
Session 25 Hardware and Software
fo r A r t i f i c i a l In te l l i gence

THE LISP70 PATTERN MATCHING SYSTEM*

Lawrence G. Tester**, Horace J. Enea, David C. Smith

Department of Computer Science
Stanford University
Stanford, California

Abstract

LISP70 is a descendant of LISP which emphasizes pattern-
di rected computation and extensibility. A function can be
defined by a set of pattern rewrite rules as well as by the
normal LAMBDA method. New rewrite rules can be added to a
previously defined function; thus a LISP70 function is said to
be "extensible". It is possible to have new rules merged in
automatically such that special cases are checked before
general cases. Some of the facilities of the rewrite system
are described and a variety of applications are demonstrated.

Background

During the past decade, LISP18 has been a principal
programming language for artificial intelligence and other
front ier applications of computers. Like other widely used
languages, it has spawned many variants, each attempting to
make one or more improvements. Among the aspects that
have received particular attention are notation,1'12'17'23 control
structure,5 ,14 ,20 ,22 data base management,l5,20,25 interactive
editing and debugging,27 and execution efficiency.

A need for a successor to LISP has been recognized,3 and
several efforts in this direction are under way. The approach
being taken with TENEX-USP is to begin with an excellent
debugging system26 and to add on flexible control structure.2

The approach taken by LISP70 and by ECL29 is to begin with
an extensible kernel language which users can tailor and tune
to their own needs.

"Tailoring" a language means defining facilities which assist
in the solution of particular kinds of problems which may have
been unanticipated by the designers of the kernel. Tuning" a

* This work was supported (in part) by Grant PHS MH
0 6 6 4 5 - 1 1 from the National Institute of Mental Health, and (in
part) by the Advanced Research Projects Agency of the Office
of the Secretary of Defense (SD-183).

The views and conclusions contained in this document are
those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed
or implied, of the Advanced Research Projects Agency, NIMH,
or the U.S. Government.

** Present affiliation: Xerox Corporation (Palo Alto Research
Center).

language means specifying more efficient implementations for
statements which are executed frequently in particular
programs.

A language that can be used on only one computer is not
of universal utility; the ability to transfer programs between
computers increases its value. However, a language that is
extensible both upward and downward is difficult to transport
if downward extensions mention machine-dependent
features.8 '9 This consideration suggests the use of a
machine-independent low-ievel language4 in terms of which to
describe downward extensions.

Capabi l i t ies of LISP70

The aim of LISP70 is to provide a flexible and parsimonious
programming medium for symbolic processing and an efficient
implementation for that medium on several machines,

The semantics of the LISP70 kernel subsumes LISP 1 .5 and
Algol-60 semantics. The syntax provides three high-level
notations: S-expressions, Algol-like MLISP expressions, and
pattern-directed rewrite rules. The syntax and semantics can
both be extended as described later in this paper. By
extension, it is feasible to incorporate the capabilities of
virtually any other programming language. Of course, one
would take advantage of the techniques developed by its
previous implementors; LISP70 simply provides a convenient
rnedijm for doing this.

To maximize efficiency and to eliminate the possibility of
an inconsistent compiler and interpreter, all programs in
LISP70 are compiled. There is no interpreter in the usual
sense; the function EVAL compiles its argument with respect
to the current environment and then executes the machine-
language code. To extend the language, extensions need only
be made to the compiler, not also to an interpreter.

One disadvantage ot a compiler is that certain sophisticated
debugging techniques such as the "BREAKIN" of TENEX-LISP26

are more difficult to implement than in an interpreter.
However, we feel that the extra effort needed for this is
wor th expending to retain the advantages of a compiler.

LISP70 generates code for an "ideal LISP machine" called
"ML" end only the translation from ML to object machine
language is machine-dependent. Thus, downward extensions
can be factored into a machine-independent and a machine-
dependent part, and during program transfer, the machine-
dependent receding (if any) is clearly isolated An execution

671

image on one computer could be transliterated to ML and
transported to a different machine. This capability could be
used to transport programs around computer networks, and
for bootstrapping of the compiler itself.

In order to execute the EVAL function, the compiler and
parts of the symbol table must be present during execution.
This requirement and the goal of extensibility are met by a
pattern-directed translator whose rules are compiled into
dense and efficient code. The same pattern matcher as used
in the translator also is available for goal-directed procedure
invocation in A.I. programs,

Among the specific improvements LISP70 makes to LISP are
backtrack and coroutine control structure, streaming, long-term
memory for targe data bases, data typing, pattern-directed
computation, and extensible functions. The implementation
provides dynamic storage allocation, relocation, and
segmentation.

The subjects to be covered in the present paper are
pat tern-directed computation and extensible functions.

Pat te rn Directed Computation

R e w r i t e Rules

Many of the data tranformations performed in LISP
applications are more easily described by pattern matching
rules than by algorithms. In addition, pattern
matching rules are appropriate for the description of input-
output conversion, parsing, and compiling.2" LISP70 pieces
great emphasis on "pattern rewrite rules as an
alternative and adjunct to algorithms as a means of defining
functions.

A brief explanation of rewrite rule syntax and semantics
will be presented with some examples to demonstrate the
clarity of the notation.

Each rule is of the form DEC->REC. The DEC (decomposer)
Is matched against the "input stream". If it matches, then the
REC (recomposer) generates the "output stream".

A literal in a pattern is represented by itself if it is an
identifier or number, or preceded by a quote {') if it is a
special character.

A private variable of the rule is represented by an
identifier prefixed by a colon (:); it may be bound to only one
value during operation of the rule.

A list is represented by a pair of parentheses surrounding
the representations of its elements. A segment of zero or
more elements is represented by an eilipsis symbol (...}.

In the first case, the block is already where it belongs, so the
world does not change; in the second, the block is moved to
the right; in the third, to the left; in the fourth, the location
:TO does not exist yet and is created; In the last case, :B is
not in the world and the ERROR routine is called

672

L i s t S t ruc tu re Transformations

The following set of rules defines a function M0VE_BL0CK
of three arguments: a block to be moved, a location to which it
should be moved, and a representation of the current world.
The function moves block :B from its current location in the
world to location :T0, and the transformed representation of
the world is returned.

RULES OF MOVE_BLOCK .

Functions such as M0VE_BL0CK have been used in a
simple planning program written by one of the authors.
Imagine writ ing M0VE_BL0CK as an algorithm; it would require
the use of auxiliary functions or of a PROG with state
variables and loops. Bugs would be more likely in the
algorithm because its operation would not be so lucid.

Replacement

A function call in a DEC pattern is called a "replacement",
A replacement has two interesting aspects. First, if the
function requires more arguments than it is passed, it will take
additional arguments off the front of the input stream.
Furthermore, the value returned by a replacement is
appended to the front of the input stream. Thus, the
replacement <F> behaves like a non-terminal symbol of a top-
down parser. In effect, the function F is invoked to translate
a substream of the input stream, and that substream is
replaced by its translation, The altered input stream can then
continue to be matched by the pattern to the right of <F>.

The following example is from the MLISP compiler, which
calls itself recursively to translate the condition and arms of
an IF-statement to LISP:

Here is another example. The predicate PALINDROME is
true iff the input stream is a mirror image of itself, i.e., if the
left and right ends are equal and the middle is itself a
palindrome.

Extensible Functions

New rules may be added to an existing set of rewrite
rules under program control; thus, any compiler table or any
other system of rewrite rules can be extended by the user,
For this reason, a set of rewrite rules is said to be an
"extensible function". The "ALSO" clause is used to add cases
to an extensible function;

Extensions can be made effective throughout the program
or only in the current block, as the user wishes.

A regular LAMBDA function can also be extended. Its
bound variables are considered analogous to a DEC and its
body analogous to a REC. Accordingly, the compiler converts
it to an equivalent rewrite function of one rule before
extending it.

The Extensib le Compiler

To make an extensible compiler practical, the casual user
must be able to understand how it works in order to change it.
We have found this to be no problem with users of MLISP2,
the predecessor to LISP70. Its extensible compiler has been
used to write parsers quickly by A.I. researchers previously
unfamiliar with parsing techniques.

To demonstrate that it is not inordinately difficult to
understand the LISP70 compiler, those rules which get
involved in translating a particular statement from MUSP to
LAP/PDP-10 are shown below. A simplified LISP70 (typeles6
and unhierarchical) is u:ed in the examples, but the real thing
is not much more complicated.

673

The LISP-to-ML compiler below utilizes the following
feature; if a colon variable occurs in the REC but it did not
occur in the DEC, an "existential value" (which is something
like a generated symbel) is bound to it. Here, the existentiai
value is used as a compiler-generated label.

Trie language ML is based on the machine language of the
Burroughs 5000 and its descendants. For example, the ML
operator "DJUMPF" means "destructive jump if false". It
jumps only if the top of the stack is false but always pops the
stack.

The unoptimized ML-to-LAP translator below assumes that
the stack of the ideal machine is represented on the PDP-10
by a single stack based on register "P", that there is a single
working register "VAL", and that variables can be accessed
from f ixed locations in memory. (None of this is really true in
the actual implementation.)

Automat ic Order ing Of Rewrite Rules

In most pattern matchers, candidate patterns to match an
input stream are tr ied either in order of appearance on a list
or in an essentially random order not obvious to the
programmer. LISP70 tries matches in an order specified by an
"ordering function" associated with each set of rewrite rules.

One common ordering is "BY APPEARANCE", which is
appropriate when the programmer wants conscious control of
the ordering. Another is "BY SPECIFICITY", which is useful in
le f t - to- r ight parsers and other applications where the
compiler can be trusted to order the rules so that more
specific cases are tried before more general ones. When
neither of these standard functions is appropriate, the
programmer can define and use specialized ordering functions,
or can extend SPECIFICITY to meet the special requirements.

Automatic ordering is convenient for a user who is
extending a compiler, a natural language parser, or an
inference system. It can eliminate the need to study the
exist ing rules simply to determine where to position a new
rule. Ordering functions can also be designed to detect
inconsistencies and ambiguities and to discover opportunities
for generalization of similar rules.

674

As an example, take the USP-TO-ML translator "COMPILE",
which includes the following rule for the intrinsic function
PLUS (slightly simplified for presentation):

To add special cases to the compiler for sums including the
constant zero, the user could include the following declaration
in a program:

The compiler is ordered by SPECIFICITY, which knows that
the literal 8 is more specific than the variable -X or :Y.
Therefore, both of the new rules would be ordered before the
original PLUS rule. Suppose the added rules were placed
after the general rule; then the original rule would get first
crack at every input stream, and sums with zero would not be
processed as special cases.

An O r d e r i n g Function

The complete definition of the ordering function
SPECIFICITY is beyond the scope of this paper. It works
roughly as follows. Comparing DEC patterns by a left-to-right
scan, it considers literals more specific than variables and a
colon variable at its second occurrence more specific than one
at its first occurrence. The specificity of a replacement <F> is
that of the most general rule in the function F.

A DEC with an ellipsis is considered to expand to multiple
rules in which the ellipsis is replaced by 0, 1, 2, 3, ... *
consecutive variables. The specificity of each expanded rule
is considered separately. Observe that between two
expansions of an elliptic rule some other rewrite rule of
intermediate specificity may lie. Example:

Two of the expansions of the first rule are:

and the second rule of SILLY comes between these in
specificity.

SPECIFICITY is itself defined by a system of rewrite rules.
To give a flavor of how this is done, a very simplified
SPECIFICITY will be defined. It takes two arguments (DEC
patterns translated to LISP notation) and returns them in the
proper order.

Addi t ional Facil i t ies

The programmer can specify either deterministic or non-
deterministic matching; the former case generates faster code
while the latter provides for backtracking. Other facilities of
the rewrite system include side-conditions, conjunctive match,
disjunctive match, non-match, repetition, evaluation of LISP and
MLISP expressions, look-ahead, look-behind, and reversible
rules.

DEC patterns can be used outside of rewrite rules for
decomposition of data structures in MLISP statements.

Applications

It is easy to define a system of inference rules, of
assertions, or of beliefs as a rewrite function. From a set of
rules can be retrieved either all of the assertions or the first
that match a given pattern, A robot planner could be
organized into RULES OF PHYSICS, RULES OF
INITIAL_CONDITIONS, RULES OF INFERENCE, RULES OF
STRATEGY, etc. Note that goal-directed procedure invocation
is performed within each of these functions separately. This
allows for segmentation of large programs. Furthermore, it
averts the need to rummage around a conglomerate data base
of unrelated rules.

Rewrite rules are a useful tool for natural language
analysis, whether the methods used are based on phrase
structure grammar, features, keywords, or word patterns. A
use of L1SP70 with the latter method is described in a
companion paper.10 The program described therein utilizes
the replacement facility extensively.

Implementat ion of Rewrite Functions

In the initial implementation of LISP70, rewrite rules are
processed in a top-down, left-to-right manner. During the
ordering phase, the rules of each extensible function are
factored from the left to avoid repetition of identical tests in
identical circumstances. The resulting code is a discrimination
tree that eliminates many choice-points for backtracking.

The backtracking implementation is an improvement of that
developed for MLISP2.22 It incurs little overhead of either
time or space.

675

The machine code generated for rewrite rules consists
primarily of calls on scanning and testing functions. These
functions are generic and will process input and output of
streams of any type, including lists, character strings, files, and
coroutines. For example, streaming18 intermediate results of
compiler passes between coroutines circumvents expensive
temporary storage allocation and speeds up the compiler.

Conclusions

Some of the design decisions of LISP70 are contrary to
trends seen in other "successors to LISP". The goals of these
languages are similar, but their means are often quite diverse,

Concern with good notation does not have to compromise
the development of powerful facilities; indeed, good notation
can make those facilities more convenient to use. People who
"think in Algol" should not have to cope with S-expressions to
write algorithms. Neither should people who "think in
patterns". Rewrites, MLISP, and LISP can be mixed, and the
most appropriate means of defining a given function can be
selected.

LISP70 does not limit the use of pattern rewrite rules to a
few facilities like goal-achievement and assertion-retrieval. A
set of rules can be applied to arguments like any other
function, and can stream data from any type of structure or
process to any other.

Automatic ordering does not prevent the programmer from
seizing control, but allows him to relinquish control to a
procedure of his choosing to save him tedious study of an
existing program when making extensions,

Preliminary versions of LISP70 have been run on a PDP-10
using a bootstrap compiler, As of June 15, a production
version has not been completed. The language has been used
successfully in programs for question-answering and planning.
Extensions are planned to improve its control structure,
editing, and debugging capabilities, and versions will be
bootstrapped to other computers.

Acknow ledgmen t

The authors wish to thank Alan Kay for valuable Insights.

REFERENCES

1 Abrahams, P. W. et al, "The LISP 2 Programming Language and
System", Proe. AFIPS FJCC 29 (1966), 661-676

2 Bobrow, D. G. and Wegbreit, B., "A Model and Stack Implementation of
Multiple Environments", Report No. 2334 (March 1972), Bolt,
Beranek, and Newman

676

3 Bobrow, D. G., "Requirements for Advanced Programming Systems for
List Processing", Comm. ACM 15, 7 (July 1972), 618-627

4 Brown, P. J., "Levels of Language for Portable Software", Comm. ACM
15, 12 {Dec. 1972), 1059-1062

5 Burstall, R.M., Collins, J.S. and Popplestone, R.J., Programming in Pop-2,
University Press, Edinburg, Scotland (1971), 279-282

6 Colby, K. M. and Enea, H, "Heuristic Methods for Computer
Understanding of Natural Language in Context Restricted On-Lino
Dialogues", Math. Biosciencec 1 (1967), 1-25

7 Colby, K. M, Watt, J., and Gilbert, J. P., "A Computer Method of
Psychotherapy", J. of Nervous and Mental Disease 142 (1966), 148-
152

8 Dickman, B N, "ETC: An Extensible Macro Based Compiler", Proc.
AFIPS SJCC 38 {19711,529-538

a Duby, J. J., "Extensible Languages: A Potential User's Point of View", in
[21] ,pp . l37-140

10 Enea, K, Colby, K. M., and Moravec, H., "Idiolectic Language-Analysis
for Understanding Doctor-Patient Dialogues", (in this proceedings)

1' Enea, H, and Tesler, L, "INTEGRATE", Unpublished Stanford
University Class Project (1964)

12 Enea, H., "MLISP (IBM 360/67)", Computer Science Technical Report
CS 92 (1968), Stanford University

13 Guzman, A., and Mcintosh, H. V., "CONVERT", Comm. ACM 9, 8 (Aug.
1966), 604-615

14 Hewitt, C, PLANNER: A Language for Manipulating Models and Proving
Theorms in a Robot, Ph.D. Thesis (Feb 1971), MIT

15 Hewitt, C, "Procedural Embedding of Knowledge in PLANNER", Proc.
UCAI 2 (1971), 167-182

16 Kay, A., "FLEX, A Flexible Extendible Language", CS Tech. Report
(1968), U. of Utah

17 Landin, P. J., "The Next 700 Programming Languages", Comm. ACM 9,
3 (March 1966), 157-166

18 Leavenworth, B. M., "Definilion of Quasi-Parallel Control Functions in
a High-Levei Language", Proc. Irtt'l. Comp. Symp. (Bonn, 1970)

McCarthy, J., "Recursive Functions of Symbolic Expressions and their
Computation by Machine, Part I", Comm. ACM 3, 4 (April 1960), 184-
195

20 Rulifson, J. F., Waldinger, R. J., and Derksen, J. A., QA4, A Language
for Writing Problem-Solving Programs, Proc. IFIP (1968), TA-2, 111-
115

Schuman, S., ed., "Proceedings of the International Symposium on
Extensible Languages", ACM StGPLAN Notices 6, 12 (Dec. 1971)

22 Smith, D. and Enea, H, "Backtracking in MLISP2", (in this proceedings)
23 Smith, D, "ML1SP {PDP-10)", Artificial Intelligence Memo No. 135,

Stanford University, Oct. 1970
24 Smith, D.C. and Enea, H.J., MLISP2 Manual, Artificial Intelligence Memo

No. 195, Stanford University, June 1973
25 Sussman, G. J. and McDermott, D. V., "Why Conniving is Better than

Planning", Proc. AFIPS FJCC 41 (1972), 1171-1180
26 Teitelman, W. et al, B8N-LISP Reference Manual, (July 1971), Bolt,

Beranek, and Newman

27 Teitelman, W., "Toward a Programming Laboratory", Prw. IJCAI 1
(1969), 1-8

28 Teitelman, W., Design and Implementation of FLIP, a LISP Format
Directed List Processor, Scientific Report No. 10 (July 1967), Bolt,
Beranek, and Newman

29 Wegbreit , B.p "The ECL Programming System", Proe. AFIPS FJCC 39
(1971), 253-262

30 Weizenbaum, J., "ELIZA ~ A computer Program for the Study of
Natural Communication Between Man and Machine", Comm. ACM S, 1
(Jan. 1966), 36-45",

