Session 22 General Problem Solving

THE ARCHITECTURE OF COHERENT INFORMATION SYSTEM:

A GENERAL PROBLEM SOLVING SYSTEM*

C. V, Srinivasan
Computer Science
University-
New Jersey 08903

Department of
Rutgers
New Brunswick,

Abstract

This paper discusses the architecture of a meta-
system, which can be used to generate intelligent
information systems for different
It points out the kinds of knowledge accepted by the

system, and the way the knowledge is used to do non-
trivial problem solving. The organization of the
system makes it possible for it to function in the
context of a large and expanding data base. The

meta-system provides a basis for the definition of
the concept of machine understanding in terms of the
models that the machine can build in a domain, and
the way it can use the models.

1. Introduction

Our objective is to create a meta-system which
can be used to generate intelligent information sys-
tems in different domains of discourse. The' meta
system is called the META DESCRIPTION SYSTEM CMOS).

It has facilities to accept definitions of descrip-
tion schemas and descriptions themselves, of" "KNOWLEDGE
about facts, objects, processes, and problem

solving -- in a domain. A domain might be a disease
system, a piece of mathematics, or computing systems

themselves.
of knowledge
as an
For a domain M,
with it
M.

The description schemas and descriptions
in a domain specialize the MDS to act
intelligent information system for the domain.
the information system associated
is called the COHERENT INFORMATION SYSTEM of

In our research we have two principal concerns:
How may one describe knowledge in a domain to a

(1)

computer; what kinds of knowledge should a system
have to exhibit intelligent behaviour; what operation-
al facilities are needed to accept and use such

knowledge? (ii) How may the computer be made to use
given knowledge automatically to solve problems in
the domain and answer questions?

The MDS accepts and uses three kinds of know-
ledge: a) Structural knowledge pertaining to the form
and syntax of descriptions. Descriptions may, of
course, be strings of words in some language. The
MDS will translate such descriptions to structures
within a relational system. The relational system
itself may consist of constants, variables, predicate

symbols, function symbols, logical operators and
quantifiers. The structural knowledge specifies the

structure of the relational system used in a domain.

b) Sense knowledge: Logical assertions pertaining to
the sense in which structures are interpreted, and

constraints on admissable structures beyond those

specified in the syntax. And, c) Transformational
knowledge: This pertains to the knowledge necessary

to transform given descriptions of specific objects to

new ones, according to specified criteria.

2

This work was supported by a research grant from
NIH, grant number RR-643,

domains of discourse.

618

Corresponding to these three levels of knowledge

there is a hierarchy of problem solvers, (CHECKER,
INSTANTIATOR), THEOREM PROVER (TP) and DESIGNER, in
order of increasing complexity. The (CHECKER, INSTAN-

TIATOR) system acts as a sophisticated data management
system that establishes, maintains and updates the
data base of models of specific objects in a domain
a manner consistent with the structural and sense
knowledge. CHECKER can answer questions pertaining
to any of the specific models for which the informa-
tion is either directly stored in the data base, or
is directly derivable by evaluating a given logical
assertion in a given context. The THEOREM PROVER
adds power to the CHECKER in three ways: In certain
cases it helps reduce the search effort of CHECKER
by giving it advice based on deduced consequences of
sense knowledge; where feasible it can warn the
CHECKER of impossible situations in the generation
and updating of models; it can also determine general
truth values of assertions based on the structure and
sense knowledge. The DESIGNER adds further power to
the system by enabling the system to plan courses of
actions using given action primitives (Transformation
Rules} in a manner consistent with the facts of a
problem. This hierarchy imposes a very useful classi-
fication of system facilities, and gives the system

a considerable flexibility.

in

The descriptive language of a domain is itself
specified in terms of the model definitions in the
domain. Language analysis is thus looked at as a
model building process. Most importantly, the model
definitions in a domain may include definitions of
Problem Solving States (PSS), relevent to the domain.
The PSS may provide facilities to summarize the
problem solving experience of the system. This sum-
mary may be used to intelligently guide the problem
solver.

This work on MDS and Cl-systems may be thought of
essentially as a further extension of the trend start-
ed by REF-ARF[I,2], QA4 [3], POPS [41, STRIPS [5,61,

and PLANNER [7], Its problem solving activity uses
"means-end" analysis, a concept originally introduced
in GPS [8], and function invocation schemes based on

goals, introduced by PLANNER. Ct-Systems have both
the flexibility of PLANNER-like systems, and model
based reasoning abilities of a GPS like system. The

entire system depends on the way descriptive data
structures are organized in a given domain. However,
the availability of data structure and model defini-
tion facilities, and a separate data management sys-
tem makes it possible to completely isolate the data
structure and data base details from the problem
solving programs. This makes it possible to conceive
of the meta system, the MDS, to create CIl-Systems

for different domains. It seems reasonable that, if
the classes of possible models of objects in a domain
could he described to a computer then, in principle,
the computer should be able to make use of the des-
criptions for problem solving and language understand-
ing in the domain. In Cl-Systems we show how (a)
classes of models can be defined and (b) how the
definitions could be used for language analysis and
problem solving in the domain.

The principal
architecture are:

i) A facility to use large data bases;

ii) A stratification of knowledge in a domain and
the facility to use a highly flexible descriptive
mechanism to describe objects and problems in a domain;
the possibility of describing knowledge in a domain
in a systematic way to a computer;

iii) The definition of the descriptive language
itself in terms of the models the system can build
in a domain; and

iv) The possibility of specializing the MOS to
operate efficiently as a problem solving system in
a domain of discourse.

contributions of the proposed

The MDS is now being implemented in LISP 1.6.
Some parts of it (see Section 3) are now ready. This
paper is, therefore, a report on work currently in
progress. It introduces the principal architectural
concepts of MDS and CI-Systems in the context of an
example, the Missionaries and Cannibals* (M&C) prob-
lem [9]. The structure of CHECKER and DESIGNER is
explained. The operation of the THEOREM PROVEN is
discussed in [10]- In a subsequent paper the language
processor will be discussed.

2. An Overview of the System Architecture

2.1. Templates and Their Instantiations

2.1.1. The Templates

The concept of TEMPLATES, the devices used to
specify structural knowledge is central to the entire
system architecture. Templates classify objects in a
domain into objects of different kinds and types.
Each template specifies a certain description struc-
ture. Thus, in the M&C problem (see Table 1) PLACE,
PEOPLE, VEHICLE, etc. are different kinds of objects.
The template for PLACE, for example introduces two
relation symbols: occupants and position of. The
pair of relation symbols (occupants, occupants of)
for example, are inverses of each other in the sense
that in instances of PLACE and PEOPLE the relations
(PLACE occupants PEOPLE) and (PEOPLE occupants of
PLACE) will always appear together in the data base
of models. PEOPLE is just a list of PERSONS. An
instance of type classification occurs in the PERSON
template. A PERSON can be a MISSIONARY or CANNIBAL.
In MDS type classification always reflects distinc-
tions in the way objects are used. The templates
thus specify the structure of the relational system
for a domain: the relation symbols to be used in the
description of various kinds of objects in the domain,
and the kinds of objects that a relation symbol may
relate.

Given such templates, one may use the INSTANTIA-
TOR to create descriptions, which are instances of
the templates. Such instances might be specified to
the system in some external language, which is trans-
lated to the internal representation in the relational
system. Or, the system itself might generate an
instance of a template when called upon to do so, In
either case, to complete the instantiation of 2 tem-
plate, all the relation symbols defined for the tem-
plate should be assigned values. These values will

There are three missionaries and three cannibals on
one bank of a river. They want to go to the other
bank. There is only one boat available. It can carry
only two people at a time. The cannibals at a shore
should not outnumber the missionaries at the same
shore. Find a way of transporting them.

TABLE I TEMPLATES FOR THE M8C PROBLEM

1. PLACE: (occupants PEOPLE occupants of), CC1
(position of VEHIL position), CC2

2. PEOPLE: (elements PERSON elements of)
3. VEHIL: (elements VEHICLE elements of)
4. PERSON: (type PTYP type of)
(occupant of PLACELl occupant), CC3
5. PTYP: MISSIONARY, CANNIBAL
6. PLACEL1: (elements (PLACE, VEHICLE) elements of)
7. PLACEL: (elements PLACE elements of)
8. VEHICLE: (pilots PEOPLE pilots of)
(position PLACE position of)
(cango to PLACEL destination of)
(capacity INTEGER capacity of)
(occupants PEOPLE occupants of), CC4
[CC1] (*! occupants ((PEOPLE X)(*! occupants X)
((NUMBEROF MISSIONARY X)2
CANNIBAL X))v
(NWUMBEROF MISSIONARY X) is 01)))
[CC2] (*! position of ((VEHICLE X)(M position of X)

(X cango *1)))
[CC?>] (*! occupants of.#.is 1)
[CC41 (*! occupants.".-m. capacity of *I)

be specific instances of objects within the data base.

Thus for the MfC problem one may create instances
of PLACIi's called RBANKI and RBANK2, a VEHICLE called
BOAT, and as many MISSIONARIES and CANNIBALS as nec-
essary. Each PERSON will be the occupant of some
PLACE and the VEHICLE itself will be at one of the
PLACES. We have not, however, introduced any of the
conditions of the problem. Not all instantiations of
the templates of the M&C problem would represent legal
situations. The necessary additional constraints are
introduced by the sense knowledge. Every relation
symbol in a template may have a Consistency Condition
(CC) associated with it. ©CC1 in Table | is associated
with the symbol "occupants". It says that the
CANNIBALS at a PLACE cannot outnumber the missionaries.
The symbol "*'" in CCl refers to the current instance
of PLACE at which the CC might be evaluated. It is
called the anchor; (PEOPLE X) stands for " (VX)(X is
PEOPLE)". All CC's have the form: "(*! r P(X)}" where
*1 is the anchor, r is a relation symbol occurring in
the template associated with *!, and P(X) is some
logical predicate. The predicate P(X) is said to be
anchored at the (template, relation symbol) pair.
Thus, the predicate in [CO] is anchored at (PLACE,
occupants).

In [CCI] notice that "(*! occupants X)" is itself
a term in its predicate. This has the following sig-
nificance: For a PLACE like, say RBANKI, if the system
is told to set (RBANKI occupants y) for soma y, it
would first construct the combined list of existing
occupants of RBANKI and y, and then verify the predi-
cate. CC's of this kind are called declarative CC's,
as opposed to the other kind, called imperative CC's,
like, say (for a hypothetical template PERSQN1)
[CS1] (*I sibling ((PERSON) X)(NOT (Xis *!))

(X child of.father of *!)))

[CS1] may be used to find the siblings of a PERSON1 in
terms of the child of and father of relation symbols.
The CHECKER is used to evaluate CC's. We shall dis-
cuss the evaluator in Section 2.2,

The significant points to be noted about CC's are
the following:

(i) the knowledge represented by the CC's is
of a different kind from the structural knowledge,
specified by the templates.

i Each CC is specifically associated with a
particular relationh symbol. A relation symbol, say
"likes", might be guite different in the context
(HUMAN likes SOMFTHING), from (CATTLE 1ikes SOMETHING),
A CC is invoked and interpreted only within the parti-
cular local contexXt of its anchor, within the overall
structure of descriptions.

{(iii) The logic of the CC's is highly dependent
on the structures specified by templates. Also, for
a given system of templates there may be more than
one¢ way of choosing and anchoring the CC's. Further,
for a given domain, therc will undoubtedly be several
ways of Jdefining the templates and its associated
CC's. These different definitions will correspond
to different ways of representing the knowledge in
the damain, The MDS provides facilities to experi-
ment with different choices. At present we have no
formal guidelines to make these choices intelljigently,
The particular choices made in a domain will have an
effect on system efficiency.

2.1,2 Instantiation of Templates

We shall call an instance of a template as the
model of the object instantiated. Thus, the model of
RBANK] will be an instance of PLACE. Every triplet
(% T ¥) (where r is a relation symhol) appearing in
the model x should be dimensionally consistent: That
is, for some templates M and T, where x is an instance
of Mand ¥y is an instance of T, either {M r T) occurs
in M, or (T r M) eccurs in T, where ¥ is the inverse
of r, There are a few relation symbols which are
system wide, like template of, name of, elements of,
arguments of etc,, which can appear with all instances
In the data base, and need not be defined in the tem-
plates.

The model of RBANK1 will be a vector of five
pointers, say (P:o'Pn’Peo’Po'Ppoj corresponding to
the relations template of, name, elements of, occu-
pants and position of, respectively, Fto will point

1 2 1
tu'P to}’ where Pto points to the PLACE
template, and Pto to pussibkly local comlitions {LC's)
associated with RBANKI, Pn will, of course, point
to "RBANK1™, Let r be any one of the remaining
Telations: P will point to 2 quintuple of the form
{#,Pl,Pz,PS,P4), called the descriptor unit of
Pr (Sr F).r ¥ The elements OF the Hescriptor unit
aTe the following:

to a pair (P

bescriptor Uit

P:: Pointer to y such that [RBANK1 r y) is txue,
or pointer to list (¥) such that (RBANKI r z)
is true for every z £ y. We shall write this

3 8s (RBANK]I r (¥)).
Pr: Pointer to 1list (y) such that for every z € y,
5 (NOT(RBANKI r z)) is true.

P_: Te local conditions on values of (RBANKI r).

P%: Te TR's (Transformation Rules) local to
(RBANKL 1), called LTR's.

¥

: The number of elements in the list, set or
triplet pointed to by Pg.
Every Pi will have an inverse, say ;i, which will
point back toIRthxl; Fi is thflsaf; as P4;. T?e
Pro) will be (P L), where ‘p'w

inverse of (Pto’
{i for instance); P; will point to

is the same as P
RBANK1 from PL&C% template.

A pointer in a model cen have one of four values:
NS{Not Stored), NEI [Not Encugh Information]), NIL, or

620

an address (or value). Initially all pointers in a
medel are set to NEI. A list, set or tuple will have
NEI as ar element if it is incomplete, Templates

thus specify the data structures of models in a de-
main. They provide the basic framework for the organ-
ization of domain dependent knowledge. They also
play a major role in the specification and use of
problem solving programs in a domain, as we shall see
in Sections 2.2 and 2.3,

There are about fifteen different kinds of tem-
plates in the MDS. Variations in the structure of
descriptions may be specified by defining, what are
called variable templates. Exceptions to the CC's
may be specified by associating local conditions
(LC's) with specific instances of templates. An LC

may he & congunctive LC (CLC) or a disjunctive LC
{DLC). A ¢l should satisfy ((CC A %Eti Vv DLC) at
each one of its relation symbols. Similarly, trans-
formation rules (TR's) for changing a model may be

Tocal to a medel (LTR) or may be associated with tem-
plates themselves,

In addition to the CC's associated with pairs
M, 1), where M is a template and r is a relation
symbol, t may also have Properties (PR) defined for
it, which apply ta all cccurrences T within the rela-
tional system, A typical such property is the trans-
itivity property. For a model m, the PR's are used
to identify objects y, such that (m r y) is true, but
is not stored in the data base.

All problem solving programs communicate with
the data base via the INSTANTIATOR and CHECKER. Tem-
plates also provide a way of classifying and storing
the CC's, LC's, TR's and LTR's. Every CC (LC) is
anchored at (m, r) where m is a template (or madel)
and r is & relation symbol {relation) defined on m,
The DON-list of a CC (LC, TR, or LTR) is the list of
{mi,ri] on which it depends, The DET-list of a pair
{myT) "1s the list (m,,r.) of pairs which depend on
{m,r}. So also, the'DET-1list of a TR (LTR} is the
list of (m.,r.) which are affected by the TR (LTR].
The DON and 'DET 1ists are stored with each CC, LC,
TR and LTR. Also, every pair {m, r) will have a
pointer to its associated CC, LC, TR and LTR.

2.2 Evaluation of Consistency Conditions

2,2,1. The Logic of CHECKER

The evaluation of {C's, LC's and PR's will in-
volve searching of the models in data base. The
conditions themselves specify the search paths, The
anchor "*!" may be used to optimize this search.

One can write small efficient programs (say, about
3K PDP-10 words of compiled LISP code) to evaluate
these conditions., (Alternatively one may compile
each CC and PR individually.) The CHECKER is the
interpreter for CC's, LC's and PR's, It uses the G
function (G for Get) of the INSTANTIATOR to retrieve
objects from data base. 6 does the following:

Q1Y GIX r) = {y | (x r y¥)} (This may include

NEI}, or RIL or NEI,
(2} G(X r ¥) = YES, NIL or NEI
(Q3) G(X ? ¥} = p, NIL

where p is a relation path (ri,rg....,rk) joining X

and Y (the shortest one}. G Just locks up the data
base using the templates. If the answer is NS, NEI,
or if NET is included in the answer, then G will in-
voke the CHECKER to evaluate the associated CC's,
LC's and PR's. This evaluation may cause the NEI to
be Temoved and possibly add new elements to (y).

The CHECKER operutes on a three valued logic
system having tTuth values T (TRUE), F (FALSE} and
? (NEI). The logic of CHECKER is shown in TABLE II.
For a given predicate P, besides returning its
togical value (one of T, ?, F}, the CHECKER also
returns seveén other quantities, all of which will be

useful are given below.
is shown in Table II,

The logic of these functions

Let ¢ and ¢ denote valuations of the variables
in P. Assume in what follows, that & certain task
k was done either by the THEOREM PROVER or DESIGNER,

subexpressions of P. These are explained balow. and the outcoms of the task k depended on P. 4lso,
TABLE 11: LOGIC OF CHECKER
Literal x ¢ denotes the valus of x.
b | TRy | BR 1) | R () TB,(X) | PP (x) | NTP, (x) NFPLCOL AT o7 Bl vET 1 R g | e
T X T T x T T x T[T *? T T T||T F
7 7 X ? ? x ? 1 7 ? 7 ?
E__F F x F E x X E F|F F F FIT * F F T
Propesitions: P, Q. Let X denote one of TR, FR, R, TP, FF, NTP, NFP. Then
[Xd([P A =~X¢(~P v ~Q}] is true.
Also VA" and "v' are symmetric:
X¢fP AQ) = K¢(Q A P1s X¢[P v Q)= Xﬁ(Q v Pl
The various functions are defined belaw for (P » Q).
(F » Q) (¢p, ¢Q}

! (1, T (0T {T,) L] (7,F) {F,F)
] TR P A TR, (@) ? oo ? ? ¥
o T ? PR, (Q) ; TR(Q | [FR,(P) & PR (Q)]

R T RQ(Q) F [R¢(P] A R¢[Q}] F F
™ [TP¢(P) A TP¢(Q]] TP¢(P) TP¢(P] ? P F
FP [7 FP, (@ ? Fp, (@ (PP (P ~ FP Q)]
NTH T NTP, () NTF Q) INTP_ (P} A NTP_{Q)] INTP (P} & NTP (Q)]
¢ ® ¢ ¢[NTP¢(P] A NTP, (@) b
NEP l[NFP¢{P] A NFP¢6Q]}{NFP¢{P} L] NFP¢{Q]] NFF¢(P} {NFP@(P} A NFP¢{Q}] NFP¢(P} F
L . —

In 211 the fellowing functions assume that ¢ is
a particular vajuation of the variables in P.
${P}) = T, F or 7.

TR¢(P): True Residue of P. The subexpression of I
that caused ¢(P} = T,

FR¢(P]: False Residue of P. The subexpression of P
that caused $(P) = F,

RQ(PJ: Residue of P. The subexpression of P that
caused $(F) = 7.

TRP): True Part of P. The subexpression of P that
evaluated to T. o(F) itseif may be T, F,
or 7.

F%{P}: False Part of P, The subexpression of P that
evaluated to F. 4(P) itself may be T, F, or
-

NTR(P): Not True Part of P. The subexpression of P
that evaluated to F or 7, ¢(P) itself may be
T, F, or 7.

NF%(P}: Not False Part of P. The subexpression of P

that evaluated to T or 2.

The verious resjdues and parts of P are used in
the planning phase of DESIGNER to summarize past
experiences of the system. In the THEOREM PROVER the
residues are used to guide the provlem solving search.
The properties of these functions that make them

621

a2t the time k was attempted, ¢ was the valuation of
the variahbles in P. At & later time, a new valustion
y of the variables P was obtained, and the system had
to decide whether to attempt k for the new valuation.
1. (¥P){¥e) (Vo) (4 (TR, (P)) = ¢ (P)).
Tf ¢(TRy(P)) is true then try k again.
2. {¥P1{¥¢) (¥) (~$ (TRy (F)) = ~4(P)).
fia ot try k iFf ${FRG(P}} = F.
3. (YPY (YY) (40) ((6 (NTPy (PY)) (4 (TP (P)) => ¢ (P)).

A goal k could not be reached for vaiuation y¢
because ¢(P) = F. Then try and find a ¢ for which
¢(NTP¢[P)}{¢{TP (P}} is true. This is nsed to break
up a goal into gubgoals. in means-end analysis.

4. (VP (V) (0) ((o (R, (PIII(# (TP {P))) ¢ (P))

Here poal k could not be reached becguse y(P) = 7,
and the unknown parts of P is given by R, [PF). Then
find a ¢ (build new objects] for which @%thp)) and
[¢[TP$(P)J are true. This is used in means-end
analysis, and in the THEOREM PROVER,

What CHECKER and JNSTANTIATOR can do; What
more Ts needed

2.2.2.

The CHECKER and INSTANTIATOR together act as a
fairly sophisticated data base management system.

The CHECKER makes sure that data entered into the
data base is consistent, and also keeps track of
what additional data is needed to complete the des-
criptions of objects with respect to the templates.
The templates for a domain describe the structure
of the data base for the domain. The CHECKER uses
this structure to guide the INSTANTIATOR to create
and retrieve items in the data base selectively.

The limitations of the CHECKER arises in the auto-
matic guidance it can provide in the updating pro-
cess. The CHECKER has facilities to interpret
individual CC's and to recognize the relation symbols
whose value in the data base might be affected as a
result of a change made at one place in the data
base. CHECKER keeps track of the relation symbol,
by cataloging the relation symbols in terras of their
appearances in the various CC's. In general, a
change in the value of one relation symbol might
propogate through the data base to a series of other
relation symbol values. As long as any given in-
stance of the value of a relation symbol does not
repeat itself in this series, CHECKER will have no
problems. It can execute the series of necessary
changes without ever having to go back to a value
that it had previously changed within the sequence,

CHECKER simply performs search in the data base,
and logical combinations of search. It has only sim-
ple facilities to keep track of alternate choices in
search paths, and choices in possible valuations of
relation symbols. Also, CHECKER can handle only
constants as possible valuations for relation symbols.
When the number of alternatives is large or when
loops occur in an updating chain, the CHECKER, if
left to run will keep assigning new values to the
relation symbols involved until a consistent set of
valuations is obtained, or until all known possibil-
ities are exhausted. The only choices it can generate
are those that are already available in the data base,
or those that may be obtained by evaluating specific
consistency conditions in specific local contexts.

It does not have the capability to deduce logical
consequences and make use of them to find contradic-
tions where possible. To do this general theorem
proving capability is necessary. The essential
difference between the CHECKER and a THEOREM PROVER
(TP) is the following: Whereas the CHECKER can assign
as values to relation symbols only specific constants
in the data base, the TP can assign as values,
variables with specified logical properties. The

TP can carry with it the logical properties assigned
to variables and use them in making new assignments
as it goes along. Resolution based theorem proving
systems have this capability built into the unifica-
tion algorithm [see Nilsson, 1971].

In MDS the CHECKER will invoke the TP whenever
it does not find enough information in the data base
to evaluate a CC at a particular anchor, or whenever
the validity of an assertion is to be proven univer-
sally; not merely with respect to the facts known
about the specific objects in the data base. The
CHECKER will call the TP also when it recognizes a
loop in an updating chain.

The deduction process and the control structure
of the TP in MDS is different from that of a resolu-
tion based system, (see [10]).

2.3. The Dynamic Aspects of Modeling: The Transforma-
tion Rules an eir Interpretation

2.3.1.

The Primitives

622

There are about twenty primitives that enable
one to do programming in a backtracking environment.
The primitives are classified as shown in Figure 1A.
The ECP's (Environmental Control Primitives) in
Figure 1A are used to establish a control environment
(cenviron) within a scope. The execution of func-
tions within the scope are affected by it. See
Table 11l for a description of the ECP's. The SCP's
are the sequential control primitives like GO, COND,
etc. There are seven active primitives, GOAL,
ASSERT, DELETE, CANDO, IFDON, TRY and BIND. The
execution sequences for the GOAL and other active
commands are shown in Figures 1B and 1C. GOAL in-
vokes appropriate definitions from data base, and
does "means-end" analysis when necessary. ASSERT
and DELETE issue | and D commands to the INSTANTIATOR,
when successful. All primitives, other than the con-
trol primitives, may have CANDO, IFDON and TRY func-
tions associated with them. A primitive can be
executed only if its associated CANDO's are satisfied.
If a primitive fails then one may try its associated
TRY functions. |If a primitive is successful then
its associated IFDON's should be executed. Only if
the IFDON's are also successfully completed may the
primitive return success to its parent. Let us follow
the operation with an example.

2.5.2. Interpretation of the Active Primitives

The syntax af the various active primitivas is
shown in Table IV. The DESIGMER iz the interpreter
for the primitives., Consider, for example, the
<dimension> {See syntax of <dimension> in Teble TV}
of the GOAL function TR1 in Table V:

{(PEOPLE X} ({PLACE P Q) {P occupants X]
%“—““" RS __._}
(GOAL (Q occupants X)))

<bindings»

&— <fn-clauser ———3

The function call that will cause this TRl to be
invoked is

{ (PEOPLE X) {(GOAL (RBANKS2 occupants X))}

<bindings> «———<fn-clauser >
Let us follow the interpretation of this function

call, as specified in Figure 1B.

1) Find Possible Bindings
The CHECKER is used to bind variables in e

<dimension> statement. We shall assume that the
<proposition> in the GOAL-clause is always in dis-
junctive normal form. In the above case X wilT be
bound to M1 M2 M3 C1 C2 C3). If the CHECKER returns
NEI, or a loop is encountered then the TP may be in-
voked to complete the bindings. Unless the IDR-—
clause ([se& Table III for an explanation of the IDB-
clause) is present the TP will creat new objects, if
necessary, to complete the bindings.
2} Find Initial Conditions

This is done by checking whether the GOAL is
already satisfisd in the date base for specific
bindings of variables. In the case of our example,
this will bring out the fact, (RBANKL occupants
(M1 M2 M3, C1 C2 C3)). This will cause the following
jnvocation pettern to be built:
mﬂ%‘{mm M3 C1 CZ C3))}
(PLACE (X2 + RBANK1){X3 «~ RBANK2) (X2 occupants X1}
€ - <bindings> ~ —————.
(GOAL (X3 occupants X1))})e——— <fn-gclause>

__l-——:m\cT ION PRIMITIVES
[1A] PRIMITIVES

~—~+ENV IRONMENTAL CONTROL PRIMITIVES
——>CONTROL PRIMITI‘JEs——‘—_y

SEQUENT1AL CONTROL PRIMITIVES

[1B] GOAL FUNCTION SEQUENCING

<~ GENERATE SUBGUALS FROM NECESSARY CONDITIONS

—

P — e a
_ R SR FATLURE
I goat 'FIND ALL ANY CHOOSE ONE. (ANOTHER) FIND FORCE
RUNCTION POSSIBLE BIMDINGS YES | FIND INITIAL CONDITIONS, ANY GOALS
CALL VARIABLE LEFT? | BUILD INVOCATION PATTERNS, FUNCTIONS?
BINDINGS INVOKE ALL APPROPRIATE
—— FUNCTIONS
o —_
A
RETURN FAILURE ANY LEFT? CHODSE ONL EXECUTE RETURN
(ANOTHER) FUNCTION "~ %¥ SucCESS
FAILURE 7
[1C] SEQUENCING FOR FUNCTIONS OTHER THAN GOAL FUNCTIONS

RETURN FALLURE

— . FATLURL

EXECUTE. \ SUCCESS
\-.‘ CANDO
——
FIND ALL ANY CHOOSE ONE "IN CASE OF ASSERT AND //fm\ NO
POSSIBLE BINDINGS [ANOTHER) DELETE: 1S STATEMENT ~ CANDD 5 —p 4
VARIABLE LEFT? ‘TRUE IN THE DATA BASE? - 7
BINDINGS S S
f FAIL
CIODSE ONE EXECUTE
{ANOTHER) Q;v/ +
FAIL _ e e BUCCLSS
CHOOSE ONE e
| {ANOTHER) B IFDON'S
(O
SUCCESS 3 RETURN SUCCESS ¢
FIGURE 1: CLASSIFICATION OF PRIMITIVES AND TSEIR BXECUTION SLQUENCES

Let b be the <bindings> and g the <proposition>
of the <fn-clause>. The cannonical form of an inve-
cation pattern (also a <dimemsion> after binding the
variables) is

(<bound quantifiers>[(b1g v...v {b_g 1)

where each b. and g. is 4 ca%junction Bfeerns,
possibly with OPNL, IFND, IDB or * clausss, Let D
be an invocation pattern and D, any =dimension> in
the data base, D, and D are siid to match, (U,= 1)
if thare exist bigdings for the variables in Dy such
that for some bi in D, anpd bk in D [hinP b.) and
(g. = g,), and 1n addftion b¥, is trudlin the data
bakd, eb.. will be the inflial conditions. The
invocation phlcess will retrieve all D, that match D.

623

If no such functions, I',, are available then the
DESIGNER will force the GOAley issuing the appropriate
ASSERT and DELETE commands. These will cause their
associated CANNO's to be eiecuted. If the CANDO's
succeed then the corresponding 1 and D commands will
be tried. This will cause the associated CC's te be
evaluated at the given bindings of the variables,
say 4, If the CC's are pnot satisfied then the NTP
{Not True Part of y) and TP, (True Part) will be
issued as subpoals. If the CANDO's are not satisfied
then the goal will be abandoned.

In general, both the binding and invocations
processes will return more than one pessible course

TABLE II1: THE CONTROL PRIMITIVECS

ECP'S: ENVIRONMENTAL CONTROL PRIMITIVES
1, sup SUPPRESS execution of specified class of functions within a sceope.
2, OPHL Failure of an OPTIONAL clause will not normally cause backtracking.
3. IFND Backtracking can occur only if the IFNEEDED clause also failed,
4, REPEAT REPEAT until & given condition is satisfied.
5, DSJIN A disjunction of statements is to held.
6., CNJN A conjunction of statements is to hold,
7. RSLE RELEASE a previously suppressed class of functions,
§. IDB Bind only to objects in the data base. Do not create new objects,
g, * The DESIGNER cannot change *ed items; if changed their values should be restored bvack.
5CP's: SEQUENTIAL CONTROL PRIMITIVES
1. GO GO to a labhel.
2. COND Like LISP COND: backtracking under FAILURE is allowed.
3. KILL KILL a function and make it show either SUCCESS or FAILURE,
4, SUSPEND Suspend execution of a function.
5. ACTIVATE Activate a proviously suspended function.
6. BKTRK Backtrack to a specified label.
EXAMPLE : {OPNL{REPEAT =<Termination Condition>(SUP TRY){...)({...) (ASSERT...}))

The repeat clause is in the scope of OPNL. Hence no backtracking will occur on FALLURE.

of REPEAT all exscutions of TRY functions are to be suppressed.
— - - . . . -

Within the scope

TABLE IV: THE ACTIVE PRIMITJVES: THEIR SYNTAX

(1
(A)

GOAL FUNCTIONS:

<gfn-defn> + (<dimension><body>); <dimension> + (<bindings><fn-clause=);

<body>» + <fn-call> [<body»<fn-call>; <fn-clause> + (GOAL <propasition>};

<bindings> + <predicate>](OPNL <predicate>)|{IFND <predicate>) |{JUB <predicate>}|<bindings><bindings>;
<proposition> + <propeositional expression which may include OPNL, IFND, IDB, and * clauses>;

CANDO and IFDON STATEMENTS and TRY FUNCTIONS

<cifp> -+ CANDO | [FDON; <cifn-defn> + (<cifn><dimension><cibpdy>);
<¢ibody> + <cistnt> | <cibody><cistnt>

«cistnt> + (<i{imension*<TRY-fn>)| {<bindings><TRY.fn>)

<TRY-fn> + (TRY <bindings><body=).

FUNCTION CALLS

<fn-call> + <TRY-fn>| (OPNL <body>)1(IFND body) | (IDB body) | (SUP <fn-clause=) |
(SUSPEND) | [ACTIVATE <dimension>) | <COND-stnt>|{GD <label=}|
{BKTRK <label>)|<BIND-stnt> (This is 1ike SET in LISP) |
<dimension> | (PROC <bindings><body> | [ASSERT <bindings>
<preposition=)) | (DELETE <bindings><propositions>)).

(B)

(2]

FUNCTION BEFINITION FORMS N T

of action. In both these cases the problem solver
needs to be guided intelligently in making its choices.
The DESIGNER has some built-in facilities for intel-

cc_summary: [CCS]:
tions of CC's(branching conditions,
and bidding conditions, made during the tenure of

A CCS is a record of evalua-
CANDO conditions

ligent selection of choices from a set of alternatives.
(PSS) provides this guidance.

The Problem Solving State
This is discussed in the next section.

2.3.3. The Problem Solving State

The PSS itself is defined by templates. The PSS
template is shown in Table VI, This table is self-
explanatory. Every time the DESIGNER invokes a func-
tion or executes a <fn-call> it will create an in-
stance of PSS corresponding to the function. The net-
work of all such PSS instances is the problem solving
protocol. The CC's associated with the PSS template
provide the necessary guidance to DESIGNER. Of
particular interest are the CC's associated with the
bindings and alternates (see Tables VI) relations.
Let us call these [CCB] and [CCF], respectively.
These CC's will specify the choices of current
bindings and current function. Two important notions
that make this possible are the notions of similarity
of two PSS instances,

and cc_summary of a PSS instance.

624

a PSS instance. For each sequence of conditions
evaluated, the CC-summary will contain: The TRUE
RESIDUES of the conditions evaluated if the condi-
tion evaluated to TRUE, the FALSE RESIDUE, NOT TRUE
PART and TRUE PART if the condition evaluated to
FALSE, the RESIDUE if the condition evaluated to NEI.
It will also have the outcome (fn-state) of the PSS
instance in which the condition was evaluated,

and specific variable bindings if any in terms of the
kinds and types of objects used. All variable bind-
ings in the CC-summary of a PSS will be specified

in terms of the variables that appear in the bind-
ings of the PSS. The concept will become clear in
the example considered below. The Consistency Condi-
tion [CCB] uses CC-summaries.

The general rule is: Pick for bindings the same
kind and type of objects that previously succeeded in
"similar PSS instances; do not pick the kind and type
of objects that previously failed. Use cc-summaries
to check whether a chosen binding is likely to
succeed. If no bindings could be picked by the above
rules, then pick arbitrarily.

TABLE V: THE TRANSFORMATION RULES POR THE M&C PROBLEM

e ———— i —— e ————— _ — —— ————a,

(TR1} GOAL FUNCTION DEFINITION, IT SAYS, '"PICK UF SOME PEOPLE Y, POSSIBLY AS MANY AS THE VEHICLE WILL HOLD,
LOAD THE VEHICLE WITH Y, AND TAXE THEM TO Q. *PROC" IN THE STATEMENT BELOW STANDS £0OR PROCEDURE,
IT 15 SIMILAR TO PROG IN LISP, BUT DIFFERS FROM PROG IN THE SENSE THAT PROC HAS BACKTRACKING.

({(PEQFLE X} (PLACE P Q) (P Occupants X) (GOAL(Q occupants X))

{REPEAT (Q occupants X)
(PROC {(SOME VEHICLE V) (SOME PROPLE Y) (OPNL(Y #.is.capacity of V) (Y among X))

Y. (ASSERT (V soeupants Y) (NOT (P occupants)

2, {ASSERT (v position QF (NOT(V position i}
3. {ASSERT (v oceupants. are. socupants of Q) (NOT{V gccupants Y))))))

(TR2Z) CANDO CLAUSE FOR LOADING A VEHICLE. 1T SAYS, "UNLDAD THE VEHICLE FIRST. IF THERE ARE MORE PECPLE THAN
THE VEHICLE CAN HOLD THEN DROP SOME AND TRY AGAIN, IF THE VBEHICLE 15 NOT AT THE SAME PLACT AS THE
PEOPLE ARE, THEN BRING IT TO WHERE THEY ARE. [EACH TRY STATEMENT IS PRECEDED BY THE CONDITIONS, ON
WHOSE FAILURE THE TRY WOULL BE ATTEMPTED.

(CANDO {(PEOPLE X) (PLACE P) (VEHICLE V) (P pccupantsX) (ASSERT(V occupants X} (NOT(P pecupants X)))

1. (ASSERT(V position PJ)
2. ((PEDPLE Zii? occupants I} [ASSERT(F occupants 2) (NOT({V occupants 2))))
3. X 1,§3caﬁacitz o¥ d]
{TRY {(SOME PEOPLT ¥) (Y ancng X (ASSERT [V occcupants ¥) (NOT (B occupants Y1)
{IFDOK(KILL (ASSERT [V oegupants X) (NOT{P occupants X}})))3))
(TR3) CANDO CLAUSE ASSOCIATED WITH RRINGING A VEHICLE FROM A PLACE P TO Q. IT SAYS, “GET A FLLOT AND TAKE
THE VEHICLE, 1IF PILOT CANNOT BE REMOVED GET SOME ONE TO GO WITH HIM'.
(CANDO ((VEHICLE V) (PLACE P Q) (V positionP) (ASSERT(Y position Q) (NOT(Y positionP})))
1. (((S0ME PERSON Y) (Vv pilot Y)(V occupant ¥))
1A, [TRY((SOME PERSON Z} (¥ pilot Ziiﬁ pccupants 1)

{ASSERT (V occupants Z) (NOT(P occcupuntsZ}})})
iB. (TRY((SOME PERSON X YI((V EilotW%T— pitat Y1} (P E:'E_cap'é'n‘t; X YN

(ASSERT{V occuEants(K Y o (r occupants [x

TABLE ¥I: P35S TEMPLATE

(dimension DIMN) : <«dimension® of the function

(intl, state MODEL STATE) : Initial State of Model

{bindings BINDINGS) : 411 possible variable bindings and current bindings

{alternates PSSL) : PSS instances of possible alterpates; also the currently active function
(cc- summary CCSL) ; summary of CC's evaluated during the active tenure of fn

(fn-state FNSTATE) : Function States: ACTIVE: SUCCESS, FATLURE, SUSPEMDED

(cenviron CENVIRON] : The Control envirorment

{history PSSL) 1 Previpus instances of PS5 with the same dimension

(type PSSTYP) ! Any useful type classification of P55

(final-state MODELSTATE) : Model changes done by the PS5 instance

(suceessor PSSL) 1 Possible successor functions

(predecessor PSSL) : List of parent functions

(conditions CONDN) : Conditions appearing in REPEAT, COND and other such statements that caused

the current PSS to be invoked

To define the notion of similarity of two P35S its predecessor, together with whatever might have
states we need some additional concepts. Let k be an been added by the function invocation process per-
arbitrary PSS instance defined as follows: formed in k, all expressed in terms of the variables

k: (dimension Dk}(bindings B,) (initl-state I,) jn ¥, and constants in Nk' For every 8, ¢

[alternates Ag)(fn-State 8.3 (cenvirons Ek) R [& } is true for the given constants In N,. Not
(ce~summary CC k)(history H) (Type T,)} af1 of the constants in N, might be used in Ehe PSS
{final-state P8) (successor Uk}(predecessor Rk} instance. The used ones gre precisely those that

(eonditions C) agpear in the CC-summary of the P55 instance. Let

Let ¥V, = {X,,%,,7..,X_ 1 be the variahles appearing Nk dengte the used ones in k.
in the <dillensio>,’D,. LBt Dy itself be (QP.F))
where (, is the <quan¥ifiers> of O, Pk its Two PSS instances K and .J are similar if
<proposition> and F, it$ <fn-c1ause§ (See Syntax of {1) They have the same dimension, D =Dy. Thus
<dimension> in Table IV). Let B, = [(Xi +~ A VysVy, and K and § are in the same hiskorf list,

1 =i s m)be a specific binding of the varidbles in Hy »"H. Also, the type of K is equal to the type of 3.
V. such that 8 (Pk] is TRUE. The bindings Bk is the (i) They have the same control environment,
set of atl such g,. The ipitial-state, I,, 15 a Ek'Ej’ and

conjunction of tedms defified on the variahles in vV
and possibly some constants in the data base, Let

N, = {N, ,N._,...,N.] ba the constants in I . In each
P§S ins%ange X, I: is the same as the fin&l-stnte of

(id) v

'NK’ satisfy one or more of the cc-summar-
iez in J,

§or some binding 8, e B,. So alse, V.,

N
. . . J
satisfy one or more cc-summaries in K for some b{nd1ng

[BJ.
K is identical to J if D =D,
B,=B_, and N& N3 KJ
K oJ K= "J
To understand how these work let us consider
the solution of the M&C problem.

8y
Ty=T;, EyeE

K-

(CONDITION C1: "(Q occupants Z)" is not TRUE)

1. TR 2 \/l 3,

["GOAL | ———{ REPEAT |15 PROC

(CONDITION C2: (X ¥ - ...))

6. 7. 8, \-35 9.
ASSERT}—| ASSERT}— TRZ- 3} =< 5l TRY]
TRZ-1 TRZ:2

15 10 - 12
ASSERT f——] ASSERT |CANDD }——{TR 3
TR1-3 TR1:2 TR3

Figure 2:

2.3.4 MRC Problem Solution

The sequence of possible functiop calls is
shown in Figure 2. Each box in Figure 2 is labelled
to indicate its correspondence to the functions in
Table V, The hoxes are numbered 1 through 15. For a
box with number i, let Ki denote its associated PSS
instance,

Suppose we are at the beginning, and are
at box 3 in Figure 1, Then the following sequence of
actions might happen [follow arrows in order):

1 ter box 4
Ja Az \s

Y + (Ml M2)}—m————>
E{V occupants Y) enter box 5

D{P occupants Y)

The indicated 1 and D commands are returned by the
ASSERT function, TR1-1 ({see Table V). This will
cause [CC4] and [CC1] to be evaluated, and the
following cc-summaries to be returned to box 3 (since

box 3 is 5till activer®:
[cCs4)[K,, 1V occuﬁants Y), (V « VEHICLE) {Y «(M,M)),

T, Fail
[ccsilIK,, DIP occupants Y), (P < PLACE) (Y < (M,M)),
F, ?aili

Here K is the PS8 instance at which the evalua-
tion took pface. The variable bindings are indicated
enly in rerms of the kinds and t¥2es of objects used.
T and ¥ are the CC evaluation outcGmes, sad Feil is
the outvcome of Ky. Notice that moving these
two co-summaries to K, maxes it still possible for
K, to use these, becalise the wariahles P end V have
ih K, the same bindings as they do in X, and none
of the terms appearing in the CC*s have changed in
vialue between K3 and Kd'

The failure of K, brings us back to K_. Now
the cheoice of next biﬁdings to be tried ui§1 be
guided by [CCB]. Either a (M,C) or a (C,C) will
succead. A more interesting case is the following.

* We shall use M for Missionaries, C for Cannibals,
Fail for Failure, T for True, SUC for success, and
F for False,

626

13
¢ A IRY| TR3:1A
1 14

TRY] TR3'1B

GRAPH OF FUNCTION CALLS IN THE SOLUTION OF THE M § C PROBLEM.

Now suppose that (M1,Cl) are already on RBANKZ. This
world have caused the following series of successful
cc evaluations:

[CCS4*1:1K) , T(V occupants Y), (V < VEHICLE)

(Y + M,0)). T. suc)
[CCSEJ: [K7,,D(P occupants Y}, (P « PLACE) (Y « (M,C)),

_ T, SUC]
[CCs2]’[Kxa' I(V position @), (Q « PLACE)

(v + VEHICLE), T, SUC]

[CCSI"]EEKIS, 1(Z occupants of Q), {Q + PLACE),
(2 <« (V occupants 7)) {V + VEHMICLE),T,SUC]

All these cc-sumnaries would now be available at box 3
of Figure Z, siftce PROC would have been still active
during the whole course of events.

After this, PROC will be reinvoked because REPEAT
will have been still active., The new instances of PSS
for boxes 3 and 4 will be created. These will be
gimilar to the previocusly created instances. The

is now at RBANKZ, The CANDO clause, box 5,
{statement TR2 in Table V) will now cause the BOAT to
be brought back to RBANK]l with s pilpt, who in this
case will have been the missienary Mi. This time,
when a new pair of PEOPLE are picked from RBANK1, the
system will already check for the satisfaction of the
successful path of CC executions, depicted by the
summaries [CCS4'}, [CCs1t], [cos2], [cesi''].

Picking another (M,C) will in this case fail; (C,()
will succeed in satisfying the cc-summaries. Thus,
with anticipation the system will pick the right
candidates likely to lead to surcess, From here on
the availability of the cc-summaries, and the pguidance
provided by [CCB] will enable the system to always pick
the right candidates. The following solution will be

obtained:
RBANKL _RBANK2
1 (M1,M2,M3C1,C2,03) none
2 (Mz,M3,Ce,CX) M1,C1)
I (M1,M2,M3) (C1,C2,C3)
4 [C1,M3) (M1,M2,C2,C3)
5 (Cl,M3.,M1,C2) M2,C3)
6 [C1,C2) (M1 ,MZ,M3,C3)
7 (€1,C2,C3) (M1,M2,M3)
8 (1) {£2,C3,M1 M2 ,M3)
g (C1,C2 {C3,M1,M2 M3}
14 none (M1 ,M2,M3,C1,C2,C3)

- - TS ST TR~
pL{D)* (0 -
‘_LINCUIST & = (Toere b

_ L S L - -
{REPRESENTATION OF LANGUAGE DEFINTTIONK=—=1) REPRESENTATION OF TEMPLATE§HREPRESENMTIDN OF CC's _!i]

/

—

-k
LANGUAGE ANALYZER W

JCI-S5YSTEM USER

e eme - -
T3> INSTANTIATOR ‘«— . 5|THEOREM PROVE

{ DATA BASE |

- TRANSFORMATION RULES

CHECKER

DESTGNER

FIGURE 5: Biock diagram of MUS: ™ <w™ indjcate pointers in data representations; "e-——" indicate data and
control flow paths;™_| denote data items and(— denote processors.

Step (5) in the above solution is caused by box 14 in figure 2.

2.3.5. Summary

Thus, the DESIGNER provides the high level
control structure necessary to pass on to the CHECKER
the right CC's to be evaluated, and to the INSTANT1A-
TOR, the right model changes to be done. The DE-
SIGNER programs themselves are independent of the
descriptive data structures used. Again the templates
and INSTANTIATOR provide a desirable isolation. The
PSS itself may be changed for different domains of
discourse, or different problem types. In this sense,
the templates and the rules of transformation, to-
gether with the PSS specialize the MOS to a given
problem, or a given domain of discourse. The problem
solving control structures are driven by the domain
dependent data. The CHECKER, TP, DESIGNER, anri IN-
STANTIATOR are alt part of the MDS.

Most importantly there is a significant strat-
ification of knowledge in a domain, as seen by the
system. Domain dependent knowledge is made available
to the system as templates, as CC's or as TR's,

The PSS templates play a particularly important role.
Depending upon how and where a given piece of domain
dependent knowledge is specified the system uses it
differently.

The relative isolation of the problem solving
and model management programs from the descriptive
data structures themselves, make the concept of MDS
feasible. The facility to arbitrarily specify des-
criptive data structures as well as non-deterministic
programs makes the system highly flexible and power-
ful. The CHECKER and INSTANTIATOR provide the basic
foundation. These two systems are small systems
(about 2K PDP-10 words for INSTANTIATOR and 3X for
CHECKER), and the programs here can be made very
efficient. These features give promise that the
proposed system architecture could operate in the
context of large data bases. By defining the tem-
plates carefully the MDS system can be specialized
to operate efficiently in a given domain. The
structure of MDS is described in the next section.

3. The Meta Description System

The block diagram of MDS is shown in Figure 3.
In this figure DL{D), T(D), and K(D) are, respectively,
the definitions of Descriptive Language, Templates
and Knowledge (CC's and TR's) in a domain D, The
LINGUIST, TEMPEST, and QUEST are, respectively, the
subsystems that accept these definitions and create
representations for them. The TEMPEST is now a
working system (about Sk of PDP-10 words of compiled
LISP 1.6 programs). The CHECKER and INSTANTIATOR are

627

presently under construction.

The data in DLp), T(D), and K(D) specialize the
MBS for the domain. The rest of the block diagram is
self explanatory.

4. Concluding Remarks

We have introduced the basic concepts of C1-
Systems and the MI'S. The CI-Systems provide a basis
for the definition of the concept of machine under-
standing in terms of models that a machine is capable
of building in a domain, and the way the models are
used. The understanding exhibited at the problem
solving, level of CHECKER is relatively simple under-
standing. A deeper level of understanding is exhibited
in the kinds of problems that the Theorem Prover can
solve (see [in]). At the level of DESIGNER the level
of understanding is very sophisticated. The system
is able to plan and build procedures to solve problems.

In this paper we have discussed only a part of the
problem solving aspects of the system; the workings of
the CHECKER and DESIGNER. The operation of the langu-
age processor will be discussed in a subsequent paper.

We are proposing the use of DL(D), T(D), and
K(D) to transfer domain dependent descriptive knowledge
to a computer. We have briefly indicated how such des-
criptive knowledge could be used to solve problems in
a domain automatically.

The specification of DL(D1, T(D) and K(D) in a
domain will, of course, require a very good under-
standing of the concepts and problems in a domain.
There are several domains where, at present, such
understanding is available. The MDS provides a way
of transfering this understanding to a computer. The
study of a CIS for the MBS itself might throw light
on the problem of making a computer build its own
tenjplates to suitably model and reorganize a known
corpus of knowledge in a domain.

There is much work to be done to make the MDS a
viable system. It is necessary to develop a working
system first. We are presently involved in this task.

References:

1.)

2.)

3.)

5.)

6.)

8.)

9.)

10.)

Fikes, Richard Earl, "REF-ARF: A System for
Solving Problems Stated as Procedures,"”
J. Art. Intel. 1(1) 1970.

Fikes, Richard Earl, "A Heuristic Program for
Solving Problems Stated as Nondeterministic
Procedures," Doctoral Thesis, Carnegie-Mellon
University, 1968.

Derksen, J., Rulifson, J.F. and fValdinger, R.J.,
"The QM Language Applied to Robot Planning,"
AFIPS Conference Proceedings, Vol. 41, Part Il
FJCC 1972, pp. 1181-1187.

Gibbons, Gregory Dean, "Beyond REF-ARF: Toward
an Intelligent Processor for a Nondeterministic
Programming Language," Doctoral Thesis, Carnegie-
Mellon University, 1973.

Fikes, Richard Earl, Nilsson, Nils J., "STRIPS:
A New Approach to the Application of Theorem
Proving to Problem Solving," J. Art. Intel.
3(1) pp. 27-68, 1972.

Fikes, R.E. , Hart, Nilsson, N.J.: "Learning
and executing generalized Robot Plans", J. Art.
Intel. 3(1972), 251-288.

Hewitt, C, "Description and Theoretical
Analysis (using schemata} of PLANNER: A Language
for Proving Theorems and Manipulating Models in
a Robot," Ph.D. Thesis, Dept. of Mathematics,
M.I.T., Cambridge, Mass. 1972.

Newell, A., Shaw, J.D., and Simon, H.A., "Report
on a General Problem-Solving Program for a
Computer," Information Processing: Proc. Internl.
Conf. Information Processing, p. 256-264,
UNESCO, Paris. (Reprinted in Computers and
Automation, July 1959)

Amarel, S., "On Representations of Problems of
Reasoning About Actions," Machine Intelligence 3
D. Michie, ed., Edinburgh University Press,

pp. 131-170. 1968.

Srinivasan, C.V., "On the Organization and use
of Knowledge in a Coherent Information System"
RUCBM-TR19. Dept. of Computer Science,

Rutgers University, New Brunswick, N,J, 08903,

