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A b s t r a c t 

A prob lem t h a t a r i s e s i n g e t t i n g computers t o p e r ­
c e i v e 3-D scenes i s r e l a t i n g i n f o r m a t i o n f rom s e v e r a l 
d i f f e r e n t v i e w p o i n t s . I n p a r t i c u l a r , i f the computer 
moves i t s s e n s o r , i t has t o b e a b l e t o p r e d i c t changes 
i n images o f o b j e c t s i t has seen w i t h o u t hav ing t o 
c o m p l e t e l y r e - r e c o g n i z e them. A s o l u t i o n t o t h i s p r o b ­
lem has been implemented a t S t a n f o r d u s i n g a c a l i b ­
r a t e d camera model w h i c h expresses the r e l a t i o n b e t ­
ween o b j e c t space and image space as a f u n c t i o n of t he 
compu te r ' s c o n t r o l v a r i a b l e s . The m o d e l l i n g prob lem i s 
r e l a t i v e l y w e l l u n d e r s t o o d . C a l i b r a t i o n t e c h n i q u e s , 
however , a re n o t . Th is a r t i c l e d e a l s w i t h t h e s e . 

D e s c r i p t i v e Terms 
r o b o t s , computer v i s i o n , a r t i f i c i a l i n t e l l i g e n c e , 
pho togrammet ry , v i s u a l l y gu ided m a n i p u l a t o r s , a u t o ­
m a t i c assembly 

I n t r o d u c t i o n 

Image a n a l y s i s f o r 3-D scene p e r c e p t i o n i s comput­
a t i o n a l l y e x p e n s i v e . I t i s thus i m p o r t a n t t h a t a 
computer wh ich moves i t s sensor be ab le to p r e d i c t 
changes i n t he images o f o b j e c t s i t has a l r e a d y seen 
w i t h o u t hav ing to c o m p l e t e l y r e - r e c o g n i z e them. We 
w i l l p r e s e n t a s o l u t i o n t o t h i s prob lem t h a t has been 
implemented a t S t a n f o r d f o r a v i s u a l l y gu ided man ip ­
u l a t o r sys tem. 

T The S t a n f o r d hand-eye p r o j e c t is o r g a n i z e d around a 
d u a l - p r o c e s s o r PDP-10/PDP-6 computer sys tem. Two e l e c ­
t r i c a l l y - p o w e r e d mechan ica l arms and two s t a n d a r d TV 
cameras w i t h p a n - t i l t heads a re i n t e r f a c e d t o the com­
p u t e r ; they se rve as hands and eyes r e s p e c t i v e l y . In 
a d d i t i o n , t he c e n t r a l p a r t o f t he work space i s a 
" l a z y susan " t u r n t a b l e (see f i g u r e 1 ) . To have the 
c a p a b i l i t y t o v i s u a l l y l o c a t e o b j e c t s i n 3 d i m e n s i o n s , 
i t i s d e s i r e a b l e t o b e a b l e t o see any p o i n t i n t he 
work space f rom two d i s t i n c t v i e w p o i n t s . I n g e n e r a l 
t h i s r e q u i r e s s e v e r a l f i x e d cameras, and /o r a h i g h l y 
m o b i l e camera, and /o r the a b i l i t y f o r m a n i p u l a t i n g t he 
env i ronment so as to t u r n t h i n g s around to see them 
b e t t e r . The two cameras w i t h p a n - t i l t heads , and the 
l a z y susan , f a c i l i t a t e t h i s . The computer i s capab le o f 
moving the 'arms, t u r n t a b l e , and cameras, and s e n s i n g 
the p o s i t i o n o f a l l moveable j o i n t s . I n f o r m a t i o n f l o w 
i s schemat ized f o r t he " r i g h t h a l f " o f t he system i n 
f i g u r e 2 . One camera i s f i t t e d w i t h a zoom l e n s , w h i l e 
t he o t h e r has a r o t a t a b l e t u r r e t w i t h 4 l e n s e s . Both 
a re f i t t e d w i t h c o l o r whee l s . Zoom, t u r r e t - l e n s - s e l e c ­
t i o n , and c o l o r - f i l t e r - s e l e c t i o n a re under computer 
c o n t r o l . A lso under computer c o n t r o l a re f o c u s , i r i s 
(on the zoom camera) , and v i d i c o n s e n s i t i v i t y . V i s u a l 
i n f o r m a t i o n i s t r a n s m i t t e d t o t he computer b y q u a n t i z ­
i n g a TV image I n t o an a r r a y of 250 * 333 samples . Each 
sample is a 4 - b i t number r e p r e s e n t i n g 1 of 16 p o s s i b l e 
l i g h t l e v e l s . A whole image o r any r e c t a n g u l a r s u b f i e l d 
may be read i n t o the computer memory f rom a camera. 

T h i s d i s c u s s i o n dea l s w i t h on l y one aspec t o f t he 

*The r e s e a r c h r e p o r t e d he re was pe r fo rmed a t the S t a n -
f o r d A r t i f i c i a l I n t e l l i g e n c e P r o j e c t and was suppo r ted 
i n p a r t by t h e Advanced Research P r o j e c t s Agency o f t h e 
O f f i c e o f t h e S e c r e t a r y o f Defense under C o n t r a c t SD183 

hand-eye sys tem. For more i n f o r m a t i o n of a g e n e r a l and 
h i s t o r i c a l n a t u r e , t he reade r i s r e f e r r e d t o 8 ' ' * 1 3 * 2 0 ' 
z " * 3 6 . Four PhD. t heses7* 12,21,34 d e s c r i b e o t h e r ma jo r 
aspec t s o f t he sys tem. I n a d d i t i o n ano the r p r o j e c t 
t h e s i s i s f o r thcoming14 and i s r e f e r e n c e d i n a n t i c i p a ­
t i o n o f I t s p u b l i c a t i o n . For d e t a i l e d i n f o r m a t i o n about 
m a n i p u l a t o r s , s e e 1 8 ' 2 9 ' 2 8 . 

The Problem 

The prob lem can be sepa ra ted i n t o two main s u b p r o b -
lems - m o d e l l i n g and c a l i b r a t i o n . The m o d e l l i n g p rob lem 
i s s t r a i g h t f o r w a r d geomet ry ; p a r t s o f i t have been 
worked out i n many p l a c e s 2 * 3 ' * * 1 6 ' 2 6 ' 3 0 . To rev iew i t 
b r i e f l y , we want an a n a l y t i c camera model r e l a t i n g 3-D 
c o o r d i n a t e s o f p o i n t s i n o b j e c t space t o the 2-D l o c a ­
t i o n s o f t h e i r images i n a d i g i t i z e d p i c t u r e . A n a d e ­
qua te model f o r these purposes can be d e r i v e d by t r e a t ­
i n g a p i c t u r e as a c e n t r a l p r o j e c t i o n o f o b j e c t p o i n t s 
o n t o a ( image) p l a n e . Such a p r o j e c t i o n can be d e s c r i b ­
ed by (see f i g u r e 3 a ) : 

A - (A ,A ,A ) t he l o c a t i o n of the c e n t e r of p r o j -
X V Z r - J 

e c t i o n i n o b j e c t space (camera l o c a t i o n ) . 

R " [ r i j ] a 3-D r o t a t i o n m a t r i x f o r s p e c i f y i n g t he 
camera 's o r i e n t a t i o n . I t o r i e n t s a n (xyz) camera 
frame at A w . r . t . the (XYZ) o b j e c t frame ( a t 0 
in the f i g u r e ) . Such a m a t r i x is o r t h o n o r m a l and 
thus has o n l y 3 degrees o f f reedom wh ich in our 
case were chosen to be the e lemen ta ry r o t a t i o n 
ang les (see f i g u r e 3 b ) : 

PAN - about the u n r o t a t e d y - a x i s (assumed 
p a r a l l e l t o t he o b j e c t Z - a x i s ) 

TILT - about t he once r o t a t e d x - a x i s 
SWING - about t he t w i c e r o t a t e d z - a x i s 

f - the no rma l d i s t a n c e f rom A to t he image p lane 

The 6 degrees of f reedom con ta i ned in A and R l o c a t e 
and o r i e n t t he camera, w h i l e f de te rm ines the b a s i c 
s c a l e o f t h e p r o j e c t i o n . A and I t a re c a l l e d e x t e r n a l 
geometry parameters o f t he camera. 

The process ' o f d i g i t i z a t i o n f u r t h e r s c a l e s t he image 
by q u a n t i z a t i o n f a c t o r s Mx,My w h i c h r e p r e s e n t the d e n ­
s i t y o f samples per u n i t l e n g t h i n the x and y d i r e c ­
t i o n s r e s p e c t i v e l y . I n a d d i t i o n t he c o o r d i n a t e o r i g i n 
i s t r a n s l a t e d f rom the p r i n c i p a l p o i n t p e t o the upper 
l e f t c o m e r o f the image* The combined s c a l e s fMx and 
fMy , and p"o a re c a l l e d i n t e r n a l geometry parameters of 
the camera. The r e s u l t i n g d i g i t i z e d image c o o r d i n a t e s 
(hv) are c a l l e d ( image) h o r i z o n t a l and v e r t i c a l r e s p e c ­
t i v e l y (see f i g u r e 3 c ) . 

C o n t r o l l i n g the camera he re means p r o v i d i n g the 
a b i l i t y t o sense and change some o r a l l o f the e x t e r n a l / 
i n t e r n a l geometry p a r a m e t e r s . I n g e n e r a l feedback s e n ­
so rs do n o t measure these parameters d i r e c t l y , b u t 
f u n c t i o n s of them. We c a l l t hese sensed f u n c t i o n s 
c o n t r o l v a r i a b l e s . For a g i v e n c o n f i g u r a t i o n we can 

*The p r i n c i p l e p o i n t i s t he p i e r c i n g p o i n t o f t he ray 
f r o m X norma l to t he image p l a n e . For TV systems a 
s m a l l c o r r e c t i o n (< 1 p i x e l ) i s a l s o made f o r t he skew-
ness o f t h e scann ing r a s t e r . 
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f i n d expressions for the camera geometry parameters in 
terms of the cont ro l var iab les . These expressions a l ­
ways contain f i x e d , but unknown, parameters which must 
be measured. The process of s a t i s f a c t o r i l y measuring 
these f ixed parameters is what we c a l l ca l i b ra t i on . 
Since we are in terested in developping a pred ic t ive 
model, i t is desireable to f ind a set of such param­
eters that best accounts fo r images of known object 
conf igurat ions. An ana ly t i ca l der ivat ion of such a 
"best" set t y p i c a l l y leads to complicated simultaneous 
transcendental equations which do not y i e l d to closed 
form so lu t i on . Moreover, the form of these equations 
depends strongly upon camera geometry and the number 
and type of cont ro l var iab les . 

To be more prec ise, modelling can be described as 
fo l lows: Write down the transformation re la t ing the 
3-D coordinates of objects to the 2-D coordinates of 
t h e i r images. This depends upon the pos i t ion and o r ien ­
t a t i o n of the camera in object space - so-cal led ex­
te rna l geometry - and on i t s i n t e rna l geometry. A l l 
elements of external and in te rna l camera geometry under 
computer c o n t r o l , should be expressed as functions of 
the computer's cont ro l var iables ex ■ ( a 1 , . . . ,0n) . These 
w i l l t y p i c a l l y be outputs of feedback sensors. The 
transformation is schematized in f igure 4. Typical geo­
metr ic var iables for a camera on a p a n - t i l t head are 
the angles of PAN and TILT, and f which is the distance 
from the lens rear nodal point to the image, f is 
a f fec ted by both zooming and focusing motions. The 
corresponding cont ro l var iables are potentiometer or 
shaft-encoder readings. They are usually l i nea r l y -
but not always - re lated to the geometric quan t i t i es . 
e.g-

operat ional system30,31 for c a l i b r a t i o n of a camera 
w i th a zoom lens on a p a n - t i l t head (Bee f igure 5 ) * 
There are in fac t m - 18 S's: 

8 in class (a) above - 2 each for r e l a t i ng sensor 
outputs to geometric quant i t ias associated wi th 
pan, t i l t , zoom, focus. 

Of the remaining 10, 7 represent the external 
camera geometry and f a l l i n to class (b) above, 
while 3 represent the in te rna l camera geometry 
- 2 i n (b) and 1 i n (c ) . 

There are n = 4 control var iables (a 's) for p a n , _ t i l t , 
focus, and zoom. The system calculates a "best" B 
vector given 10 or more object-image po in t -pa i rs and 
the i r associated a ' s . I t is div ided in to two par ts : 
data co l lec t ion and model opt imizat ion (see f igure 6 ) . 

For data c o l l e c t i o n , pictures are taken of reference 
objects ,wi th known shape (usually cubic) and locat ion 
that are provided to the program by a human operator. 
At the time an image is t ransferred to the computer, 
the program reads the camera-control feedback sensors 
(pan, t i l t , zoom, and focus pots} to ascerta in the cur­
rent a. An edge-follower program ' then processes 
the image to extract boundary points of the object . A 
polygon is f i t to the po in ts . The polygon ver t ices are 
ordered to match up w i th the object space coordinates. 
Thus for the j— p ic ture o f a reference cube, the c o l ­
l ec t i on routines w i l l generate the data 
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(5) 

These are d i f f e r e n t from (3) in that h,v are measure­
ments and B is to be ca lcu la ted . Assuming non-degener­
ate equations, we need at least 18/2-9 such t r i p l e t s to 
completely constrain B. The t r i p l e t s should also be 
Independent in the sense that each t r i p l e t y ie lds new 
informat ion (e .g . 2 P's in the same image along the 
same cent ra l ray y i e l d the same p" and are not indepen­
dent) . 

We can get an idea of the minimum number images ( i . 
e. d i s t i n c t values of a) needed, by using the fac t that 
there are 10 basic geometric parameters fo r a f ixed 
camera (a - const) ; A", PAN, TILT, SWING, fMy, MRAT, 
and p"D - We can w r i t e constra int equations s im i l a r to 
(5) w i th the B's replaced by the geometric parameters, 
and deduce that we need 10/2-5 points P to completely 
solve fo r these. Of these basic parameters, MRAT, po * 
and SWING, are also B's. Another image, taken wi th 
d i f f e r e n t values for a l l the a ' s , w i l l only have 6 
Parameters unknown Of, PAN, TILT, fMy), and only 6/2-3 
P's w i l l be needed to solve fo r the new values. They 
may_In fac t be par t o f the o r i g i n a l 5 . T h e a l u e s 
of A are s u f f i c i e n t to solve for 6 more (J's to 
br ing the t o t a l to 10. The two values each of PAN and 
TILT are also s u f f i c i e n t to solve fo r t he i r A associa­
ted B's, leaving only the 4 B's r e l a t i ng the focus and 
zoom pots to fMy. Unfortunately each new image, created 
by changing focus and/or zoom gives us only one new 
equation i n . Thus WE need a t least 2 more images 
of one point not on the camera ax i s , to get a t o t a l 
of 4 values for fMy and associated pot readings to give 
a soluble system of 4 equations in the remaining 4 B's 
In summary we have a spec i f i c method of solv ing for the 
18 bv's using 4 images using 5+3+1+1-10 data t r i p l e s . 
The t o t a l number of d i s t i n c t points can be the o r i g i n a l 
5. Thus though considerations of numbers of var iables 
and const ra in t equations t e l l us that 9 data t r i p l e s 
are necessary, the form of the equations seems to say 
that we need at least 10, arranged in 4 images as 
explained. 

One of the features of the opt imizat ion program is 
that i t i s I n t e r a c t i v e : 

1 - It has a rather elaborate dynamic display 
( f i gu re 6b). 

2 - It allows the user to r e s t r i c t the search to any 
spec i f ied subspace of space. 

3 - It allows him to choose between two search a lgo-
r i t h m s " ' " ' 8 1 . 

4 - It allows him to i n i t i a l i z e to any values he 
cares to . 

5 - It a l locs the search to be in te r rup ted at any 
time and the res idual error/image to be d i s ­
played as a funct ion of any of the a ' s . This is 
to see if there systematic deviat ions w . r . t . any 
given cont ro l va r iab le . Such a dev ia t ion would 
ind icate a defect in the model or the equipment 
associated wi th that 

6 - It has a test mode fo r explor ing the convergence 
of the opt imizat ion algorithms in the neighbor­
hood of any desired B The user can e i the r man­
ua l l y Input 8 or take a t yp i ca l value ar r i ved at 
from data. Upon enter ing tes t mode, p replaces 
IP, forc ing E to zero. The user is then allowed 
to add a simulated d i s t o r t i o n funct ion to the 
new P if he chooes. He is f i n a l l y asked to per­
turb (J and observe the resu l t i ng convergence 
back to the idea l po in t . 

The search is complicated by the fac t that subsets 
of parameters are interdependent - e .g . to f i r s t order 

accuracy, changes in E due to changes in po, can be 
o f fse t by the PAN and TILT o f fse t It has been emp­
i r i c a l l y determined that there are mu l t i p le minima of 
E2, but they are spaced s u f f i c i e n t l y fa r apart so that 
pur i n i t i a l guesses are good enough not to go ast ray. 
S tar t ing points are usual ly a r r i ved at from rough 
manual measurements and calcu lat ions of the system 
geometry. A t y p i c a l opt imizat ion sequence consists o f : 

1 - reading in about 10 data sets 
2 - If a previous i n i t i a l has not been stored 

w i th the data, it must now be typed i n . 
3 - choosing an appropriate subspace of 

to search (maybe a l l o f i t ) 
4 - l e t t i n g the f i r s t a lgor i thm (usual ly more 

e f f i c i e n t ) converge 
5 - applying the second algor i thm to t r y to improve 

the resu l t if not good enough 
6 - possibly re turn ing to 3 and changing the sub-

space (opt imizing over the whole space if not 
done) 

The residual rros er ror E Is a measure of the good­
ness of the model, and Is t y p i c a l l y I to 2 p ic ture 
elements ( p i x e l s ) , which corresponds to 1.5 to 3.0 
m i l l i r ad ians on the camera axis - w i th the pa r t i cu la r 
opt ics used. Convergence t y p i c a l l y takes about 5 min. 
of PDP-10 cpu time for a l l 18 parameters. The r e s i d ­
ual errors are due mainly to mechanical v i b ra t i on of 
the op t i ca l system and e l e c t r i c a l j i t t e r of the scan 
e lec t ron ics . These have so Ear masked lens and scan 
d i s t o r t i o n s . 

At present there is a program at the hand-eye pro­
j e c t to expand the scope and e f f i c iency of the c a l i ­
b ra t ion system. The f i r s t step is to elimenate the 
operator to manually measure and specify reference-
object coordinates (see f igure 6a). We hope to do th i s 
by using the mechanical arm to place the objects ac­
cording to a prespeci f ied ca l i b ra t i on sequence. The 
resu l t i ng scheme w i l l look as shown in f igure 7. The 
pred ic t ion er ror in e f fec t then becomes a "coordina­
t i o n e r ro r " between the hand and eye; the arm c o n t r o l -
l e r w i l l be repor t ing the object vertex posi t ions 
to the prec is ion of the model r e l a t i n g i t s cont ro l 
var iables a a r m to requested hand pos i t ion and o r i en ­
t a t i o n . Meanwhile the camera ca l i b ra t i on w i l l be using 
the reported pos i t i on informat ion to 

pred ic t image coordinates. Gi l l12 measured th i s coor­
d inat ion er ror in his system for precise object mani­
pu la t i on . He adjusted several camera B's suspected of 
d r i f t i n g sO as to minimize i t . 

In th i s system, predicted image coordinates are 

1 - The behavior of the ove ra l l e r ror funct ion E! 
w . r . t . a l l these has not been invest igated -
in p a r t i c u l a r , f o r the presence of l oca l minima 
near the global minimum. 

2 - Unless the i n i t i a l E2 is already qu i te smal l , 
our current opt imizat ion procedures may we l l 
bog down on so many parameters, so as to be 
useless. 
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This st rongly suggests that we use j o i n t optimiza­
t i on only as a l a s t refinement, and even then possibly 
w i th approximate transform equations for faster conver­
gence near the minimum. Jo int ca l i b ra t i on is u l t imate ly 
desireable, since the p r i nc ipa l use of camera ca l i b ra ­
t i o n is to get world coordinates for the purpose of 
guiding the arm. 

Another system being considered u t i l i z e s two came­
ras, and optimizes the i r r e l a t i ve or ien ta t ion based 
upon simultaneous measurement of the same ca l ib ra t ion 
object from two d i f f e ren t viewpoints. Thus, i f a f i r s t 
camera has been ca l ib ra ted re l a t i ve to the reference 
object-space, a second can be ca l ib ra ted re la t i ve to it 
e tc . This technique is used extensively in photogram-
metry2 for compiling maps from large numbers of aer ia l 
photographs. A two-camera system, once ca l ib ra ted , pro­
vides a 3-D measuring t o o l which can in turn be used 
for basic arm c a l i b r a t i o n . 

What is rea l l y needed to s impl i fy and speed-up opt­
imizat ion is a separable er ror funct ion. For example, 
something of the form 

or even 

which is more l i k e l y , would allow us to separately op­
t imize parts of the system while s t i l l guarantying 
minimum overa l l e r ro r . 

Yet another d i rec t i on for improvement is that of 
ca l ib ra t ion-updat ing ; that i s , re -ca l i b ra t i ng the sys­
tem rapid ly whenever observations in the course of nor­
mal operation show that errors have grown in to lerab ly 
large. The emphasis here is on the word rapid - hope­
f u l l y near rea l - t ime . One way to accomplish th is is to 
co l l ec t data from measurements made during normal op­
erat ion of the system. 

The f u l l y automatic ca l i b ra t i on system of the future 
w i l l probably go through a bootstrapping phase; e i ther 
an arm or a pai r of eyes - whichever is more accurate -
w i l l f i r s t be ca l ib ra ted . This w i l l be done possibly 
wi th the a id of a special ca l i b ra t ion device for pro­
v id ing h igh ly accurate reference data. The cal ibrated 
hal f of the system w i l l then be used to provide data 
for ca l i b ra t i ng the other ha l f , at which point the to ­
t a l system w i l l be j o i n t l y optimized to minimize 
coordinat ion e r ro rs . 
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