Session 25 Hardware and Software
for Artificial Intelligence

CLISP - Conversational LISP

Warren Teitelman
Xerox Palo Alto Research center

Palo Alto,

Abstract

CLISP is an attempt to make LISP programs
easier to read and write by extending the
syntax of LISP to include infix operators,
IF-THEN statements, FOR-DO-WHILE statements,
and similar ALGOL-like constructs, without
changing the structure or representation of
the language. CLISP is implemented through
LISP's error handling machinery, rather than
by modifying the interpreter: when an
expression is encountered whose evaluation
causes an error, the expression is scanned
for possible CLISP constructs, which are
then converted to the equivalent LISP
expressions. Thus, users can freely
intermix LISP and CLISP without having to
distinguish which is which. Emphasis in the
design and development of CLISP has been on
the system aspects of such a facility, with
the goal in mind of producing a useful tool,
not just another language. To this end,
CLISP includes interactive error correction
and many 'Do-what-I-Mean* features.

* % *

The syntax of the programming language
LISP»»»»» is very simple, in the sense that
it can be described concisely, but not in
the sense that LISP programs are easy to
read or write! This simplicity of syntax is
achieved by, and at the expense of,
extensive use of explicit structuring,
namely grouping through parenthesesization.
For the benefit of readers unfamiliar with
LISP syntax, the basic element of LISP
programs is called a fgrm. A form is either
(1) atomic, or (2) a list, the latter being
denoted by enclosing the elements of the
list in matching parentheses. In the first
case, the form is either a variable or a
constant, and its value is computed
accordingly. In the second case, the first
element of the list is the name of a
function, and the remaining elements are
again forms whose values will be the
arguments to that function. In Backus
notation:

Figure 1
Syntax of a LISP Form

<form> ::« <variable>|<constant>|
(<function-name> <form> <form>)

For example, assign x the value of the sum
of A and the product of B and C is written
in LISP as (SETQ X (PLUS A (TIMES B C))) .

686

California 94304

The syntax for a conditional
correspondingly simple:*

expression is

Figure 2
Syntax of a conditional Expression
<conditional expression> :X
(COND <clause> <clause>)

<clause> :;= (<form> <form>)
Note that there are no IF's, THEN's,
BEGIN's, END'S, or semi-colons. LISP avoids
the problem of parsing the conditional
expression, i.e., delimiting the individual
clauses, and delimiting the predicates and

consequents within the clauses, by requiring
that each clause be a separate element in
the conditional expression, namely a
sublist, of which the predicate is always
the first element, and the consequent the
second element- As an example, let wus
consider the following conditional
expression which embodies a recursive
definition for FACTORIALS**
Figure 3
Recursive Definition of Factorial
(COND
((EQ N 0)

(T (TIMES N (FACTORIAL (SOB1 N)))))

Actually, a clause can have more than
two consequents, in which case each form
is evaluated and the value of the last
form returned as the value of the
conditional. However, for the purposes
of this discussion, we can confine
ourselves to the case where a clause has
only one consequent.

** The expression in Figure 3 is shown as
it would be printed by a special
formatting program called PRETTYPRINT.
PRETTYPRINT attempts to make the
structure of LISP expressions more
manageable by judicious use of
identation and breaking the output into
separate lines. Its existence is a
tacit acknowledgment of the fact that
LISP programs require more information
than that contained solely in the
parenthesization in order to make them
easily readable by people.

The first clause in this conditional is the
list of two elements ((EQ NO) 1), which
says if (EQ N 0) is true, i.e., if N is
equal to 0, then return 1 as the value of
the conditional expression, otherwise go on
to the second clause. The second clause is
(T (TIMES N (FACTORIAL (SUB1 N)))), which
says if T is true (a tautology-the ELSE of

ALGOL conditionals), return the product of N

and (FACTORIAL (SUB1 N)). The latter s
evaluated by first evaluating (SUB1 N), and
then calling FACTORIAL (recursively) on this
value.

As a result of the structuring of
conditional expressions, LISP does not have

to search for words such as |IF, THEN, ELSE,
ELSEIF, etc., when interpreting or compiling
conditional expressions in order to delimit
clauses and their constituents: this
grouping is specified by the parentheses,
and is performed at input time by the READ
program which creates the list structure
used to represent the expression.
Similarly, LISP does not have to worry about
how to parse expressions such as A+B+C,
since (A+B)*C must be written unambiguously
as (TIMES (PLUS A B) c), and A+(B*C) as
(PLUS A (TIMES B C)). In fact, there are no
reserved words in LISP such as IF, THEN,
AND, OR, FOR, DO, BEGIN, END, etc., nor
reserved characters like +, -, *, /[, =, «,
etc.* This eliminates entirely the need for
parsers and precedence rules in the LISP
interpreter and compiler, and thereby makes
program manipulation of LISP programs
straightforward. In other words, a program
that "looks at" other LISP programs does not

)

need to incorporate a lot of syntactic
information. For example, a LISP
interpreter can be written in one or two
pages of LISP code.' It is for this reason

that LISP is by far the most suitable, and
frequently used, programming language for
writing programs that deal with other
programs as data, e.g., programs that
analyze, modify, or construct other
programs.
However, it is precisely this same
simplicity of syntax that makes LISP
programs difficult to read and write
(especially for beginners), 'pushing down'
is something programs do very well, and
people do poorly. As an example, consider
the following two "equivalent" sentences:

"The rat that the cat that the dog

that | owned chased caught ate the

cheese.'

versus

"l own the dog that chased the cat

that caught the rat that ate the

cheese."
Natural language contains many linguistic
devices Buch as that illustrated in the
second sentence above for minimizing
* except for parentheses (and period),

which are used for indicating structure,
and space and end-of-line, which are
used for delimiting identifiers.

687

embedding, because embedded sentences are
more difficult to grasp and understand than
equivalent non-embedded ones (even when the
latter sentences are somewhat longer).
Similarly, most high level programming
languages offer syntactic devices for
reducing apparent depth and complexity of a
program: the reserved words and infix
operators used in ALGOL-like languages
simultaneously delimit operands and
operations, and also convey meaning to the
programmer. They are far more intuitive
than parentheses. In fact, since LISP uses
parentheses (i.e., lists) for almost all
syntactic forms, there is very little

information contained in the parentheses for
the person reading a LISP program, and so
the parentheses tend mostly to be ignored:
the meaning of a particular LISP expression
for people is found almost entirely in the
words, not in the structure. For example,
the expression in Figure 4

Figure 4
careless Definition of Factorial
(COND (EQ N 0) 1)

(T TIMES N FACTORIAL ((SUB1

N)))

is recognizable FACTORIAL even though
there are five misplaced or missing
parentheses. Grouping words together in
parentheses is done more for LISP's benefit,

than for the programmer's.

as

CLISP is designed to make LISP programs
easier to read and write by permitting the
user to employ various infix operators, IF-
THEN- ELSE statements, FOR-DO-WHILE-UNLESS-
FROM-TO-etc. expressions, which are
automatically converted to equivalent LISP
expressions when they are first interpreted.

For example, FACTORIAL could be written in
CLISP as shown in Figure 5.

Figure 5

CLISP Definition Of FACTORIAL
(IF N=0 THEN 1 ELSE N*(FACTORIAL N-1))

Note that this expression would be
represented internally (after it had been
interpreted once) as shown in Figure 3, so
that programs that might have to analyse or

otherwise process this expression could take
advantage of the simple syntax.

CLISP also contains facilities for making
sense out of expressions such as the
careless conditional shown in Figure 4.
Furthermore, CLISP will detect those cases
which would not generate LISP errors, but
are nevertheless obviously not what the
programmer intended. For example, the
expression (QUOTE <expression> <form>) will
not cause a LISP error, but <form> would
never be seen by the interpreter. This is
clearly a parentheses error. CLISP uses
both local and global information to detect,
and where possible, repair such errors.
However, this paper will concentrate
primarily on the syntax extension aspects of
CLISP, and leave a discussion of the
semantic issues for a later time.

been similar efforts in other
most notably the MLISP
language at Stanford.* CLISP differs from
these in that it does not attempt to replace
the LISP language so much as to augment it.
In fact, one of the principal criteria in
the design of CLISP was that users be able

There
LISP systems,

have

to freely intermix LISP and CLISP without
having to identify which is which. Users
can write programs, or type in expressions
for evaluation, in LISP, CLISP, or a mixture
of both. In this way, users do not have to
learn a whole new language and syntax in
order to be able to use selected facilities
of CLISP when and where they find them
useful.

CLISP is implemented via the error
correction machinery in INTERLISP*. Thus, any
expression that is well-formed from LISP'S
standpoint will never be seen by CLISP
(e.g., if the user defined a function IF, he
would effectively turn off that part of
CLISP). This means that interpreted

programs that do not use CLISP constructs do

not pay for its availability by slower
execution time. In fact, the interpreter
does not <know* about CLISP at all. It
operates as before, and when an erroneous
form is encountered, the interpreter calls
an error routine which in turn invokes the
Do-what-I-Mean (DWIM) analyzers'»mes which
contains CLISP. If the expression in

question turns out to be a CLISP construct,
the equivalent LISP form is returned to the
interpreter. In addition, the original CLISP
expression, is modified so that it becomes
the correctly translated LISP form. In this

way, the analysis and translation are done
only once.

Integrating CLISP into the LISP system
(instead of, for example, implementing it as

a separate preprocessor) makes possible Do-
What-I-Mean features for CLISP constructs as
well as for pure LISP expressions.* For
example, if the user has defined a function
named GET-PARENT, CLISP would know not to
attempt to interpret the form (GET-PARENT)
as an arithmetic infix operation.
(Actually, CLISP would never get to see this
form, since it does not contain any errors.)
If the user mistakenly writes (GET-PRAENT),
CLISP would know he meant (GET-PARENT), and
not (DIFFERENCE GET PRAENT), by using the
information that PRAENT is not the name of a

variable, and that GET-PARENT is the name of
a user function whose spelling is "very
close" to that of GET-PRAENT. Similarly, by
using information about the program's
environment not readily available to a
preprocessor, CLISP can successfully resolve

the following sorts of ambiguities:

* INTERLISP (formerly BBK-LISP®) is
implemented under the BBN TENEX
timesharing system2 and is jointly

maintained and developed by Xerox Palo
Alto Research Center and Bolt, Beranek,
and Newman, Inc., Cambridge, Mass. It
is currently being used at various sites
on the ARPA Network, including PARC,
BBN, ISI, SRI-AI, etc.

688

1)

4)

The
the

and the change would

(LIST X*FACT N), where FACT is the name
of a variable, means (LIST (X*FACT) N).

(LIST X*FACT N), where FACT is not the
name of a variable but instead is the
name of a function, means
(LIST X*(FACT N)>, i.e., N is FACT'S
argument.

(LIST X*FACT(N)), FACT the name of a
function (and not the name of a
variable), means (LIST X* (FACT N)) .
cases (1), (2) and (3) with FACT
misspelled!

first expression is correct both from

standpoint of CLISP syntax and semantics
be made without the

user being notified. In the other cases,
the user would be informed or consulted
about what was taking place. For example,
to take an extreme case, suppose the

expression
where
and a variable named FCT.
first be asked
FCT.
be interpreted as (LIST (X*FCT)
said
were a misspelling
intended X*FCCT N to mean X*(FACT N).
said
transformation would be
said NO,
was
not the name of a

* ok

(LIST X*FCCT N) were encountered,
was both a function named FACT
The user would
if FCCT were a misspelling of
If he said YES, the expression would
N).* If he
if FCCT

he
If he
question, the indicated
performed. If he
the system would then ask if X*FCCT
be treated as CLISP, since FCCT is
(bound) variable.** If he

there

the would be asked

FACT, i.e., if

NO, user

of

YES to this

to

Through this
CLISP or
Actually,

discussion, speak of

DWIM asking the user.
if the expression in question
was typed in by the user for immediate
execution, the user is simply informed
of the transformation, on the grounds
that the user would prefer an occasional
misinterpretation rather than being
continuously bothered, especially since
he can always retype what he intended if

we

a mistake occurs, and ask the
programmer's assistant to UNDO the
effects of the mistaken operations if

transformations
programs, the

necessary.' For
expressions in his

on
user

can inform CLISP whether he wishes to
operate in CAUTIOUS or TRUSTING mode.
In the former case (most typical) the
user will be asked to approve
transformations, in the Ilatter, CLISP
will operate as it does on type-in,
i.e., perform the transformation after

informing the user.

This question is important because many

of our LISP users already have programs
that employ variables whose names
contain CLISP operators. Thus, if CLISP
encounters the expression A/B in a
context where either A or B are not the
names of variables, it will ask the user
if A/B is intended to be CLISP, in case
the wuser really does have a free
variable named A/B, but has mistakenly
used A/B here in a context where it was
not bound.

said YES, the expression would be
transformed, if NO, it would be left alone,
i.e., as (LIST X*FCCT N). Note that we have

not even considered the case where X*FCCT is

itself a misspelling of a variable name, as
with GET-PRAENT. This sort of
transformation would be considered after the
user said NO to x*FCCT N -> X*(FACT W). The
complete graph of the possible
interpretations for (LIST X.FCCT N) where
FCT and XFCT are the names of variables, and
FACT is the name of a function, is shown in
Figure 6.

Figure &
Possible interpretations of (LIET X*FCCT N)

recT-TETY

7 N

yoor MeAFACT EIT

7N

a ROFCCTLIFCT

7 N

XUPEOT TREAT AS CLIEPT

= [}
. L

The final states for the various terminal
nodes shown in Figure 6 are:

1: (L1ST (TIMES X FCT) N)

2: (LIST (TIMES X {(FACT N))}

3: (LIST XFCT K}

4 {LIST (TIMES X FCCT) N)

53 (LIST X*FCCT N)
CLISP can also handle parentheses errors
caused by typing 8 or 9 for ' (- or ')'- (On
most terminals, 8 and 9 are the lower case
characters for '(+ and «)', i.e., (< and
'8' appear on the same key, as do ¢)'and
*9.)) For example, if the user writes
N*8FACTORIAL N-1, the parentheses error can
be detected and fixed before the infix
operator * is converted to the LISP function
TIMES. CLISP is able to distinguish this
situation from cases like N*8*X meaning
(TIMES N 8 X), or N*8X, where 8X is the name
of a variable, again by using information
about the programming environment. In fact,
by integrating CLISP with DWIM, CLISP has

been made sufficiently tolerant of errors
that almost everything can be misspelled!”
For example, CLISP can successfully

translate the definition of FACTORIAL:
(IFFN*0 THENN 1 ESLE N*8FACTTORIALNN-1)

* Where
adjacent
example.

includes
together, as

misspelling
words

running
shown in

689

to the form shown in Figure 3, while making
5 spelling corrections and fixing the
parenthesis error.*

This sort of robustness prevails throughout

CLISP. For example, the iterative statement
permits the user to say things like:

(FOR OLD X-M TO N

DO (PRINT X) WHILE (PRIMEP X))**
However, the user can also write OLD (X-M),
(OLD X-M), (OLD (X M>) , permute the order of
the operators, DO (PRINT X)
TO N FOR OLD X+M WHILE (PRIMEP X), omit
either or both sets of parentheses misspell
any or all of the operators FOR, OLD, TO,
DO, or WHILE, or Ileave out the word DO
entirelyl And, of course, he can also
misspell PRINT, PRIMEP, M, or N!***

CLISP well integrated into the INTERLISP
system. For example, the above iterative
statement translates into an equivalent LISP
form using PROG, COND, GO, etc.**** When the
interpreter subsequently encounters this
CLISP expression, it automatically obtains
and evaluates the translation. Similarly,
the compiler "knows" to compile the
translated form. However, if the user
PRETTYPRINTS his program, at the
corresponding point in hie function,
PRETTYPRINT "knows" to print the original
CLISP. Similarly, when the user edits his
program, the editor makes the translation
invisible to the user. If the user modifies
the CLISP, the translation is automatically

is

discarded and recomputed the next time the

expression is evaluated.

* CLISP also contains a facility for
converting from LISP hack to CLISP, so
that after running the above definition
of FACTORIAL, the user could 'CLISPIFY»
to obtain:

(IF N=0 THEN 1 ELSE N*(FACTORIAL N-1))-

** This expression should be self
explanatory, except possibly for the
operator OLD, which says X is to be the
variable of iteration, i.e., the one to
be stepped from M to N, but X is not to
be rebound. Thus when this loop
finishes execution, X will be equal to
N.

s»% In this example, the conly thing the user
could not misspell is the first X, since
it specifies the pame of the variable of
iteration. The other two instances of X

could also be misspelled.

***% (PROG NIL
(SETQ X M)
3LP {COND
{{OR {IGREATERP X N}
{HOT (PRIMEP X)))
{RETURN)} })
{PRINT X}
(GO $SLP)).

In short, CLISP is not a language at all,
but rather a system. It plays a role
analagous to that of the programmer's
assistant.” Whereas the programmer's
assistant is an invisible intermediary agent
between the user's console requests and the
LISP executive, CLISP sits between the

user's programs and the LISP interpreter.

Only a small effort has been devoted to
defining a core syntax for CLISP. Instead,

most of the effort has been concentrated on
providing a facility which' 'makes sense' out
of the input expressions wusing context

information as well as built-in and acquired
information about user and system programs.

Just as communication is based on the
intention of the speaker to produce an
effect in the recipient, CLISP operates

under the assumption that what the user said
was intended to represent a meaningful
operation, and therefore tries very hard to
make sense out of it. The motivation behind

CLISP is not to provide the user with many
different ways of saying the same thing, but
to enable him to worry Iless about the
syntactic aspects of his communication with
the system. In other words, it gives the
user a new degree of freedom by permitting
him to concentrate more on the problem at
hand, rather than on translation into a

formal and unambiguous language.

CLISP has just become operational and the
expected reactions and suggestions from
users will do much towards polishing and
refining it. However, the following
anecdote suggests a favorable prognosis:

after being cursorily introduced to some of
the features of CLISP, two users wanted to
try out the iterative statement facility,
but neither of them were sure of the exact
syntax. The first user thought that if they
just typed in something "reasonable", the
system would figure out what they meant.
And it did!

690

N

References

. Berkeley, E.C. "LISP, A Simple
Introduction," in The Programming
Language LISP, its Operation and
Applications. Berkeley, E.C. and
Bobrow, D.G. (editors), MIT Press,
1966.

Bobrow, 0O.G., Burchfiel, J.D., Murphy,
D.L. and Tomlinson, R.S. "TENEX, a
Paged Time Sharing System for the
PDP-10." communications of the. ACM,
March 1972, vol. 15, Ho. 3.

al.
Manual.

McCarthy, J. et
Programmer's

1966.

LISP
MIT

1.5
Press,

Smith, D.c MLISP User's Manual.
Stanford Artificial Intelligence
Project Memo Al-84, January 1969.

"Automated
Programmer's

Teitelman,
The

w. Programming -

Assistant."

Proceedings of Fall Joint Computer
Conference. December 1972.

Teitelman, W., Bobrow, D.G., Hartley,
A.K., Murphy, D.L. BBN-LISP Tenex
Reference Manual, Bolt, Beranek,
and Newman, Inc., August 1972.

. Teitelman, W. "Do What | Mean,"
Computers and Automation. April
1972.

Teitelman, W. "Toward a Programming
Laboratory," Proceedings of First
International Joint Conference on
Artificial Intelligence. Walker, D.
(editor), May 1969.

weissman, C. LISP 1.5 Primer. Dickenson
Press, 1967.

2.PAK:
ARTIFICIAL

Session 25 Hardware and Software
for Artificial Intelligence

A SNOBOL-BASED PROGRAMMING LANGUAGE FOR
INTELLIGENCE APPLICATIONS

JOHN MYLOPOULOS, NORMAN BADLER, LUCIO MELLI

AND NICHOLAS ROUSSOPOULOS

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF TORONTO

Descriptive Terms: Programming language,

SNOBOL, backtracking, relational data base,
artificial intelligence.
Abstract

This paper describes a programming langu-
for Artificial Intelligence applications
which offers

(a) a data base, in the form of a collection
of labeled directed graphs where knowledge can
be stored

(b) pattern
and pattern

age

directed information retrieval
invoked function calls

(c) primitive statements which enable the
user to construct flexible searching algor-

ithms.

The language is an extension of SNOBOL
its design and implementation and uses
SNOBOL's string pattern matching facilities
for its own (graph) pattern matching.

1. Introduction

lLpak was designed and
order to facilitate Al research at the Uni-
versity of Toronto. Its design was influenced
by other languages designed for similar
such as CONNIVF.R[1,2] , PLANNFRI[3], QA4[4],
SAIL[5,6], and our decision to implement it as
an extension of SNOBOL and keep it relatively
inexpensive (in terms of the time and space

implemented in

reasons

required for the execution of programs).

This paper only discusses the main fea-
tures of [Ipak, how they can be used, their
relation to features offered by other languages
for Al, and the success of the current implc-
mentation. More details on the language are
available elsewhere [7] It is assumed that

the reader is familiar with the basic features
of SNOBOL [8].
2. The Data Base

The data base for each I[lpak program con-
sists of a collection of directed, labeled
graphs (hereafter graphs) such as that shown
in FIG. 1. A list of transitive and/or
intransitive edges is associated with each
node, which define either properties of (the
object represented by) the node or relations
which hold between the node and other elements
of the same graph.

A linear order exists for the nodes of
each graph defined by special edges labeled
NEXT. TYPE_SUN

ABOVE
TYPE HOUSE TYPE TREE

691

Edge labels (properties) consist of one
or more atoms separated by underscores. The
first atom is the attribute of the property,
while subsequent atoms are its modifiers.

Information can be retrieved from the

data base by matching (graph) patterns
against it.
Patterns arc specified in terms of se-

quences of path descriptions.

the pattern
<$X,(LEFT_AARB?YJ, (FAR).SW-

contains one path description which will

For example,

match paths that

(a) Begin at the node which is the value of
atom X ,

(b) Move along an edge whose label has LEFT
as attribute and is followed by at least one
modifier,

(c) Move along an edge whose label has FAR
as attribute,

(d) End at node $W.

If such a path connects nodes $X and
$W for a particular data base, the pattern
match succeeds and the modifier of LEFT is

assigned to atom Y , while the graph pattern
match returns $W , the last node vi?ited
during the match. Patterns are evaluated by
the function SEARCH.

AARB is a special property pattern which
will match any atom. lLpak offers several
other built-in property patterns and operators
similar to those offered by SNOBOL to help the
user specify classes of edge labels in his
graph patterns Thus (graph) pattern matching
is essentially driven by property pattern

matching and can be easily
the string pattern matching
SNOBOL.

Note that there may be several
which will match the same pattern.
example, the pattern match

SEARCH(<$X,(LEFT),(ABOVE*FAR)>)
could return node n1 or nZ In FIG.
The pattern match however will return
of the two nodes.

nt ()

implemented using
facilities in

paths
For

2.

just one

ABOVE_FAR_VERY

LEFT NEAR
6._

22 (O

We will later

show
the matching alternatives.

how to generate all

Information can be added to or deleted
from the data base through the special
functions ADD and DEL.

ADD's main function is to create new
formation with a graph as context. For
example, the function call

in-

ADD(<$X,(LEFT),(FAR),?W>)
will create enough new edges and nodes
the pattern match of its argument against
data base successful. In the process, a
value will be assigned to W ADD will also
perforin a simple consistency-redundancy test
for each new edge attached to a node, with
respect to the edge list of that node. Thus
an intransitive edge labeled TYPE HOUSE will
not be added to the edge list of a node which
already contains an edge labeled TYPE_HOUSE
TALL because it is redundant.

to make
the
(node)

An example of a DEL function call is
DEL(<?X,(LEFT),-$Y,(RTGHT)>)

where the special operator e specifies
that the node or edge it operates on must be
deleted. For this function call, a pattern
match takes place first, and if unsuccessful
the call fails; otherwise the node $Y s
deleted along with all the edges that point, to

or away from it.

lpak also offers SNOBOL tables and
arrays as means for representing information.
Moreover, as in SNOBOL, the user can define
his own data types. Explicit list facilities
using CONS, CAR and CDR and list notation are
provided. Expressions such as

$L = (3A, $B, $C, $D)
may be used to construct lists; here the value
of L is a four element list.
3- Program Structure and Control
lL.pak statements are similar to their

SNOBOL cousins. For example, the statement

A: DEL(<$X, (LEFT), - (R1GITJVBOYE) >) :S(A)F(B)
is labeled A , and will attempt to delete the
edge whose label matched R1GHT_ABOVE, if the
pattern match of <$X,(LEFT),(RICHT_ABOVE)>
against the data base succeeds. If the DEL
function call succeeds, control is passed back
to A , otherwise control is passed to the
statement labeled B

Each Ipak statement
and this can be used for
less otherwise specified, control will pass to
the next statement of a [lpak program. Thus
backtracking as encountered in PLANNER and QA4
is only offered during graph pattern matching

will succeed or fail
program control. Un-

in lpak. A different kind of backtracking
will be discussed later.
4 . Function Requesjts_
4.1 Explicit function requests

lLpak functions can be defined through
PDEFINE. For example, the statement

PDEFINE(NEW(X:NODEJNULL,Y:PROPERTY|PATTERN,? Z)
W_W1,NEW)

defines a function named NEW with three formal

parameters; the first must be of type NODE or

have as value the null string, the second of

type PROPERTY or PATTERN, while the third is

called by result. Thus the statement
NEW($X1,$Y1,$21)
will fail even before NEW is called because
the third argument is not called by result,
while
NEW($X1,8Y1,221)
will proceed with the execution of the function

call if $xX1 is a node or the null string,

and $Y1 is a property or a (graph) pattern.
The specification of allowable types for

each formal parameter does not mean that the

type of function arguments is fixed inside a

function call; it only helps to check whether
the function request makes sense.

The same function name may be used inside
several PDEFINE calls, thus giving the same
name to several different functions. This
means that a statement such as

NEW($X1,$Y1,?2Z)
may cause several function calls unti] one is

the function
request in [lpak

found that succeeds. In fact,
name specified by a function
can be a string pattern, as in
(T11JAX) ($X,$Y,?2)
which will cause the call of any function
whose name matches the string pattern (THJAX)
(i.e., begins with TH or AX) and whose
parameter description is matched by the argu-
ments of the function request.

This feature offers the wuser flexibility
in specifying a function request similar to
that offered by theorem provers where each
axiom can be considered as a function without
a name to be called whenever there is a sus-
picion that it may be of use.

Unlike SNOBOL, Ipak treats
nators of programmer-defined data
references and table
of a function request.
writes

field desig-
types, array
lookups as special cases
Thus, if the user

CAR($X)
1pak will try to treat this as a field desig-
nator, then as an array reference, then as a
table lookup, and if all these attempts fail,
it will start calling functions named CAR
until one of them succeeds.

4.2 function requests

that information not

Implicit

It is often the case
stored in the data base is actually true in
the universe of discourse. For example, a
node may represent a house which has been
recognized as one of the objects represented
in a line drawing, and the question "Does
there exist an object to the left of the
house?" may be asked. The user may attempt to
answer it by writing
SEARCH (<-$X, (LEFT_* FCN) ,?Y>)

points to the node representing the
house, and *JFCN arc special modifiers to be
discussed later. If the pattern match fails,
either there is no such object, or it exists
but it is not represented by a node in the
graph where $X is imbedded. We would like
to keep the value of the pattern match inde-
pendent of these two possibilities and have
therefore introduced the notion of implicit
function requests m Informally, such function
requests will be invoked by the system in an
attempt to construct information needed for
the successful evaluation of a pattern match
whenever the special modifier FCN appears at
the end of a property pattern. * is also a
special modifier which specifies that modifiers
that follow it should be treated differently
by ILpak than atoms that precede it. In the
previous example, if the system has found no
edges which leave $X and match LEFT (not
LEFT *FCN), it will therefore call functions
named" LEFT with implicit argument $X , looking
for one that succeeds.

where X

Thus the pattern match
SEARCH(<$X,(DIMENSIONS AARB?Y AARB?Z AARB?W
* FCN)>)

will either match an edge label to
perty pattern

DJMENS10NS_AARB?Y AARB?Z AARB?W
and will return its modifiers through Y, 2
and W , or it will call a function named
DIMENSIONS which has three formal parameters,
all called by result, which will attempt to
find the dimensions of $X . In this case the
modifiers of the property for which we are
trying to establish an edge were used as argu-
ments of the implicit function call, while the

the pro-

attribute was used as a function name. In the
example
SEARCH(<$X, (TYPE_HOUSE_TALL VKRY_*_ FCN)>)

on the other hand, we may want to establish
the existence of an (intransitive) edge
labeled TYPEJIOUSE_TALL_VERY by first calling
the function TYPE with only argument the node
$X , then the function HOUSE with arguments
$X and the output of TYPE, then TALL and
finally VERY. In other words, an attempt to
establish an edge in the data base may cause
several function calls.

Calls

Generators were introduced by PLANNER
and used extensively by CONNIVER where they
provide one of the most important language
constructs. lLpak offers them too,
of generating alternatives.

5. Generator

A generator is defined by a piece of code
and is assigned a name. For example,
GEN.INT, INTEGER;
SINT = $INT+1;
$DOMAIN = CONS($INT,$DOMA1TN)
END.INT;
defines an
generator
stored in

 (EXIT);

integer generator named INT. This
simply considers the first element

its DOMAIN Ilist (which is similar to
CONNTVER's possibilities list), increments it
by 1, stores the result in DOMAIN, and returns
it as value. EXIT specifies that execution of
this generator call is complete and that its

DOMAIN list should be kept active for future

calls.

A generator can be used once it has been
bound to an atom. Thus

$X <= INT(5)
assigns the generator INT to X and initial-
izes its DOMAIN list to (5). Now whenever we
write X< > | the INT generator will be evalu-
ated returning another integer. Note that
there can be several active copies of the same
generator, each bound to a different atom.
For example,

$X <- INT(51;
$Y <« INT(7);
A: $OUTPUT = X< > + Y< >;

LT($OUTPUT,100) :S(A);
will assign to X the generator INT with its
DOMAIN list initialized to (5). It will also
assign to Y the generator INT with its
DOMAIN list initialized to (7). 547 will

then be evaluated and assigned to OUTPUT. As
in SNOBOL, any string assigned to OUTPUT is
automatically printed. It is then checked

whether the value of OUTPUT is less than 100
and if so 6+8 is added and printed, then
7+9, 8+10 etc.

In general, the
angle brackets a list
appended to the DOMAIN
each time he calls it.

user can pass within the
of expressions to be
list of a generator
He can also pass an

as a method

to be used for that

call.

argument
generator

particular

There are several built-in generators.
For example, NODES will generate all the nodes
that lie at the end of a path which matches a
given graph pattern. Thus if we write

$Z <= NODES(<$X,(LEFT),(ABOVE_FAR)>)

the first time Z< > is encountered with
background the graph shown in FIG. 2, it will
return, say, node n] , the second time node
n2 , and if it is called again it will fail.
6. More on Backtracking

In some cases backtracking (i.e., reset

of the program state in case of failure) will
not be necessary, but in others it will save
the programmer considerable effort. 1.pak
allows a form of backtracking by extending the
feature of declaring variables local to a
function or a generator in several directions:
(a) AIll variables which appear in a function

or generator body can be declared local for a

particular function or generator call by using
the keyword VLOCAL during the function defin-
ition or generator definition or binding.

LOCALness may be specified as dependent on the

success of failure of a function or generator
call by using SVLOCAL or FVLOCAE instead of
VLOCAL. Thus FVLOCAL defines a backtracking
situation (i.e., reset in case of failure) for

program variables only for "the function or
generator it is associated with.

(b) Changes made to the data base can also
be declared local by using SDLOCAL, FDLOCAL or
DLOCAL.

If the user wants a
and the data base state,
FLOCAL or LOCAL. This way he has some flexi-
bility in specifying exactly which changes in
his program he considers reversible and under
what, conditions .

reset of variables
he can use SLOCAL,

7. Examples

This section describe?
programs which demonstrate
ready discussed and point
that arc not as important.

three simple [pak
the features al-
out a few others

Suppose that we want to define a collec-
tion of functions named LEFT which somehow

express adequately our own notion of what LEFT

means (geometrically). These functions will
be defined with respect to a list, $LIST, of
objects and it will be assumed that there

exists a function REL.LEFT which succeeds or
fails depending on whether the object repre-
sented by its first argument is to the left of
the object represented by its second argument.

First we give a definition of LEFT which
postulates its transitivity
PDEFINE(LEFT(TA1L:NODE,HEAD:NODE)Z_AUX,
LEFT,DLOCAL);

BEGIN.LEFT;
$Z <- NODES(<$TAIL,(LEFT)>);
$AUX = Z< > :F(FRETURN);

A: ADIH<$AUX,(TRIED)>) :F(B);
| DENT($AUX,$HEAD) :S(RETURN);

B; $AUX -
END.LEFT;

This function will be evaluated as follows

for given $TAIL and $HEAD:
(a) Z is bound to the NODES generator
cribed in section S with its DOMAIN list

Z<(<$AUX,(LEFT)>)> :S(A)F(FRETURN);

des-

initialized tfo the pattern
Thus the first call of Z will return a node
to the LEFT of $TA1L which is assigned to AUX.

(b) Each node assigned to AUX is labeled
TRIED by ADD. If $AUX already has an intrans-
itive edge labeled TRIED, ADD fails (because
it cannot change the data base) and another
node to the LEFT of $TAIL is assigned to AUX

(c) It is checked whether $AUX is IDENTical
to $HEAD, and if so the function call RETURNS;

(d) Otherwise, another node to the LEFT of
$TAIL is assigned to AUX and the new graph
pattern <$AUX, (LF.FT)> is appended to the
DOMAIN list of Z

When all the nodes to the LEFT of $TAIL
have been considered, Z will Start gener-
ating nodes to the LEFT of nodes to the LEFT
of $TAIL, and this will be repeated until all
the nodes to the LEFT of nodes... to the LEFT
of $TAIL have been tried. Because of the third
argument of PDEFINE, all changes made to the
data base will be erased when the call to LEFT
is complete, also AUX, Z will be reset to the
values they had before the function call.

Thus this definition of LEFT defines a
breadth-first search of the graph where $TAIL
is imbedded in an attempt to find $HEAD, and
it has been formulated by using the generator
feature. it is interesting to compare it with
the following Ipak function which also postu-
lates the transitivity properly of LEFT, by
relying on graph pattern matching and implicit
function requests:

PDEFINE (LEFT (TAIL: NODE ,1IEAI): NODE),
SLEFTY

<$TAIL, (LF.FT)>

BEGIN.SLEFT;
SEARCH{<$TAIL, (LEFT),$i[FAD>) :S(RETURN);
SEARCH{<$TATL, {LEFT)}, (LEFT * FCN),
$HEAD>]) :S(RETURNTF{ERETURN);
END.SLEFT;

Here it is first checked whether there is
an edge with attribute LEFT connecting $TAIL

to $HEAD, and if this is not the case, it is
checked whether there is a node, say nl , such
that there is an edge with attribute LEFT con-

and nl and $HEAD can
labeled LEFT. In

necting $TA1L to nl
be connected with an edge
checking for the latter condition, the wuser
has specified that implicit function requests
involving LEFT-named functions are allowed.
This is a recursive definition of transitivity
for LEFT in other words. The searching algor-
ithm it defines is depth-first and may enter
an infinite loop for graphs representing geo-
metrically strange worlds.

The second definition of LEFT accepts two
as arguments and succeeds or fails de-
pending on whether the object represented by
the first node is to the LEFT of the object
represented by the second
PDEFINE[LEFT(TAIL:NODE,HEAD:NODE)A B,

nodes

TLEFT)7
BEGIN.TLEFT;
SEARCH (<$TAIL, {REPR_AARB?A)
$HEAD, (REPR_AARB?B)>)
:F(FRETURN) ;

REL.LEFT($$A,$3B) :S{RETURN)F(FRETURN]:
END.TLEFT;

The graph pattern match executed by
SEARCH finds the atoms which modify REPR on
intransitive edges associated with $TAJL and
$HEAD and assigns them to A and B respec-
tively. specifies the end of one path

description and the beginning of another. The

694

values of the two aftoms assigned to A and B
are the elements of $L1ST represented by $TAIL
and $HEAD (FIG. 3). Once these atoms are
found, REL.LEFT can be

TAIL REPR_AT1 HEAD REPR_AT2
B
AT1 AT2
Lrii’ “\\x
MESSNEISNESEnE
object.l object.i object.j object.n
FIG. 3.

called with arguments the objects object.i,
object,j, represented in some way.

A third possible definition of LEFT as a
generator returns nodes representing objects
to the LEFT of a given node S$TAIL which is
passed as message to the generator, and is
also a global variable:

$Lt-ir <= LIIFTDEF (#$rAlLj
This statement assigns to LEFT the generator

LEFTDEF with its DOMAIN list initialized to

the unevaluated expression $TAI1. (‘W' keeps
its operand unevaluated until it is encount-
ered at execution time, and is therefore
similar to the SNOBOL, unary operator '*') -
Below we define LEFTDEF.

GEN.LEFTDEF, NODE;

GA: SLEFTDEF = SEARCH (- $LEFTDEF, (NEXT)>) ;
| DENTfSLEFTDEF,$TAIL) :S(FRETURN) ;
SEARL'H(<$TAIL, (LEFT_*_FCN) ,$LEFTDEF>)

:F(GA>;
$DOMAIN = L (EXIT)
END.LEFTDEF;

Whenever this

(SLEFTDEF)

generator is executed,
LEFTDEF is first assigned the value of TAIL
(this is done automatically by the system).
Then the NEXT node is found and assigned to
LEFTDEF; NEXT defines a circular order on the
nodes of the graph where STAIL is imbedded,
and we are using it here in order to traverse
the graph. It is checked whether SLEFTDEF s
IDENTical to $TAIL, which would mean that we
are back at the starting node and there are no
more nodes to the LEFT of $TAIL; if not, it is
checked whether the current value of LEFTDEF
is to the LEFT of S$TA1L. Implicit function
requests are allowed for this check. If the
answer is negative, control returns to the
statement labeled GA and another node is
assigned to LEFTDEF', otherwise the DOMAIN list
of LEFTDEF is set to ($LEFTDEE), a one-element
list, and we EXIT. Next time this copy of
LEFTDEF is called, search will resume with the
NEXT node in the graph where $TAIL is imbedded
until they have all been considered.

The user can now write

SEARCH(<$X,(LEFT * FCN),$Y>)
or SEARCH(<$X,(LEFT~*_GEN),?Y>)
and expect the system to either find the
necessary information in the data base or to
call the appropriate functions or generators
(depending on whether the special modifier is

FCN or GEN) in an attempt to construct it.

§. Discussion

l.pak has been implemented in SPITBOL[S],
an efficient version of ENOBOL, SPITBOL uses
both a compiler and an interpreter, offers
most SNOBOL features {in particular the func-
tion LVAL), plus a [ew more, has a very fast
parbage collector and handles user-defined
data types very efficiently. 1t requircs
approximately ~50K bytes and runs scveral
times faster than the BTL implementation of
SNOBOL.

Some of the reascns that led us to choose
SNOBOL over other candidate languages are
listed below!

{a) It offers pattern matching facilities.
This has helped the design and implementation
of graph pattern matching; noreover, SNOBOL
users will have no difficulty adapting ta the
graph pattern matching formalism since 1t is
an cxtension of string pattern natching.

{b) 1t affers tables and user-defined duta
types. These teatures wore used extensively
during the implementation ol the I.pak system,
and dre offered by [l.pak at very little extra
cost.

{c) SNOBOL's control struycture s unusyd]
but ilexible and well-suited to Al applicatiuns
programming. .pak olfers most of that control
structure, in addition to the various shades of
the LOCAL feazture, function requests, gener-
ator calis etc¢.

Labeled graphs have already been used for
the representdation of knuwledge {e.g.,
Palme [10], Rumelhart et al [11]1. 1.pak
graphs have the additional feature however
that the user has a chejce of representing a
piece of information structurally or as 4
property., Which form he chooses should depend
on how often the parts of this piece of inlor-
mation will be retrieved and manipulated inde-
pendently of each other. For caxample, the
statement "John gives 4 gift to Mary" could
ke represented (rather crudely and with various
subtleties of the sentence’s meaning ignored)
by the graph shown in FIG. 4(al, 4{(b) or 4(c},
depending on whether we will be referring
explicitly te the gift or Mary and their
properties, or will simply refer to them as
parts of a property Johmn has.

RARY
JOQQ John JOHN
GIVE GIFL 27
e
M
GIVE _GIFT_MARY Mary
{a) (b)
Mary MARY
JOHN GIVL
ACT - CIFT
(,f T
: ~—
John Give Gift
{c)
F1G. 2.

Unlike PLANNER etc¢., Z.pak'e data base
offers only partial associativity. T7This may
be inconvenient for the user in certain cases,
but it offers him wore control over his data
base's thirst for memery space. More con-
vential data structures (arrays, tables, user-
delined data tvpes) arc also available in
I.pak at very little gexpense for the 7.paek
system since they are mostly handled by SNOBOL.

Graph pattern matching offers many
features fTound in PLANNER in thuat a similar
hacktracking nechanism is uged and implicit
function requests ¢an be considered as con-
scquent theorem calls, I{ the user agrees
with Sugsman and McDermott's criticism of
PLANKER's backtracking [2], he can switch to
4 programming style favoring gencrators where
he has more contrel over the backiracking
mechanism he uses. We feel that hoth features
will be found useful.

The J.pak implementatieon uses both a
compiler and un interpreoter and requires u
minimum of ~140k (thi® includes ~50K for
the SPITBAOL svstem). There dve plans to use
I.pak for guestion-answering, scene anzlysis
and patural language understanding to test it
and {ind which leatures are uselul and should
be made more prominent and which ones =hould
be modificd.

Acknowlodgeunents

We would 1ike ta thank larl Hewitt for
several useful sugpestions, alse Walter Berndl
for helping us with the implementation and
portions of the design of 7.pak. This
rescarch was partially supported by DOC and
BER grants,

References

1. Mchermett, B.V., Sussman, G.J. The
CORNIVEN reference manual . MIT Al Memo.
250,

2. Sussman, G.J., McDermott, D.V. Yrom

PLAKKER to CONNIVER:
Fjce, 1872, 1171-1180.
tlewitt, . Description and theoretical
analysis of PLANNER. MIT A1-TR-258,
1972,
1. Tberksen, J., Rulilsen, J.F., Waldinger,
R.J. The {Ad language applied to rohot
planning. [PIcc, 1972, 11BLE-1192.

5. Swinehart, I., Spreull, R. SAIL. Stanford
Al Project, Operating Note No. 57,2,
Janaury 1972.

6. Teldman, J.A., Low, J.R., Swinchart,
and Taylor, R.H. Recent developments
in SATL., FJCC, 21972, 1193-1202.

7. Mylopoulos, J., Badler, N., Melli, L.,
Roussopoulos, N. An intreduction to
J.pak, a programming language {or Al
applications. TR-%Z, Depariment of
Computer Science, lUniversity of Teronto,
May 1973.

8. Crisweld, R.U., Poage, J.F., Polensky, 1.P.
The SNOBOL4 programming language.
Prentice-Hall, 1971 (second editicn).

8, bewar, R.B.X. SPLITBOL, Version 2.0.
11linois Institute of Technology, 1971.

d genetic approach.

Tl

n.C.

685

10. Palme, J. Making computers understand
natural language. In Artificial
Intelligence and Heuristic Programming,
Findler N." and Meltzer, B. (Eds.).
Edinburgh University Press, 1971.

11. Rumelhart, D,, Lindsay, P.H., Norman, D.A.

A process model for long-term memory.
In Organization of Memory, Tulving, E.
and 'Donaldson, W. (Eds.), Academic
Press, 1972.

696

