
Session 25 Hardware and Software 
fo r A r t i f i c i a l In te l l i gence 

BACKTRACKING IN MLISP2 
An Efficient Backtracking Method tor LISP 

David Canfield Smith, Horace J. Enes 
Computer Science Department 

Stanford University 
Stanford, California 

A b s t r a c t 

An efficient backtracking method for LISP, used in the 
MLISP2 language, is described. The method is optimal in the 
following senses: 

<1) Only necessary state information is saved. The 
backtracking system routines are sufficiently efficient to 
require less than ten percent of the execution time of typical 
jobs. 

(2) Most common operations — fetching/storing the value of a 
variable or the property of an atom, function entry/exit — 
take no longer with backtracking than without it. This is 
achieved by not changing the way values are stored. 

(3) If backtracking is not used, an insignificant overhead is 
involved in maintaining the backtracking capability. 

The MLISP2 algorithm and philosophy are briefly contrasted 
w i th those of several existing backtracking systems, with 
historical comments on the development of the theory of 
backtracking. 

Backtracking 4,5,6,7,8,9,10,11,12,13 has begun to be used in the past 
five years as a control structure for programming languages 
dealing with problems in artificial intelligence. This paper is 
an attempt to contribute to a better understanding of what 
backtracking is, what it is useful for, and how to implement it 
efficiently. Briefly, backtracking is an algorithmic device for 
solving problems expressible as a set of possible alternatives, 
called a goal tree, where not all of the alternatives will lead 

to the desired goal. At each branching point in the tree, a 
decision must be made as to which alternative to try next. 
Backtracking is designed to s i m p l i f y t h e 
p r o g r a m m i n g of this type of problem. 

A branching point is called a "DECISION POINT" in this paper. 
Frequently, insufficient information is available at decision 
points to determine which branches will lead to the goal. If a 
wrong branch is tried, it "FAILs"; that is, the program returns 
to the decision point, pretends that the incorrect branch had 
never been attempted, and selects another alternative, This 
process is called "BACKTRACKING." It is algorithmic because 
it covers the entire goal tree; every branch at every 
branching point will eventually be tried in the worst case. 

Several languages have incorporated backtracking, but none 
of them have incorporated exactly the same features and none 
of them have implemented backtracking in exactly the same 
way. The differences are in terms of objectives and in 
terms of methods . We shell first discuss the nature and 
then the origin of these differences, beginning with the 
different implementation methods used 

Before continuing, we should mention briefly that 
backtracking has been criticized in some quarters as being an 
inherently bad control structure.'4 Criticisms of any concept 
come in two flavors: (1) "theoretical criticisms" of the concept, 
and (2) "pragmatic criticisms" of machine implementations of 
the concept. The criticisms of backtracking have mostly fallen 
into this latter category; they criticize the early, pioneering 
systems like PLANNER. More recent systems like ECL and 
MLISP2 incorporate enough flexibility to answer many of the 
published objections to backtracking. Finally, drawing on our 
personal experience, we wish to point out that MLISP2 has 
been used for two years by the artificial intelligence 
community at Stanford. It has shown itself to be versatile, 
easy to use, and efficient enough to be eminently practical. 

677 



T w o Views of Computations 

All existing backtracking methods have been implemented 
from one of two viewpoints, which we shall call the 
"sequential" view and the "state" view of backtracking. These 
correspond to the way computations are ordinarily viewed 
The "sequential" view of computations holds that a 
computation is a sequence of discrete steps, the last of which 
yields the desired result. All algorithms consist of such 
sequences. For example, the Algol statements 

may be viewed as a sequence of steps leading to the 
computation of a value for W. The third and fourth 
statements themselves consist of a sequence of more 
primit ive steps. 

Another way to view computations is in terms of state 
transformations, the "state" approach. The "STATE OF A 
COMPUTATION" is defined to be the set of current values of 
all variables. The program counter, stacks, etc. are considered 
to be system variables. A computation is a sequence of state 
transformations, the result of which is a state representing the 
desired computation. Continuing the previous example but 
representing the state of the machine by a partially-specified 
tuple; 

the computation becomes 

Though we have not mentioned the intermediate states (e.g. 
3*Y), a complete description must include them. 

Sequent ia l Back t rack ing 

Theoretical Systems 5,6 These two views of 
computations have affected the theory and development of 
backtracking systems. Golomb and Baumert were among the 
f irst to explore the computational applications of backtracking. 
They took the state view of computations and demonstrated 
that backtracking could be used to reduce the search of the 
space of solution states. Floyd's early investigations took the 
sequential approach. He proposed having an "inverse" for 
each statement in the computation, including assignments, 
conditionals, subroutine entries and exits, and I/O. 
Backtracking then consists of stopping the forward execution 
of statements end executing Inverse statements until the 

decision point is again reached. At this point, Golomb and 
Floyd agree, everything has been reset to its original 
condition, and processing may again proceed in a forward 
direction. 

Each command [computation step] is expanded 
into one or more commands, some of which 
carry out the effect of the original command in 
the nondeterministic algorithm, and which also 
stack information required to reverse the 
effect of the command when backtracking is 
needed, while others carry out the 
backtracking by undoing all the effects of the 
first set. [4, p.638] 

This has several advantages. Expanding each computation 
step is a mechanical process that can be added to existing 
compilers and interpreters. The same code is generated as 
before to carry out the forward steps, plus some additional 
code to save the backtracking information. Furthermore, the 
modular design facilitates adding backtracking to a system. 
The inverse of each statement type can be added and 
debugged separately. 

P L A N N E R ' But the sequential ("inverse statement") 
m e t h o d of implementing backtracking soon changed its 
o b j e c t i v e s . It was observed that not ell statements need 
to be undone. Sometimes variables will be set on one branch 
in the goal t ree that cannot affect the execution of other 
branches. Therefore, the argument goes, why bother to 
backtrack these variables? This Is the approach taken by 
PLANNER, a LISP-based pat tern-matching system incorporating 
several powerful non-procedural features such as goal-
directed computation. PLANNER uses backtracking to 
implement these features. (Actually, PLANNER has not been 
fully implemented yet; this discussion really deals with a 
subset called MICRO-PLANNER implemented by Sussman, 
Winc-grad and Charniak. Nevertheless, we shall continue to 
use the name PLANNER.) Not all statement-types are 
undoable. Functions that may be backtracked are designated 
by the let ters "TH" on the front of their names. For example, 

cannot be backtracked, but 

can be. Similarly, THPUTPROP, THREMPROP, THASSERT end 
THERASE are functions for changing the data base that are 
backtrackable whereas PUTPROP and REMPROP are not. But 
function entries and exits are always undoable; i.e. PLANNER 
wi l l always restore the control environment when a failure 
happens, but It will not restore the values of variables or 
propert ies of atoms unless explicitly instructed to. This gives 
the programmer more control over backtracking, and enables 
him to eliminate the saving of superfluous information On the 
other hand it requires the programmer to k n o w what 
information mutt be saved, shifting the burden of backtracking 

678 



to the programmer's shoulders, and in the end making such 
systems harder to use. A further disadvantage is that the 
programmer may ove rspeo l f y the amount of information to 
be saved; it is frequently difficult and non-intuitive to decide 
what is the optimum amount of information to save. 

This implement ion of backtracking has had a profound and 
confusing effect on its objectives. A distinction has come to 
be made between automatic cont ro l and da ta backtracking. 
1 In the authors' view, this distinction is a negative aspect of 
the theory of backtracking that has obscured rather than 
clarified the issues involved. The main purpose of 
b a c k t r a c k i n g is to enable a p rog ram to t r y 
l a t e r a l t e r n a t i v e s in a goal t ree as i f 
e a r l i e r unsuccess fu l ones had never been 
a t t e m p t e d If the state of the computation is not reset at 
the beginning of each alternative, then the alternatives will 
behave differently depending on the order in which they are 
tried. This is a red herring that merely obscures the 
understanding of nondeterministic programs. If the 
programmer wants some information preserved when an 
alternative fails, he should explicitly say so, and any good 
nondeterministic programming language should provide him 
with facilities for doing so. 

State Back t rack ing 

Corresponding to the "state" view of computations, there is 
a "state" view of backtracking. This approach may be 
summarized as follows: When a decision point is encountered 
during a computation, the complete state of the machine (the 
current values of all variables including system variables) is 
"saved." When a failure occurs, the state of the machine is 
"restored" to the saved state in one operation, and 
computation proceeds along another alternative at the decision 
point. If there are no more alternatives, the failure is 
propagated to the preceding decision point. The state method 
has led to a more faithful adherence to Floyd's and Golomb's 
view of backtracking, namely that everything is restored to 
the way it was before the incorrect alternative was 
attempted. In addition to the control environment being 
always restored, as in PLANNER, the data environment is also 
always restored. 

The state-saving and -restoring approach (state method) 
has one main advantage over the inverse-statement approach 
(sequential method): the process of failing and trying another 
alternative is usually more efficient. In the inverse-statement 
approach, statements may be backtracked unnecessarily. For 
example, suppose a decision point occurs, and then the value 
of a variable is changed 100 times before a failure happens. 
Each of these 100 stores to the variable will have to be 
undone by an "inverse store," a restoration of the previous 
value of the variable. But each inverse store will just undo 
the effect of the previous one; the last inverse store 
executed effectively undoes them all. 99 of the 100 inverse 
stores will be wasted. In the state-saving approach, failure 
transfers control directly back to the decision point. Once 

there, the entire state is restored in one operation. In 
MLISP2, this operation is a very rapid one. 

E C L 10 ECL is a blend of the sequential and state 
methods. It has an NASSIGN operator corresponding to 
PLANNER'S THSETQ, but it also uses a "backup stack" much 
like MLISP2's state stack (see below). In an interesting 
variation on MLISP2's stack saving algorithm, the working stack 
is saved on the backup stack when functions are about to 
e x i t , rather than when decision points are executed. In some 
cases this will result in less information being saved than in 
MLISP2. However, it has the peculiar property that when a 
failure occurs, variables not explicitly saved will be restored 
to the l a s t values they had in the fuction, not to the values 
theny had when the decision point was set. As in PLANNER 
only the control environment is automatAically restored. The 
programmer has the responsibility for explicitly saving (via 
NASSIGN) variable values he wants restored correctly. In 
most other respects the ECL algorithm is very similar to 
MLISP2's. 

S A I L 3 SAIL has taken a different approach. Rather than 
add a context mechanism to the language, the SAIL 
implementers added a coroutine structure. Coroutining is 
logically equivalent to backtracking. The set of alternatives at 
a decision point is represented by a set of coroutines. Failure 
is achieved by deactivating the coroutine representing the 
current path and activating another one. In SAIL, the 
programmer is required to do all state saving himself. Two 
new statements have been added to do this: 

REMEMBER <list of variables> IN <context> 

RESTORE <list of variables> FROM <context> 

The special word ALL may be used instead of the list of 
variables and means "do the operation on all the variables 
p r e v i o u s l y remembered in that context," Thus SAIL is 
similar to PLANNER and ECL in that it automatically restores 
the control environment but not the data environment; the 
data must be explicitly restored. If a programmer really wants 
SAIL to behave like a state-saving system, he must at every 
decision point do a REMEMBER of every variable (including 
every array element) in the system, and at failure do a 
RESTORE ALL. It then becomes equivalent to P0P-2 (see 
below). One seldom uses SAIL in this manner, however; the 
REMEMBER/RESTORE primitives are intended to give the 
programmer a convenient way to keep certain data from being 
destroyed during processing in hypothetical situations, not to 
implement full backtracking. 

While coroutining is logically equivalent to backtracking, it is 
neither physically nor conceptually the same. The internal 
structures are quite different; for example, there is no 
"backup stack" in coroutine systems. Conceptually the main 
difference seems to center on the issue of whether 
information should be saved automatically or explicitly. The 
emphasis on s i m p l i f y i n g programming has led most 
backtracking systems to do a large number of things 

679 



automatically — saving and restoring data, and control 
management — whereas coroutines have been regarded as a 
language tool, like iteration, that should be invoked explicitly. 

M L I S P 2 l3 In MLISP2, the system automatically saves the 
necessary information. The advantages of automatic state 
saving are that ft is simple to use, and it eliminates human 
error. The programmer never has to figure out what values 
to save; indeed, he may often be unaware that state saving is 
going on. In addition to eliminating a possible source of bugs 
(not saving enough information), possible inefficiencies (saving 
too much information) are also prevented. Programming in this 
type of a system is not much more difficult than programming 
in a system without backtracking. 

P O P 2 2 The efficiency of the state approach depends on 
the efficiency of saving and restoring the state. The 
straightforward but inefficient method is to copy the value of 
every currently-active variable into some area of memory or 
secondary storage every time a decision point is encountered. 
Thereafter, no further attention is paid to changes in variable 
values. When a failure occurs, the saved values are reloaded 
from storage, and every variable is restored to its old value 
regardless of whether or not its value had changed. This is 
the method used by POP-2 when backtracking was introduced 
into that language. 

Q A 4 12 QA4 is much more efficient in its state saving than 
POP-2. At decision points not much happens except that a 
context number is incremented. Thereafter, when a value is 
stored in a variable, the context number is associated with the 
new value. In fact nothing much happens at failures either, 
except that the context number is decremented and a jump is 
executed! This is faster than any other system's failure. 
Furthermore, In QA4 it is possible to modify or restore a 
backtracking context anywhere in the goal tree and then 
resume from there. But in QA4 the penalty is paid in 
referencing a variable's value (or any atom's property). All 
properties including the VALUE property are stored in a 
structured AL1ST under each atom. This ALIST must be 
searched every time a variable or property is referenced 
The net effect is that fetches and stores slow down by one to 
two orders of magnitude. MLISP2 stores variables and 
properties in such a way that fetches take virtually no longer 
with backtracking than without, and stores are slower only in 
some cases. 

The MLISP2 Algor i thm 

MLISP2 is an extensible language using backtracking and 
based on the Stanford LISP 1.6 system " on the PDP-10 
computer. The language is intended to be a practical tool for 
implementing product/on compilers and translators, as well as 
being a research tool. ML1SP2 has been operational for two 
years, which has given us a good deal of experience with the 
practical problems of production backtracking systems. A logic 
compiler (LCF 9), a deduction system (FOL), an English parser, 

an English to French translator, an ALGOL compiler, and the 
MLISP2 translator itself are major systems that have been 
written in MLISP2. This experience has led us to the 
conclusion that at this point not just one more feature, but 
e f f i c i e n c y and s i m p l i c i t y are the fundamental needs to 
make backtracking practical. 

The philosophy of MLISP2 is that backtracking should 
s i m p l i f y programming. The programmer should never be 
concerned with explicitly saving information just so that 
statements can be backtracked, and he should seldom have to 
rewrite routines so that they can be included in a backtracking 
program. (In PLANNER, existing routines may have to be 
rewritten by changing SETQs to THSETQs, PUTPROPs to 
THPUTPROPs, etc, before they can be included in a 
nondeterministic program. The inverse changes have to be 
made when a backtracking routine is included in a 
deterministic system.) Such considerations have nothing to do 
with problem solving. 

MLISP2 implements backtracking by modifying the LISP 
interpreter and the LAP assembly program. The principle 
change is to the BIND code, by which LAMBDAs and SETQs 
bind their variables In interpreted functions. In addition, a 
"STATE STACK" is maintained on which information from the 
normal pushdown stack (P) and the special pushdown stack 
(SP) is saved. In the Stanford LISP 1.6 system, all control 
information and the values of local variables in compiled 
functions are put on the P stack. Therefore, saving the 
contents of the P stack will save this information, The values 
of all variables in interpreted functions and of variables used 
free in compiled functions are put on the property lists of the 
variables. These will be called "property list variables." 
Saving the property lists of atoms will save the current values 
of property list variables, as well as any other property list 
changes. Recursive calls on functions using property list 
variables stack the old variable values on the SP stack before 
rebinding, so that saving the SP stack will save their old 
values. These three structures — the P stack, the SP stack, 
and the property lists of atoms, — together with a control 
point to transfer to when a failure occurs, completely specify 
the state of any LISP l.C imputation. 

This is a lot of information to handle at once, causing many 
implementers to shy away from the state-saving approach. 
But the volume may be reduced by saving just the incremental 
state, just the changes to the state that have occurred since 
the last decision point. The work load at decision points may 
be further reduced by distributing the state saving throughout 
the computation. 

When an MLISP2 decision point is encountered, there are 
three major effects on the system: 

1. A unique positive integer is associated with each dynamic 
decision point. This number is called the "CONTEXT NUMBER," 
and the context number in effect during any given part of the 
computation is called the "CURRENT CONTEXT NUMBER" 
When a decision point is encountered, the current context 

680 



number is incremented by one. It monotonically increases 
unless a decision point is deleted. (Normally a decision point 
is deleted only when all the alternatives at it have been tried 
and have been unsuccessful, although it may also be deleted 
explicit ly.) The context number provides a means of 
referencing specific backtracking contexts and of 
communicating between contexts. In MLISP2, any context 
which knows the number of an earlier context may pass 
information back to that context, called "setting variables in 
context . " Thus when a branch fails but gains valuable 
information in the process of trying, it can pass the information 
up the t ree to be used in selecting another branch or by the 
next branch selected. 

2. The second thing that happens at decision points is the 
"incremental" P and SP stacks are saved on the state stack. 
The definition of the incremental stacks is somewhat 
complicated. Consider the situation represented in the figure 
below. 

the top of the P stack since the function's local variables and 
temporary results, which are stored above its return address, 
may be modified before the function exits. (If this happened, 
the state stack would no longer contain a complete copy of 
everything below LWM.) Also the return address to which 
LWM points is changed to jump to a system routine; this 
routine moves LWM down to the previous one whenever the 
etack is about to become smaller than the current LWM. This 
Is similar to ECL's method which moves LWM down to the next 
re turn address, rather than to the previous LWM, 

3. No property list variables are explicitly saved at decision 
points, but incrementing the context number affects property 
list variables later. Associated with every property list 
variable is the context number in effect when the variable 
was last set. Whenever a property list variable is about to 
be set, its context is compared with the current context 
number. If they are the same, then the value is simply 
changed and processing continues. No information is saved If 
they are different, then 

Two decision points have already been set and the 
incremental P stack at each has been copied into the state 
stack: A -* A', B -* B'. (Since basically the same operations 
are performed on the SP stack, we will only discuss the P 
stack here.) Now a third decision point is about to be set. 
The question is; how much should be copied this time? A 
system variable called the l o w w a t e r m a r k (LWM) 
always points to the level of the P stack below which the 
state stack contains a complete copy of everything. 
Therefore, just the information from LWM to the top of the P 
stack must be copied to the state stack, This is accomplished 
by a memory-to-memory block transfer (one multi-cycle 
instruction on the PDP-10 after some initial set-up). Finally 
the new LWM is set to the stack location of the return 
address of the function containing the decision point, which is 
usually the first return address from the top of the P stack. 
This requires searching the P stack. We cannot simply use 

(a) the variable's old value and context, together with the 
current context number, are saved on a context list (see 
below); 

(b) the variable's context is changed to the current context 
number, to reflect the fact that the variable has now been 
set in this context; 

(c) finally, the variable's value is changed to the new value. 

The same process occurs whenever any property under an 
atom is changed, not just the VALUE property. The context 
associated with an atom is actually in the form 

where in the case of variables one of the indicators is VALUE. 
This list must be searched whenever a property Is about to 
be changed. The old values are saved on a "CONTEXT LIST," 
in the form 

When a feilure occurs, the system runs down this list restoring 
all the properties that had been changed in the current 
context. The context list is generally short since only one 
atom/indicator pair will occur in each context, namely the 
f i r s t change to that pair. This is a large improvement over 
the inverse statement method ot restoring values. 

Saving the values when variables are about to be set 
distr ibutes the state saving throughout the program. Most 

681 



existing backtracking methods have this property. The 
advantage is that the amount of information saved becomes 
roughly proportional to the amount of work done on any one 
branch of the goal tree. If the branch fails early, then little 
state-saving work will have been done; if processing continues 
longer on the branch, then more state information comes to be 
saved. 

M L I S P 2 Improvements In State Saving 

(a) Not e v e r y change to a nondeterministic variable is 
saved (as in PLANNER and ECL), just the f i r s t change in 
each backtracking context. 

(b) MLISP2 uses the standard LISP 1.6 value cell for 
variable values, so that fetching a variable's value is just as 
fast with as without backtracking, in fact, MLISP2 uses the 
standard LISP representation for all properties on property 
lists, so that all GETs are the same speed nondeterministicaily 
as deter ministically. This is the main source of the efficiency 
that MLISP2 has over QA4. 

(c) When LISP 1.6 functions are compiled, many things are 
done more efficiently. Local variables are stored on the P 
stack, and their values are fetched or stored in one machine 
instruction. Fetches on free variables require only one 
instruction. Function entry and exit require one instruction. 
All of these efficiencies are preserved by MLISP2. The only 
inefficiency introduced is in stores to free variables, which are 
represented as property list variables in LISP J.6 and thus 
must go through the process explained in (3) above. Since in 
LISP, functions are usually debugged in interpreted mode and 
only compiled to increase efficiency, it is crucial in a 
production backtracking system that the efficiency of 
compilation be preserved. In research systems like PLANNER 
and QA4, efficiency comparable to MLISP2 has not been 
attained. 

Language Features for Backtraeking 

MLISP2 uses backtracking to implement a context sensitive 
pat tern matcher. Pattern matching routines are written using 
a new expression, the LET expression. As in PLANNER, these 
routines may be invoked when their syntax pattern matches 
an input stream, though unlike PLANNER the MLISP2 input 
stream must be unstructured (e.g. tokens in a file or In a 
linear list). The MLISP2 pattern matcher is designed to assist 
and simplify writ ing translators for other languages. In addition 
to pat tern matching, a second new expression has been added 
to MLISP, the SELECT expression, as the way to incorporate 
backtracking in ordinary programs. We will not explain these 
expressions in great detail here; they are explained fully in 

the MLISP2 report.13 However we will discuss their use of 
backtracking. 

L E T expression 

The pattern language includes three "meta syntax" 

constructions which directly create decision points; REP 

(repeat) , OPT (optional) and ALT (alternative). Their primary 

purpose is to simplify, clarify, and reduce the number of rules 

necessary to specify a complex syntax. Examples: 

Meaning: Let the production "identifier_list" be zero or more 
identif iers separated by commas, and have as its value a list 
of the identifiers scanned. This corresponds to the BNF rules: 

2. { OPT <PATTERN> } 

Meaning: Let the production "if" be the word IF followed by an 
expression, followed by the word THEN and another 
expression, optionally followed by the word ELSE and a third 
expression, and have as its value the corresponding LISP 
"COND" expression. This corresponds to the BNF rules: 

Meaning: Let the production "expression" be either the 
"begin_end," the "if," or the "for" production, and have the 
value of the respective production as its value. This 
corresponds to the BNF rules: 

682 



We will give a brief example of how nondeterminism is 
used in these expressions. The execution of an OPT 
expression proceeds as follows: 

(a) Set a decision point 

(b) Match the OPT pattern against the current input stream. 

<c) If the match succeeds, the OPT returns with a list of the 
values of the pattern elements matched. If the match fails, 
FAILURE is called. 

termination function to the domain. Exit with this value as 
the value of the SELECT. (The termination function may 
call FAILURE). If the value of the termination condition is 
FALSE, proceed to the next step. 

(d) Apply the value function to the domain, and exit with this 
value as the value of the SELECT. 

<e) If a failure returns to the SELECT, apply the successor 
function to the domain to yield a new domain. 

(f) Go to step (c). 

We will give a few examples of how the SELECT may be 
used, 

(d) If a FAILURE happens, either in the matching of the OPT 
pattern or later, the state of the computation is restored 
to its state at the beginning of the OPT, the decision point 
is deleted, and computation proceeds with the empty list 
NIL as the value of the OPT. 

SELECT expression 

The other way to incorporate backtracking into a program is 
by the SELECT expression. The SELECT expression is like a 
nondetemninistic FOR-loop. It sets a decision point and allows 
each of a set of alternatives to be tried. It has a very 
general form, and is a generalization of Floyd's CHOICE 
function and Fikes* CHOICE-CONDITION combination.4 The 
various expressions are converted to functions by the 
following expansion: 

(LAMBDA <<formal_variable>) <expression>) 

These LAMBDA functions are defined as: 

The execution of a SELECT expression proceeds as follows: 

(a) Evaluate the domain, which may be any expression, to get 
an initial domain. 

(b) Set a decision point. 

(c) Apply the termination condition to the domain. If the value 
is TRUE, delete the decision point and apply the 

(1) Floyd's CHOICE function may be written: 

Calling CHOICEUO) will give ten choices. The initial domain is 
just the integer 1. The value function is the identity function 

(LAMBDA (3) 1). 
The successor function is addition by one 

(LAMBDA (I) (PLUS I D ) . 
The termination condition is a check if the maximum has been 
exceeded 

(LAMBDA (I) (GREATERP I N)). 
The termination function 

(LAMBDA (I) (FAILURE)) 
propagates the failure if the termination condition becomes 
true. This illustrates the use of the intrinsic function FAILURE, 
3 function of no arguments that fails to the last decision point 
set and restores the state of the computation at that point. 

(2) The most common use of SELECT is to select items one 
at a time from a list, and try out each item selected. For this 
reason, several of the clauses in the SELECT expression 
syntax are optional. The following two forms are equivalent. 

The FINALLY expression need not propagate failure; it may 
pass information back to earlier contexts, or simply compute a 
final value. 

(3) One of the most interesting uses of the SUCCESSOR 
expression, which computes a new domain, is to reorder the 
old domain based on the information gained by trying the last 
alternative. QA4 and other systems have this ability. 

683 



Here the functions all operate on a goal list, represented by 
the variable GOALS. The successor function modifies this 
variable, in a way that may be influenced by the last 
alternative tried (for example, by passing some information in 
context), thus affecting subsequent alternatives. 

O t h e r features 

Two final backtracking features available in MLISP2 are a 
function called FLUSH, which prunes a part of the goal tree by 
flushing elements off of the state stack, and a notation for 
setting variables in other backtracking contexts. Normally 
assignments such as "X Y" take effect in the current 
context, but "X{10} Y" sets X to the value of Y in the 
context 10. X will now not be backtracked until a failure to 
context 10 occurs or until it is again set in the current 
context. This enables the programmer to specify that 
information is to be saved until a certain context is destroyed. 
Any expression to compute a context number may occur inside 
the braces. 

REP, OPT, ALT, SELECT, FAILURE, FLUSH and setting in 
context constitute the complete set of backtracking facilities 
available in MLISP2. Note that unlike Floyd's theoretical 
system, there is no SUCCESS function; success is the absence 
of a failure, just as TRUE is anything but NIL in LISP. These 
primitives are slightly less powerful than those available in 
some other systems, particularly PLANNER and ECL which 
allow failing to a label. For example, in ECL the programmer 
may declare TAG points, which are like nondeterministic labels, 
and then fail explicitly to these TAG points. However, 
although they are very powerful (any control structure can be 
be buiit up out of GO TO's), the arguments against the use of 
GO TO's in deterministic languages apply as well to the use of 
these nondeterministic GO TO's and labels. Just as many 
languages are trying to replace GO TO's with WHILE- and 
FOR-loops, we have tried to replace nondeterministic GO TO's 
with a nondeterministic FOR-loop; the SELECT expression. 

Summary 

An efficient implementation of backtracking used In the 
MLISP2 language has been described. The efficiencies are due 
to a smooth integration of backtracking into an existing LISP 
system; in particular, the way variables are stored has not 
been changed, so that fetches and most stores are not 
degraded. The theory of existing backtracking systems has 
been related to two ways of viewing the structure of 
computations. MLISP2 has a "state-saving" structure, as 
opposed to a "sequential" or "inverse statement" structure. 

Other backtracking systems have been discussed and 
compared with the MLISP2 implementation. Finally, the 
language features available in MLISP2 for using backtracking 
have been presented. Our main conclusion is that it is 
possible to incorporate backtracking into a production system 
in such a way that the most frequent operations are not 
degraded in performance. Backtracking is a more useful and 
more used control structure when this ie done. 

With some simplifications and omissions, the existing 
implementations of backtracking are summarized in the 
following table. 

B i b l i o g r a p h y 

1. Bobrow, D.G. and Wegbreit, B. A Mode l and Stack 
I m p l e m e n t a t i o n o f M u l t i p l e Envi ronments 
Report No.2334, Bolt, Beranek and Newman, 1972. 

2. Bur stall, R.M., Collins, J.S. and Popple stone, R.J, 
P r o g r a m m i n g in Pop2, University Press, Edinburg, 
Scotland, 1971, 279-282. 

3. Feldman, J.A., Low, J.R., Swinehart, D.C. and Taylor, R.H. 
K e o e n t Deve lopmen ts i n S A I L , A n A L G O L 
b a s e d L a n g u a g e f o r A r t i f i c i a l In te l l igence 
Artificial Intelligence Project Memo AIM-176, Stanford 
University, 1972. 

4. Fikes, R.E. A H e u r i s t i c P r o g r a m fo r Solv ing 
P r o b l e m s S t a t e d as Nondetermin is t ic 
P r o c e d u r e s PH.D. Thesis, Carnegie-Mellon University, 1968. 

5. Floyd, R.W. "Nondeterministic Algorithms" J.ACM 14, A (Oct. 
1967), 636-644. 

6. Golomb, S.W, and Baumert, L.D. "Backtrack Programming" 
J.ACM 12 , 4 {Oct. 1965), 516-524. 

7. Hewitt, C. "Procedural Embedding of Knowledge in 
PLANNER" Proc. IJCA1 2, 1971, 167-182. 

BR4 



8. Hewitt, C. "PLANNER: A Language for Manipulating Models 
and Proving Theorems in a Robot" Al Memo 168 (rev), MIT, 
1970. 

9. Milner, R. Log i c f o r Computable Functions 
D e s c r i p t i o n Artificial Intelligence Project Memo AIM-169, 
Stanford University, 1972. 

10. Prenner, C.J., Spitzen, J.M., and Wegbreit, B. "An 
Implementation of Backtracking for Programming Languages" 
Sigplan Notices 7, 11 (Nov. 1972), 36-44. 

11. Quam, L.H. and Diffie, W. S tan fo rd L ISP 16 
M a n u a l At Operating Note 28.7, Stanford University, 1972. 

12. Rulifson, J.F. Q A 4 P rog ramming Conoepts Al 
Technical Note 60, Stanford Research Institute, 1971. 

13. Smith, D.C. and Enea, H.J. M L I 8 P 2 Artificial Intelligence 
Project Memo AIM-195, Stanford University, 1973. 

14. Sussman, G.J. and McDermott D.V. "Why Conniving is 
Better Than Planning" Proc. FJCC 41 (Dec. 1972), 1171-
1180. 

685 


