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Abstract 

LISP70 is a descendant of LISP which emphasizes pattern-
di rected computation and extensibility. A function can be 
defined by a set of pattern rewrite rules as well as by the 
normal LAMBDA method. New rewrite rules can be added to a 
previously defined function; thus a LISP70 function is said to 
be "extensible". It is possible to have new rules merged in 
automatically such that special cases are checked before 
general cases. Some of the facilities of the rewrite system 
are described and a variety of applications are demonstrated. 

Background 

During the past decade, LISP18 has been a principal 
programming language for artificial intelligence and other 
front ier applications of computers. Like other widely used 
languages, it has spawned many variants, each attempting to 
make one or more improvements. Among the aspects that 
have received particular attention are notation,1'12'17'23 control 
structure,5 ,14 ,20 ,22 data base management,l5,20,25 interactive 
editing and debugging,27 and execution efficiency. 

A need for a successor to LISP has been recognized,3 and 
several efforts in this direction are under way. The approach 
being taken with TENEX-USP is to begin with an excellent 
debugging system26 and to add on flexible control structure.2 

The approach taken by LISP70 and by ECL29 is to begin with 
an extensible kernel language which users can tailor and tune 
to their own needs. 

"Tailoring" a language means defining facilities which assist 
in the solution of particular kinds of problems which may have 
been unanticipated by the designers of the kernel. Tuning" a 
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language means specifying more efficient implementations for 
statements which are executed frequently in particular 
programs. 

A language that can be used on only one computer is not 
of universal utility; the ability to transfer programs between 
computers increases its value. However, a language that is 
extensible both upward and downward is difficult to transport 
if downward extensions mention machine-dependent 
features.8 '9 This consideration suggests the use of a 
machine-independent low-ievel language4 in terms of which to 
describe downward extensions. 

Capabi l i t ies of LISP70 

The aim of LISP70 is to provide a flexible and parsimonious 
programming medium for symbolic processing and an efficient 
implementation for that medium on several machines, 

The semantics of the LISP70 kernel subsumes LISP 1 .5 and 
Algol-60 semantics. The syntax provides three high-level 
notations: S-expressions, Algol-like MLISP expressions, and 
pattern-directed rewrite rules. The syntax and semantics can 
both be extended as described later in this paper. By 
extension, it is feasible to incorporate the capabilities of 
virtually any other programming language. Of course, one 
would take advantage of the techniques developed by its 
previous implementors; LISP70 simply provides a convenient 
rnedijm for doing this. 

To maximize efficiency and to eliminate the possibility of 
an inconsistent compiler and interpreter, all programs in 
LISP70 are compiled. There is no interpreter in the usual 
sense; the function EVAL compiles its argument with respect 
to the current environment and then executes the machine-
language code. To extend the language, extensions need only 
be made to the compiler, not also to an interpreter. 

One disadvantage ot a compiler is that certain sophisticated 
debugging techniques such as the "BREAKIN" of TENEX-LISP26 

are more difficult to implement than in an interpreter. 
However, we feel that the extra effort needed for this is 
wor th expending to retain the advantages of a compiler. 

LISP70 generates code for an "ideal LISP machine" called 
"ML" end only the translation from ML to object machine 
language is machine-dependent. Thus, downward extensions 
can be factored into a machine-independent and a machine-
dependent part, and during program transfer, the machine-
dependent receding (if any) is clearly isolated An execution 
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image on one computer could be transliterated to ML and 
transported to a different machine. This capability could be 
used to transport programs around computer networks, and 
for bootstrapping of the compiler itself. 

In order to execute the EVAL function, the compiler and 
parts of the symbol table must be present during execution. 
This requirement and the goal of extensibility are met by a 
pattern-directed translator whose rules are compiled into 
dense and efficient code. The same pattern matcher as used 
in the translator also is available for goal-directed procedure 
invocation in A.I. programs, 

Among the specific improvements LISP70 makes to LISP are 
backtrack and coroutine control structure, streaming, long-term 
memory for targe data bases, data typing, pattern-directed 
computation, and extensible functions. The implementation 
provides dynamic storage allocation, relocation, and 
segmentation. 

The subjects to be covered in the present paper are 
pat tern-directed computation and extensible functions. 

Pat te rn Directed Computation 

R e w r i t e Rules 

Many of the data tranformations performed in LISP 
applications are more easily described by pattern matching 
rules than by algorithms. In addition, pattern 
matching rules are appropriate for the description of input-
output conversion, parsing, and compiling.2" LISP70 pieces 
great emphasis on "pattern rewrite rules as an 
alternative and adjunct to algorithms as a means of defining 
functions. 

A brief explanation of rewrite rule syntax and semantics 
will be presented with some examples to demonstrate the 
clarity of the notation. 

Each rule is of the form DEC->REC. The DEC (decomposer) 
Is matched against the "input stream". If it matches, then the 
REC (recomposer) generates the "output stream". 

A literal in a pattern is represented by itself if it is an 
identifier or number, or preceded by a quote {') if it is a 
special character. 

A private variable of the rule is represented by an 
identifier prefixed by a colon (:); it may be bound to only one 
value during operation of the rule. 

A list is represented by a pair of parentheses surrounding 
the representations of its elements. A segment of zero or 
more elements is represented by an eilipsis symbol (...}. 

In the first case, the block is already where it belongs, so the 
world does not change; in the second, the block is moved to 
the right; in the third, to the left; in the fourth, the location 
:TO does not exist yet and is created; In the last case, :B is 
not in the world and the ERROR routine is called 
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L i s t S t ruc tu re Transformations 

The following set of rules defines a function M0VE_BL0CK 
of three arguments: a block to be moved, a location to which it 
should be moved, and a representation of the current world. 
The function moves block :B from its current location in the 
world to location :T0, and the transformed representation of 
the world is returned. 

RULES OF MOVE_BLOCK . 



Functions such as M0VE_BL0CK have been used in a 
simple planning program written by one of the authors. 
Imagine writ ing M0VE_BL0CK as an algorithm; it would require 
the use of auxiliary functions or of a PROG with state 
variables and loops. Bugs would be more likely in the 
algorithm because its operation would not be so lucid. 

Replacement 

A function call in a DEC pattern is called a "replacement", 
A replacement has two interesting aspects. First, if the 
function requires more arguments than it is passed, it will take 
additional arguments off the front of the input stream. 
Furthermore, the value returned by a replacement is 
appended to the front of the input stream. Thus, the 
replacement <F> behaves like a non-terminal symbol of a top-
down parser. In effect, the function F is invoked to translate 
a substream of the input stream, and that substream is 
replaced by its translation, The altered input stream can then 
continue to be matched by the pattern to the right of <F>. 

The following example is from the MLISP compiler, which 
calls itself recursively to translate the condition and arms of 
an IF-statement to LISP: 

Here is another example. The predicate PALINDROME is 
true iff the input stream is a mirror image of itself, i.e., if the 
left and right ends are equal and the middle is itself a 
palindrome. 

Extensible Functions 

New rules may be added to an existing set of rewrite 
rules under program control; thus, any compiler table or any 
other system of rewrite rules can be extended by the user, 
For this reason, a set of rewrite rules is said to be an 
"extensible function". The "ALSO" clause is used to add cases 
to an extensible function; 

Extensions can be made effective throughout the program 
or only in the current block, as the user wishes. 

A regular LAMBDA function can also be extended. Its 
bound variables are considered analogous to a DEC and its 
body analogous to a REC. Accordingly, the compiler converts 
it to an equivalent rewrite function of one rule before 
extending it. 

The Extensib le Compiler 

To make an extensible compiler practical, the casual user 
must be able to understand how it works in order to change it. 
We have found this to be no problem with users of MLISP2, 
the predecessor to LISP70. Its extensible compiler has been 
used to write parsers quickly by A.I. researchers previously 
unfamiliar with parsing techniques. 

To demonstrate that it is not inordinately difficult to 
understand the LISP70 compiler, those rules which get 
involved in translating a particular statement from MUSP to 
LAP/PDP-10 are shown below. A simplified LISP70 (typeles6 
and unhierarchical) is u:ed in the examples, but the real thing 
is not much more complicated. 
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The LISP-to-ML compiler below utilizes the following 
feature; if a colon variable occurs in the REC but it did not 
occur in the DEC, an "existential value" (which is something 
like a generated symbel) is bound to it. Here, the existentiai 
value is used as a compiler-generated label. 

Trie language ML is based on the machine language of the 
Burroughs 5000 and its descendants. For example, the ML 
operator "DJUMPF" means "destructive jump if false". It 
jumps only if the top of the stack is false but always pops the 
stack. 

The unoptimized ML-to-LAP translator below assumes that 
the stack of the ideal machine is represented on the PDP-10 
by a single stack based on register "P", that there is a single 
working register "VAL", and that variables can be accessed 
from f ixed locations in memory. (None of this is really true in 
the actual implementation.) 

Automat ic Order ing Of Rewrite Rules 

In most pattern matchers, candidate patterns to match an 
input stream are tr ied either in order of appearance on a list 
or in an essentially random order not obvious to the 
programmer. LISP70 tries matches in an order specified by an 
"ordering function" associated with each set of rewrite rules. 

One common ordering is "BY APPEARANCE", which is 
appropriate when the programmer wants conscious control of 
the ordering. Another is "BY SPECIFICITY", which is useful in 
le f t - to- r ight parsers and other applications where the 
compiler can be trusted to order the rules so that more 
specific cases are tried before more general ones. When 
neither of these standard functions is appropriate, the 
programmer can define and use specialized ordering functions, 
or can extend SPECIFICITY to meet the special requirements. 

Automatic ordering is convenient for a user who is 
extending a compiler, a natural language parser, or an 
inference system. It can eliminate the need to study the 
exist ing rules simply to determine where to position a new 
rule. Ordering functions can also be designed to detect 
inconsistencies and ambiguities and to discover opportunities 
for generalization of similar rules. 
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As an example, take the USP-TO-ML translator "COMPILE", 
which includes the following rule for the intrinsic function 
PLUS (slightly simplified for presentation): 

To add special cases to the compiler for sums including the 
constant zero, the user could include the following declaration 
in a program: 

The compiler is ordered by SPECIFICITY, which knows that 
the literal 8 is more specific than the variable -X or :Y. 
Therefore, both of the new rules would be ordered before the 
original PLUS rule. Suppose the added rules were placed 
after the general rule; then the original rule would get first 
crack at every input stream, and sums with zero would not be 
processed as special cases. 

An O r d e r i n g Function 

The complete definition of the ordering function 
SPECIFICITY is beyond the scope of this paper. It works 
roughly as follows. Comparing DEC patterns by a left-to-right 
scan, it considers literals more specific than variables and a 
colon variable at its second occurrence more specific than one 
at its first occurrence. The specificity of a replacement <F> is 
that of the most general rule in the function F. 

A DEC with an ellipsis is considered to expand to multiple 
rules in which the ellipsis is replaced by 0, 1, 2, 3, ... * 
consecutive variables. The specificity of each expanded rule 
is considered separately. Observe that between two 
expansions of an elliptic rule some other rewrite rule of 
intermediate specificity may lie. Example: 

Two of the expansions of the first rule are: 

and the second rule of SILLY comes between these in 
specificity. 

SPECIFICITY is itself defined by a system of rewrite rules. 
To give a flavor of how this is done, a very simplified 
SPECIFICITY will be defined. It takes two arguments (DEC 
patterns translated to LISP notation) and returns them in the 
proper order. 

Addi t ional Facil i t ies 

The programmer can specify either deterministic or non-
deterministic matching; the former case generates faster code 
while the latter provides for backtracking. Other facilities of 
the rewrite system include side-conditions, conjunctive match, 
disjunctive match, non-match, repetition, evaluation of LISP and 
MLISP expressions, look-ahead, look-behind, and reversible 
rules. 

DEC patterns can be used outside of rewrite rules for 
decomposition of data structures in MLISP statements. 

Applications 

It is easy to define a system of inference rules, of 
assertions, or of beliefs as a rewrite function. From a set of 
rules can be retrieved either all of the assertions or the first 
that match a given pattern, A robot planner could be 
organized into RULES OF PHYSICS, RULES OF 
INITIAL_CONDITIONS, RULES OF INFERENCE, RULES OF 
STRATEGY, etc. Note that goal-directed procedure invocation 
is performed within each of these functions separately. This 
allows for segmentation of large programs. Furthermore, it 
averts the need to rummage around a conglomerate data base 
of unrelated rules. 

Rewrite rules are a useful tool for natural language 
analysis, whether the methods used are based on phrase 
structure grammar, features, keywords, or word patterns. A 
use of L1SP70 with the latter method is described in a 
companion paper.10 The program described therein utilizes 
the replacement facility extensively. 

Implementat ion of Rewrite Functions 

In the initial implementation of LISP70, rewrite rules are 
processed in a top-down, left-to-right manner. During the 
ordering phase, the rules of each extensible function are 
factored from the left to avoid repetition of identical tests in 
identical circumstances. The resulting code is a discrimination 
tree that eliminates many choice-points for backtracking. 

The backtracking implementation is an improvement of that 
developed for MLISP2.22 It incurs little overhead of either 
time or space. 
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The machine code generated for rewrite rules consists 
primarily of calls on scanning and testing functions. These 
functions are generic and will process input and output of 
streams of any type, including lists, character strings, files, and 
coroutines. For example, streaming18 intermediate results of 
compiler passes between coroutines circumvents expensive 
temporary storage allocation and speeds up the compiler. 

Conclusions 

Some of the design decisions of LISP70 are contrary to 
trends seen in other "successors to LISP". The goals of these 
languages are similar, but their means are often quite diverse, 

Concern with good notation does not have to compromise 
the development of powerful facilities; indeed, good notation 
can make those facilities more convenient to use. People who 
"think in Algol" should not have to cope with S-expressions to 
write algorithms. Neither should people who "think in 
patterns". Rewrites, MLISP, and LISP can be mixed, and the 
most appropriate means of defining a given function can be 
selected. 

LISP70 does not limit the use of pattern rewrite rules to a 
few facilities like goal-achievement and assertion-retrieval. A 
set of rules can be applied to arguments like any other 
function, and can stream data from any type of structure or 
process to any other. 

Automatic ordering does not prevent the programmer from 
seizing control, but allows him to relinquish control to a 
procedure of his choosing to save him tedious study of an 
existing program when making extensions, 

Preliminary versions of LISP70 have been run on a PDP-10 
using a bootstrap compiler, As of June 15, a production 
version has not been completed. The language has been used 
successfully in programs for question-answering and planning. 
Extensions are planned to improve its control structure, 
editing, and debugging capabilities, and versions will be 
bootstrapped to other computers. 
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