CASAP!

Session 22 General Problem Solving

A TESTBED FOR PROGRAM FLEXIBILITY

Robert M. Balzer

Information Sciences

Institute

4676 Admiralty Way
California 90291

usC
Marina del Rey,
Abstract
CASAP attempts to create a more flexible

knowledge-based system for performing actions.
It Is based on the combination of a procedural
representation of actions, and an Information
retrieval subsystem used to dynamically obtain
all Information required to perform an action.
It Is argued that such a combination eases the

specification of new actions and increases
their ability to obtain, from a wide variety
of possible environments, the Information they
require.

A simple example demonstrates this
flexibility.

Introduction

The effort to build Intelligent programs
has received a great deal of interest for a
number of years. The early attempts were of

the theorem proving type characterized by the
Logic Theorist 11J, which attempted to
Implement the rules of propos-itional calculus.
Using these rules the system attempted to move
from a stated set of axioms to a theorem to be
proved by a generalized search technique.
This system was the genes is for the later
General Problem Solver (GPS) [2]. GPS applied
a series of user specified operators to move
from the initial state to the goal state as
determined by rules of applicability of those
operators and as directed by a difference
table to eliminate differences between the
current situation and the goal state.

Both systems are essentially table driven
and represent an attempt to build a single
general purpose problem solver capable of
accepting valid operations In a wide variety
of domains and using them to move from initial
to goal states. The problem with such
attempts has been that the general mechanisms
contained within them for deciding In what
order to apply the operators to make progress

towards the goal have not been adequate for
the problems under Investigatlion. Also,
specific knowledge about how to proceed In a
particular domain has been difficult to state
In a general form for such systems.

This research is supported by the Advanced
Research Projects Agency under Contract No.
DAHC15 72 C 0308, ARPA Order No. 2223/1,

Program Code No. 3D30 and 3P10.

601

These difficulties with general problem
solvers led to a second approach centered
around the incorporation of specific knowledge
about how best to operate in a particular
domain. Since this knowledge was not well
codified, these systems represented It in the
most general way known! l.e., in terms of
programs. Experience with systems of this
type led to the development of PLANNER [3] as
a way of systematizing some common aspects of
this approach. These common aspects Include
provt sions for backtrack!ng, provisions for
the dynamic update and maintenance of a data

base, and pattern directed invocation (i.e.,
routines are invoked not by name, but by the
results they promise to deliver. The promise

is pattern matched against the current subgoal

and Is invoked if the match is satisfied) -
the procedural analog of the difference table
In GPS.

These systems have traded increased
operational power for loss of awareness.
Because the knowledge is represented
procedurally, the system is less capable of

using It deductively or In determining what
the consequence of particular actions may be.

CASAP represents a combination of these
two approaches! the procedural representation
of knowledge together with the general
mechanism for assembling the Information
required for actions or inferences.

There are two main problems with the
procedural approach. The first Is the
concurrent transfer of both control and data
between routines. Typically, when a routine
Is invoked, the data that it is to process |Is
also passed to It as part of the Invocation.
Thus, the caller needs to know what data is
requlred by the called routine. Such an
organization is much too rigid. All that the
caller should know about the called program is
the result that It promises to deliver. Since
routines are to be Invoked on the basis of the
result that they promise to deliver, if for
one reason or another they are inapplicable In
a given situation, then they will inform the
caller of this and alternative action can be
taken. It should therefore be the
responsibility of the called program to obtain

the Information it requires.

Towards this end, some systems keep the
data In a common global data base which Is
directly accessible by all routines. Hence,
any routlne can get at whatever data it
requires. This, too, Is an unacceptable
solution; for it requires too wide a

distribution of the knowledge of how and where
to find Informatlon, and unnecessarlly
complicates each of the routines |In such a
system,

We propose instead. In CASAP, to place a
single Informatton retrieval routine between
any routine requiring data and the global data
base Itself. Thus, all each routine requires
Is the knowledge that It needs a certain piece

of information which It then requests from the
Information retrieval package. Knowledge
about the data base Is thus centralized In a
single routine.

The second major problem with the
procedural approach is the polntwlse
applicability of procedures. Either one
procedure or another is active, but not both.
This greatly limits the ability for two or
more procedures to perform actions in a

coordinated way. The closest thing we have to

a solution for this problem are the demons
which exist in various systems. These demons
watch for certain events. in either the
control or data spaces, and when such events
occur, Invoke an associated routine which then
gets control. This allows for more dispersed
and low level Interactions between various

routines toward a coordinated goal, but does

not. In fact, lead to coordinated actions.

If viewed In this manner, CASAP does not
address this Issue at all. However, from a
different standpoint, what we desire Is the
abl]lty for one routine to Influence the

behavior of another routine, that is, to set
up constraints or suggestions which are
dynamically used to modify the behavior of the
Invoked routines as directed.

CASAP, in a limited way, performs such
modifications by utilizing a context which is
established and maintained by the Information

retriever, and used whenever Information is
required. Thus, the Information obtained at
any point, in response to a questlon, is
dependent upon the context that has been
previously set up. Through this mechanism an

Invoking routine can establish the context in
which the request for Information from invoked
routines will be answered and thus changes the
perceived state of the world for that routine.

This mechanism Is, however, quite limited
from two standpoints. First, It only deals
wlth Informatlon that the invoked routine
requires In a particular situation.
Information which Is not needed by the Invoked
routine has no way of Influencing the behavior
of such a routine. Secondly, It s an
information-based context and not an
action-based one. Hence, It only plays a part

when | nformation is required and not when
actions are being performed. With these
restrictions In mind, however, ft is a step In
the directlon of a system which utilizes
context for the Interpret/on of actions and
Information dynamically required.

It is our belief that moving from
essentially macro based languages to languages

that are essentially context dependent for the
interpretation of both actions and data is the
next major needed advance In programming

languages.
System Organization

CASAP

represents our attempt to test

these Ideas In an operational way and has
demonstrated, In a very Ilimited way, the
feasibility. If not the practicality, of such

an approach.

Organizationally,
the principle that
subroutines In CASAP

CASAP was predicated on
there would be no
programs (the system

Itself was Implemented by standard technique);
that there would be no hard, well-defined
Interfaces between the specification of

actlons to be accomplished; and that

Information would flow among the processing
components as required by the particular
example, rather than as preplanned. Thus,

both the decision of what actions to Initiate,
and how and where the Information for those
actions |Is obtained, Is dynamically determined
while the system is In operation.

The system logically consists of three

parts: an Interpreter responsible for carrying
out Inltlated actions; an information
retrieval part responsible for obtaining and
putting Into usable form the Information
required by Initiated actions and/or the user;
and finall, a modification component
responsible for altering an action to fit it
Into a dynamic context. Currently the
modification component Is null and the system

has been constructed so as not to Invoke this

function.

As part of this experiment we wanted to
investigate the build-up and use of commonly

used concepts In a natural way. Hence, we
have decided to wuse English as the way of
specifying the actions, the concepts, and the
Information Input to the system. However, to
avold concentration on parsing of natural
language, all input to the system was
pre-parsed by the author, although It still

contained the original English words.

Each input by the user was examined to
see whether it was a concept or fact to be
added to the data base, or the initiation of
an action. In the former case the concept or
Information was merely stored In the data base
In the input form. Commands, however, caused
the system to determine which action should be
invoked. This Is done by pattern directed
Invocation centered around the verbs. That

ls, the system first determines what actions
it knows about In the data base that
correspond, either directly or by Inference
with the specified command word (verb). A
second level of applicability check Is made to
see If the action Is appropriate for the
current situation.

If any such actions are appropriate, the
system selects one and applies Its definition.
This process is repeated until one of the

primitives of the system Is applied. These
primltives cons!st of the set manipulating
routines of Insert, remove, create, and

destroy which enable the system to add, delete
or modify attributes and/or their values to
objects In such sets. As the specifications

of the operations are being applied, contexts
are being built up, which enable the
Information retriever to locate the relevant
data for the operations to be performed.

System Operation

Let's consider some examples from the
protocol in the appendix. All the examples In
this paper will be drawn from the domain of
card games, and particularly from the game of
Hearts. The system knows nothing about either
cards, card games, or the game of Hearts
Initially but merely the idea of ordered sets

and the manipulations previously Indicated as

be! ng primitive.

We begin by telling the system that a
hand Is a set of cards ordered by suit and
card value and then tell It the ordering
relationship both for suits and for the card
values by explicitly naming the values of each
of these attributes in order. Then we tell
the system that all players have a hand, and
ask It to create a player which we are going
to call Player 1. The system creates such a
player, notices that all players have a hand,
and therefore, constructs with that «created
player, a set which is to be Its hand, which
the system knows will be composed of <cards.
We similarly then <create two other players
named Player 2 and Player 3. Then we create
five cards. Having now primed the system, we
are ready to start investigating Its behavior
In carrying out a series of actions. We begin
with the command "Insert card] In the hand of
Player 1". The "insert" primitive action Is
applied and obtains both the object It Is to
insert and the set In which It Is supposed to
do the Insertion by asking questions of the
Information retriever. In this case, the
required Informatlon is immedlately avaliable;
and no problems are encountered in this
execution. However, when we ask the system to
then Insert <card 2 In the hand of Player 1,
the system first finds out which card and in
which set the object is supposed to be
Inserted. Then, In the process of doing the
Insertlon, it discovers that this set s
ordered. it determines that the primary
ordering relationship Is suit. Since there
already is a card In that set. It must
discover the relative ordering between those
two cards on the basis of the suit attribute.
Therefore, it attempts to find out the suit of
the card It is now Inserting. An Internal
question is formed for the informatlon
retrlever, which looks through the current
context and the data base, but can't discover
the value of this attribute, and so,, asks the
user. The user responds that Its a heart.
The system then continues operation of the
insert primitive, but sees that It must also
find the suit of the already Inserted card so
that a comparison may be made. Again a
question is formed, and again the Information
retriever asks the user. The user responds
that the suit of card 1 Is a diamond. Because
the two suits are different, the system can
order them properly; and card 2 Is correctly

Inserted In the hand of Player |I.

the same
the only
primary

have invoked
the first case,
needed was the

Notice that
routine twice.
information that

we
In
it

603

objects that
be inserted
Insertion was
those same pieces of

were manipulated the object to

and the object in which the
to be done. In the second case,
Information were needed;
and in addition, two other pieces of
Information were required: the suits of the
two cards that were being inserted, so that
the ordering could be properly maintained.

of Information
in fact, any routine,
is context dependent. This Is one of the main
reasons why we want such Information to be
dynamically obtained through the information
retriever package, rather than being passed
down or discovered by Individual examination
of a global data base.

Thus,
by this

the amount required

routine or,

even further,
Insert another card, and when
the suit of that card

To belabor
suppose we now
the system asks us what
is, we tell it that it is also a heart. Since
there is already a card, which }s a heart, in
the hand, It must obtain further Information
to resolve the conflict. By examining the
ordering relationship specified with hands, it
finds that this relatlonshlip Is the card
value. The insert routine must then discover
the card value of both the new card being
Inserted, and the old card with which there |Is
a partial conflict.

the polnt

Skipping ahead In the protocoli after
putting the ©players around in a circle by
means of a relation called "to the left of",
we reach an Interesting command "each player
passes the highest heart". (For ease of
explanation we will now deviate slightly from

the protocol in the appendix.)

Once the system has obtained the relevant
actions, of which there might be several, it
sees which of them are applicable to the given
situation on the basis of their applicability
to the objects described. In the ~current
example, the system had available a
description of how to pass a card. To test
the applicability of this action, an Internal
question was generated as to whether the
highest heart was a card. The Informatlon
retriever examined the data base, and found
that heart was the value of the suit attribute
of the object ~card. Therefore, It assumed
that highest heart was a descriptive term
being used for card which Is the highest
heart. Hence the description of how to pass a
card was Invoked.

The interpreter retrieved the
specified definition of "pass a card," which
Is: "remove It from your hand and place It
face down on the table In front of the player
to your left" ("In front of" was taken to be a
specl!flc location on the table for each
player). The Interpreter then Invoked the
remove operation by pattern directed
Invocatlon. Thls operation is one of the
primitives of the system consisting of all the
set manipulation operations. To perform the
remove operation, the objects which "remove"
manipulates must available. It obtains
these through the Informatlon retrieval
package, but first forms a question to
discover from which set the objects are being
removed. The Information retriever discovers

previously

be

that !t is "your hand" and that there exist

many hands In the data base. Thus "your" s
used to determine which one Is Dbeing
specified. "Hand" is looked up In the data

base and is found to be owned by "player."
Thus "your" refers to a particular player
St nee it is not further specl!fled, the
Information retriever assumes that the
particular player is the one who is in
context, that Ts, the one selected earlier by
the interpreter as part of the Iteration of

the "each player..." command. Thus, the
information retriever returns to the
Interpreter the specific set that has been
referenced. Next, a questlon is formulated

within the remove package to discover which
object from that set Is to be removed. Again
the question Is formulated and the Information
retriever, working through the context stack,
finds that the object is the card being
passed, and that the card being passed is the
hi ghest heart. At this point the informati on
retriever computes which is the highest heart
within the context of the previously selected
set, l.e., the highest heart Is computed on
the basis of the hand in question and not the
highest heart in the deck.

As one can see, the success of the
i nterpretation of this particular example is
critically dependent upon the order In which
the questions were asked; but the knowledge
that they should be asked In this particular
order, namely, finding the set first and then
the object within the set Is part of the
intelligence of the remove package, not part
of the general intelligence of the system
Itself.

However, the remove routine is actually a
little bit more general than indicated. Had
the information retrieval package not been
able to find a specific set for the remove
operation, then the question would have been
asked as to whether the object being specified
was a named object or a computed object. If
it was a named object, then the question of
which set would have been re-asked In the
context of those sets that contain the
specific object In question. In the current
example the object was a computed one; and
hence, the strategy would have failed.

Conclusion

It is important to note at this point the
flexibility that has been demonstrated by this
admittedly simple example. The correct
interpretation of the command was accomplished
by the combination of the following:"
Information In the data base which allowed us
to determine that the highest heart was an
instance of <card; the context set up by a
definition of one of the operatons wused in
carrying out that command, namely, the context
established by the set specification in the
definition; and the intelligence incorporated
In the system at the lowest level In the order
In which the remove package dynamically
obtalned its parameters. The combination of
these elements in an environment that
dynamically obtalns Information as required
has produced an instance of the flexibility
that people seem to have in locating and
utilizing Information as opposed to the

604

rigidity displayed by most computer systems,

Syss?
User:

Syss
User?

Sysi
Users

Sys:
Users
Syss:
Users
Sys3
User:
Sysd
User:?
Syss
User:
Syss
Users:z
Syss
User:
User:
User:
Sys:
User:
sysi
Users

Syss
Users

Syss
User:
Sys:
Users:
Syst
Users:

Syss
Ugers:
Sys3
Useri

Sys:
User:
Syst
Users
Syss
User:
Sysi
User:

Syst
User:
Sysi
User:
Sys?
Usert?

Syss
User:
Sys?
User:
Sys:
User?
Syss
User:?
Sys?

Append] x

CASAP Initiallzed

Hand is set{card, ordered-by sult and
card-value)

Input accepted

Value-set(of sult, is clubs, and
ahd df amonds, and hearts, and
spades)

Tnput accepted

Value-set{of card-value, {s ten, and
Jack, amnd Queen, and King and Ace}
Input accepted

Player{wvhich all, has hand)
Input accepted

Create obJect player named Player)
Inputr aceeplted

Lreate coblect player named Player?2
Input accepted

Create object player named Flayer3
Input accepted

Create object card namec CLardl
Input accepted

Create object card named (ard2
Input accepted

Create object card named Card3
Input accepted

Create object card named Cardi
Input accepted

Create pbjeckt card named Gardsg
Input accepted

Insert{objJect cardl, In hanc of
Playeri)

Input accepted

Insert{object cardz, in hand of
Flayert)
What is the sujit of Card2?

Hearts
khat 1s the sult of Cardl?

Di amondgs

Input accepted

Insert{obJect Card3, In hand of
Player))
What is the sult of Card3?

Spades

Input accepted

Insert{object cardd,in hand of
Playert)
What is the sujt of Card4?

Hearts
What s the card~value of Cardi?
Jack
What Is the card~value of Card2?
Queen

Input accepted

Insert{cbject CardS, In hand of
Playerl)

What 1s the sult of Cards?

Hearts

What Is the card-value of Cards?
King

Input accepted

Remove{ob Ject hearts whlch hlghest, from
hand of Playeri)
What is the means of highest?
Highest means card-value most large
Input accepted

To-the-laft{of Playeri,ls Player?)
Input accepted

To-the-left{of Player2,ls Player3)
Input accapted

To-the-left(of Playerid,ls Playerl)
Input accepted

Users Passtwho player which each,object
card<sult hearts, which lowest))

Sys: What Is the means of pass?

User: Pass(obJect card:*1,means remove(object
*1,from hand whjch your,then Insert
(object *I,tn hand of player whlich-Is-
to-the-left of player)))

SysJ What Is the means of lowest?

Users Lowest means card-value most small

Sys* Input accepted

User: stop

References

1. Allen Newell, J.C.Shaw, and Herbert A.
Simon, Empirica Explorations with the
Logic Theory Machine: A Case Study In
Heuristics, Western Joint Computer
Conference 1957, pp 218-239.

2. Allen Newell, J.C. Shaw, and Herbert A.
Simon, Report on a_ General
Problem-Solving Program. The RAND Corp.,
Report P-1584, 1959-

3. Carl Hewitt, PLANNER: A Language for
Proving Theorems in_Robots, International
Joint Conference on Artificial
Intelligence, 1969, pp 295-301

605

