the
program. For ins tance , i f an operator contains an a s
signment such as X = X + SELECT (A), and the current
value of X is already SELECT (A), then the eventual c o n
straint sa t i s fac t ion problem would contain var iables
representing both se lec t i ons . If the range A contains
N e lements, the number of possib le select ions would be
N ^ , but the number of d is t inc t values of X could be as
smal l as 2 N . Before apply ing the operator in such a
case, POPS chooses an actua l value for the f i rs t se lec
t i o n . Then after the operator is app l i ed , the value of X
s t i l l depends on only one SELECT operator. Conse
quent ly , In the M iss ionary problem, each of the c o n
straint sa t is fac t ion problems encountered at the end of
the program has only two va r iab les , and the constraint
sa t is fac t ion problem space searched by POPS in the
f i r s t ten crossings contains roughly 30 nodes.

Select ion of actual values to ass ign . In choosing
an actua l va lue , POPS attempts to f ind the value that is
most l i ke l y to be he lp fu l in solv ing the problem. For
example, in the Miss ionary Problem, where the se lec
t ions determine the number of miss ionar ies and the num
ber of cannibals to place in the boat for a crossing of
the r i ve r , POPS makes select ions that maximize the
number of persons being transported to the r ight side of
r iver and minimize the number being transported to the
lef t side of the r i ver . The sense of d i rec t ion th i s g ives
the search can be seen in Figure 5.

When POPS selects an operator, i t is at tempt ing to
f ind one that w i l l modify the current state of the program
in a d i rec t ion that w i l l tend to sat is fy some current ly
unsat is f ied cons t ra in t . This constra int is a lso used to
guide the se lec t ion of actual va lues . For example, in
the M iss ionary problem, the constra int on the ex i t
branch of the program says , among other t h i n g s , that
the number of miss ionar ies on the r ight side of the r i ver ,
MR, should be 3. Suppose the current value of MR is
SELECT (A), where A = {0, 1, 2 } . Then the f i r s t choice
POPS w i l l make for the value of t h i s se lec t ion is 2,
s ince that choice min imizes the di f ference between the

592

current and desired values of MR. If the current value
of MR were -SELECT(A), then the f i rs t choice would be
0, for the same reason.

The Monkey Problem

The Monkey problem has been formulated in three
di f ferent ways . The performance of POPS on these three
problem statements i l lus t ra tes its dependence on the i n
formation it can derive from the PSL program. Br ie f ly ,
one vers ion contains suf f ic ient information that POPS
makes no wrong decis ions in the solut ion process. The
other two formulat ions require some search. F low
charts for these formulat ions are shown in Figure 6.

MB4 .and MB2. The f i rs t vers ion of the Monkey
problem w i l l be referred to as MB4, because the c o n
straint on the ex i t branch of the program specif ies what
the values of each of the four var iables in the program
must be . The second version w i l l be ca l led MB2, be
cause i t is ident ica l to MB4 except that the constraint
on the exi t branch of the program speci f ies the values
of only two va r iab les . MB4 requires the monkey to be
on the box under the bananas end the box to be on the
f loor under the bananas. MB2 requires only that the
monkey be on the box under the bananas, and says
nothing about the box. Of course, because of the st ruc
ture of the problem, the box must be under the bananas
and on the f loor in order for the monkey to be on the box
under the bananas, so that any solut ion of MB2 is a
so lu t ion of MB4.

POPS does not recognize the necessi ty of moving
the box in MB2 un t i l i t fa i l s to solve the problem w i t h
out moving the box. Thus, POPS obtains less guidance
from the constraints in MB2 than it does from the con
stra ints in MB4; as a resu l t , whi le POPS goes d i rect ly
to a solut ion in MB4, it is forced to perform some search
in MB2. The execut ions of MB4 and MB2 by POPS are
shown in Figure 7.

Because M B4 and MB2 are ident ica l except for the
constra int on the ex i t branch, and because Ref2 gets
no d i rec t ion from the const ra in ts , Ref2 carr ies out the
same search on MB4 as it does on MB2. Thus, be
cause of i ts ab i l i t y to use constraints to guide the
se lect ion of operators, POPS not only searches a smal
ler space than Ref2 on MB2, but is a lso able to make
use of the addi t ional Information in MB4 to reduce the
search fur ther .

MBF. The th i rd version of the Monkey problem that
POPS has r u n , ca l led MBF, is a t rans la t ion of F ikes 's
statement of the problem for BEF-ARF. MBT was c o n
sidered in order to get a d i rect comparison of Ref2 and
POPS w i t h REF-ARF, since Fikes does not report running
problems stated l i ke MB2 and MB4. The search carried
out by REF-ARF on MBF generated 28 nodes.

The ch ie f di f ference between MBF and MB4 is that
the control structure in MBF carr ies some information of
potent ia l value to the problem solver , whereas MB4 is

* In f ac t , Ref2 runs one second faster on MB2 than
on MB4; the reason is that the shorter constraint in
MB2 takes less t ime to evaluate.

in s t r i c t l y HS form. Ref2 performs considerably better
on MBF than on MB4. POPS, however, f inds a solut ion
for MBF after applying only one operator, generating a
space of only two nodes.

Robot and Two Boxes Tasks*

This is a sequence of simple robot tasks wi th a
single i n i t i a l s i tua t ion . In the i n i t i a l s i t ua t i on , there
is a room, and A, B, O, and D are locat ions w i th in i t .
The robot is at loca t ion A, and two boxes, B1 and B2,
are at locat ion B. The fo l lowing act ions are avai lable
to the robot: i t can walk to any locat ion in the room; if
the robot and box B2 are at the same locat ion as box B l ,
the robot can stack B2 on top of B l ; and if the robot is
at the same locat ion as Bl , the robot can push Bl to any
locat ion in the room. Thus, the only way the robot can
move B2 to another locat ion is by stacking it on Bl and
pushing B1. A lso , the robot must know whether B2 has
been moved or not .

There are f ive tasks in the sequence. They are;

1: The nu l l task
2: Move the robot to locat ion C
3: Move Box Bl to locat ion C
4: Move Box B2 to locat ion C
5: Move Box 82 to locat ion C and Box Bl to

locat ion B

These tasks were intended to be of gradual ly increasing
complexi ty so that some ind icat ion of the effect of in-
creasing complexi ty on the performance of POPS could be
obta ined. This sequence of problems was a lso given to
Ref2 for comparison purposes.

POPS executions of the robot problems. The nu l l
t ask , p r o b l e m 1 , is included in order to determine the
cost of i n i t i a l i za t i on ; POPS spends 9.9 seconds solv ing
th i s problem. There is no search. The second task r e
quires one operator, WALK. POPS f inds and app l l es tb i s
operator in 2,5 seconds. Problem 3, move box Bl to C,
is also s imple, because the robot can push the box.
The solut ion requires two steps, however- POPS f i rs t
attempts to apply the operator that pushes B1. Before
that operator can be app l ied , however, it is necessary
to apply WALK, to get the robot to the same locat ion as
B l . POPS selects and appl ies these two operators in
6.9 seconds, or 3.45 seconds per subgoal . To move
Box B2 to C {problem 3), it is necessary to push Bl over
to B2, stack B2 on B l , and then push them both to C,
requir ing a to ta l of four operators and tak ing POPS 17,8
seconds plus i n i t i a l i z a t i o n , or 4 .45 seconds per subgoal .
In the f i f th problem, POPS must move B2 to O as in pro
blem 4 and then unstack B2 from Bl and push Bl to l o c a
t ion B. After stacking B2 on Bl and pushing them to
locat ion C, POPS erroneously selects WALK Instead of
attempting to push B1, thereby generating seven sub-
goals Instead of the necessary s i x , for a cost of 35 .1
seconds, or 5 seconds per subgoal .

Figure 8 shows the search POPS conducted on these
problems. The performance of POPS on these problems

*These problems were suggested by a s imi lar set of
tasks given by Raphael (1971). Raphael uses these
tasks to i l lus t ra te the frame problem.

593

is summarized in Figure 9.

Ref2 execut ions of the robot problems. Because
Ref2 performs essent ia l l y no prel iminary ana lys is of a
PSL program, i t can do the nu l l robot task faster than
POPS. On the more complex t a s k , however, Ref2 b e
comes less e f fec t ive than POPS. This is to be expected
in problems where POPS is able to der ive some guidance
from the problem statement. See Figure 9.

Conclus ion

The mafor accomplishment of POPS is the app l i ca
t i on of goal d i rected methods to the execut ion of n o n -
determin is t ic programs. The ana lys is of the ef fects of
operators and the se lec t ion of operators on the basis of.
a match between the current s i tua t ion and the desired
s i tuat ion a l lows POPS to d isp lay a sense of d i rec t ion
in i ts search, and not re ly merely on generate and tes t
search, as other processors for nondetermin is t ic l a n
guages d o . POPS contains d iscrete processes for d e
scr ib ing operators, descr ib ing goa l s , se lect ing opera
t o r s , and select ing values to a s s i g n . These processes
may be improved almost independent ly of each other,
and wi thout mod i f i ca t ion of the basic sys tem. C o n
sequent ly , the des ign w i l l support substant ia l improve
ment in problem so lv ing a b i l i t y .

Bibl iography

1. Bo lce, J . F . , "L ISP/360, A Descr ip t ion of the Uni-
vers i ty of Water loo LISP 1. 5 Interpreter for the
IBM Sys tem/360 , " Computing Centre Un ivers i t y
o f Wate r loo , Wate r loo , Onta r io , Canada, 1967.

2. Ernst, George W. and N e w e l l , A l l en , GPS: A Case
Study in General i ty and Problem So lv ing , Academ
i c Press, N . Y . , 1969.

3. Feigenbaum, E. and I . Feldman (eds .) , Computers
and Thought, M c G r a w - H i l l , 1963.

4. F i kes , Richard Ea r l , A Heur is t i c Program for Solying
Problems Stated as,Nondetermin is t ic Procedures,
Doctora l t h e s i s , Carneg ie -Me l lon Un i ve rs i t y ,
1968.

5. F i kes , Richard Ear l , REF-ARF: A System for Solv ing
Problems Stated as Procedures, J. Ar t . I n t e l .
1 (1) 1970.

6. F loyd , Robert, "Nondetermin is t ic A lgor i thms, "
J . ACM 14 (4) 1967.

7. Gibbons, G, D . , Beyond REF-ARF: Toward an I n
te l l i gen t Processor for a Nondetermin is t ic Pro
gramming Language, Doctora l Thes is , Carneg ie-
Me l l on Un ive rs i t y , 1972.

8. N e w e l l , A. and Simon, H. A . , "GPS, A Program that
Simulates Human Thought , " in Feigenbaum and
Feldman, 1963.

9. Raphael, B . , "The Frame Problem in Problem-Solv ing
Sys tems, " in A r t i f i c i a l In te l l igence and Heur is t i c
Programming,, Edinburgh Un ive rs i t y Press, 1 9 7] .

594

595

596

597

598

599

