
A Network-Based Knowledge Representation and
its Natural Deduction System

by

Richard Fikest and Gary Hendrix

Ar t i f i c ia l Intelligence Center
SRI International

Menlo Park, Cal i forn ia

Abstract

We describe a knowledge representation scheme called K-NHT
and a problem solving system called SNIFFER designed to
answer queries using a K-NET knowledge base. K-NtT uses a
partit ioned semantic net to combine the expressive
capabilities of the f irst-order predicate calculus with linkage
to procedural knowledge and with fu l l indexing of objects to
the relationships in which they participate. Facilities are also
included for representing taxonomies of sets and fo r
maintaining hierarchies of contexts. SNin-TR is a manager
and coordinator of deductive and problem-solving processes.
The basic system includes a logically complete set of natural
deduction facil i t ies that do not require statements to be
converted into clause or prenex normal fo rm. Using
SN'II tFR's coroutine-based control structure, alternative proofs
may be constructed in pseudo-parallel and results shared
among them. In addit ion, SNitf ER can also manage the
application of specialist procedures that have specific
knowledge about a particular domain or about the topology of
the K-NER structures, f o r example, specialist procedures are
used to manipulate taxonomic informat ion and to link the
system to informat ion in external data bases.

Introduction

This paper describes a question answering system whose
principal components are a network-based knowledge
representation scheme called K-NL'l and a problem solving
system called SN I I f I t< (an acronym for Semantic Net
Interpretation fac i l i t y f o r t i f i ed with E xternal Routines),
designed to answer queries using a k-NLT knowledge base.

The goal of the ef for t has been to create a design that allows
specialized representations and deductive .schemes to be used
where they are effective, while providing, recourse to a
logically complete natural deduction mechanism when
necessary. SNII-'R-.R has been designed with the intention that
most o(the question answering work wil l be performed by
special domain-dependent procedures These specialists can
lake advantage o(the particular topology of the K-NI-.T
structures designed to represent domain-specif ic types of
knowledge. Specialist procedures also allow SNIHI R to do
certain types of problem solving usually considered outside
the range of conventional deduction. Tor example, specialists
may be added that know how to extract in format ion f rom
conventional data bases or do scheduling and planning. In
this paper we seek to indicate the handles for adding
specialized knowledge while eoncn t ra i ing on 'he fundamental
issues of implementing natural deduction for nelwoik systems.

SNIEEER and K-NET are evolving systems, versions of which
have been used as major components in larger systems
developed in the SRI Ar t i f i c ia l Intelligence (enter, including,
the SKI Speech Understanding System (Walker 1976).

To help the reader relate our work to other knowledge
representation facil i t ies and problem solving systems, we
begin by presenting the distinguishing and characterizing
features of our system before focusing on a more detailed
overview that elaborates on these features and provides
concrete examples.

Characterizing Features of K-NET

K-Nt i provides facil it ies for creating a partit ioned semantic
network of labeled nodes connected by labeled unidirectional
arcs. A node represents an entity in the world being modeled
and an arc represents a binary relationship between the nodes
that it connects. I or example, the nodes .John and Men in
Figure 1 represent a man John and the set of all men,
respectively. The arc labeled V f rom Joint to Men indicates
that John is an element of the set of men. Relationships can
be considered to be entities and be represented by nodes with
"case" arcs point ing to the participants in the relationship.
For example, node Q represents the ownership relationship
(situation) existing between John and the automobile
"Ole-Black" over the time interval f rom tj to t2

K-NET can be characterized by the fo l lowing list of features:

* Facilities are provided for representing mult iple "worlds"
and the relationships among them. In particular, the network
can be pait i t ioncd into subnets (called spaces). Spaces can be
hierarchically embedded by treating an entire space at one
level in the hieiarchy as a single node in a space at the next
higher level. A "context" mechanism exists that allows only a
given sel of spaces to be "visible" to the retrieval procedures
at any one time. Fxamples of alternative worlds include those
contained in a disjunction, or the world composed of the set
of beliefs that John has about Sally as opposed to the world
composed of the set of beliefs that Sally has about herself.

* The expressive facil i t ies of the representation scheme
include those of the first order predicate calculus, including
existential and universal quanti f icat ion. (Higher order predicates
arc also tepesentiale in K-N{" [, but only tuvial interrelat ion facilities
exist for them m SNltihR) That is, the knowledge base can
contain statements represented as negations ("John does not
love Mary."), disjunctions ("John loves either Sally or Sue."),
or implications ("If Sue answers John's phone call, then John
wi l l ask Sue for a date."), and containing a ib i l iary nestings of
existential and universal quantif iers ("Fvery boy has been in
love sometime.").

* Taxonomies of sets are modeled by the topology of the
network so that they become the basic skeleton upon which
the knowledge base is built. For example, one can directly
represent the relationships "Ford is an element of Companies
distinct f rom G.M." and "Mustangs is a subset of Automobiles
distinct f rom M o d e l - T V . One can also associate with a : et
characteristic properties common to all elements of the set,
such as "A l l Mustangs are buil t by Fold" .

t Currently at Xerox Palo Alto Research Center. Palo Alto, California.

Knowledge R e p r . - 3 : F ikes
235

* Procedures may be attached to the network to interface it
to other knowledge sources such as conventional data bases or
arithmetic algorithms. When called by SNilFliR, these
procedures extend the network by creating new nodes and arcs
representing the in format ion acquired f rom the other
sources. Links to these procedures are explicit ly represented
in the network so that their existence and role can be
reasoned about and discussed by the system.

* The network provides indices that facil i tate associative
retrieval of the relationships in which any given knowledge
base entity is involved. For example, retrieval of all females
that John loves can be indexed through the node representing
John, the node representing the set of loving relationships, or
the node representing the set of females. The basic
mechanism is one that allows immediate access to all of a
node's incoming and outgoing arcs that are visible in any
given set of spaces.

Characterizing Features of SNIIFFER

S N I R T R is a "natural" deduction system (as m Bledsoe, ft ai..
1972) that is given two net structures as input, one representing
a knowledge base and the other representing a query (usually
a translation of a question original ly stated in English). It
treats the query as a pattern and attempts to f ind instances of
the pattern in the knowledge base, or equivalontly. it treats the
query as a theorem to be proved and attempts to f i nd
instantiations for its existentially quantif ied variables.
Results are returned in the form of sets of "bindings" for the
variables in the pattern. f o r example, the question "Who
does John love?" is translated into a net structure representing
the pattern "John loves x" (or the theorem
(3\) [Loves(John,x)]) , and SNI I MR returns bindings for x
such as (x, Mary). Answers may either be retrieved f rom the
knowledge base or derived using knowledge base theorems and
procedures.

SNIEEER can be characterized by the fo l lowing list of features:

* Associative retrieval of relationships f rom the knowledge
base is performed using the K - N I r indexing facil it ies.

* L f f ic ient . special purpose deductive procedures are used
for extracting informat ion f rom the K-Nt I taxonomies. For
example, if the knowledge base indicates that x is an element
of the set of Mustangs, that Mustangs are a subset of the set
of sports tars, and that sports cars are a subset of the set of
automobiles, then SNIIEER can conclude that x is an
automobile by using procedures that fo l low the chain of
element Of and stihsctOf arcs, thereby bypassing the more
cumbersome, general-purpose deductive machinery.

* Facilities-are included for answering questions and using
knowledge base statements composed of conjunctions,
disjunctions, and implications, containing arbi trar i ly
embedded universally and existentially quantif ied variables.

* Queries and knowledge base statements are processed in
the "natural" fo rm in which they are input, without
converting into a canonical f o rm such as clause f o rm or
prenex normal fo rm. This capability eliminates "explosive"
conversions (such as converting the disjunction (aA I)Ae) V
(J A c A f) V (g A h A i) into clause fo rm which consists of 27
clauses each containing 3 disjuncts) and unnecessary
conversions (such as conversion of a disjunctive question's
complex disjuncts when one of its simple disjuncts can easily
be shown to be true). In addi t ion, the intuitiveness and
heuristic value of the form in which statements are input (as
implications, for example) is maintained.

* A logically complete set of natural deduction rules are
used that reason backwards f rom the question. These rules

use such techniques as case analysis, hypothetical reasoning,
and the establishing of subgoals. For example, to answer a
question that is in the form of an impl icat ion, SNIIFFE R: might
use hypothetical reasoning by assuming the impl icat ion's
antecedent and then pursuing a proof of the consequent as a
subgoal.

* A f lexible coroutine-based control structure allows the
construction of alternative proofs]n a pseudo-parallel
manner, with results being shared among the alternatives,
bach partial proof has its own local scheduler to determine
how its proof attempt should be continued. There is an
executive scheduler that uses in format ion supplied by the
local schedulers to determine which partial proof is to be
given control at each step. The various schedules provide the
facil i t ies necessary to allow reasonable heuristic guidance of
the total deduction and retrieval process.

* User-supplied procedures may participate in the attempt
to f ind answers in two ways. Fiist, procedures included in the
K-Nt r knowledge base may be invoked to access in fo rmat ion
in knowledge sources that are external to K-NET. Second,
SNIEEFR allows the inclusion of user-supplied procedures that
extend the system's problem solving capabilities. Such
procedures may add heuristics to the deductive strategies or
even integrate new knowledge sources into the system, such as
data bases and planners. Facilities are available to these
procedures for creating, alternative proofs, manipulat ing
schedules, altering priorit ies, and establishing "demons" so
that the usei can create strategies that augment and interact
with those that already exist in the system.

* SNIFFFR is implemented as a "generator" (see Teiteman,
1975) so that after returning an answer it can be restarted to
seek a second answer to a query. For example, given the
question "Who owns a Mustang?" SNIFFFR may f i rs t produce
the answer "John", then be "pulsed" again to produce "Mary",
etc This style of answer production allows the user to
examine each answer as it is produced and dynamical ly
determine whether additional answers are needed.

* " N o " answers are determined by f ind ing an af f i rmat ive
answer to the question's negation. For example, if given the
question "Does John love Mary?", SNIFFFR wi l l attempt to
prove "John does not love Mary" in addit ion to attempting to
prove "John loves Mary".

Overview Description of K-NKT

In this section we wi l l describe and illustrate how K-NKT is
used to encode knowledge. Throughout the section reference
wi l l be made to the example knowledge base shown in Figure
2, which represents some facts about automobiles.

Taxonomies

Major portions of the semantics of a task domain can often
be expressed naturally by a taxonomy of sets that indicates
the major sets of objects in the domain and the relationships
between the sets. The power of the taxonomy can be
enhanced further by the inclusion of statements that specify
necessary and/or suff icient conditions for membership in the
sets. K-NET provides the fo l lowing facil i t ies designed
specifically for encoding such taxonomies.

S arcs indicate "subset of " relationships. For example, the s
arc in Figure I f rom the Men node to the Humans node
indicates that the set of men is a subset of the set of all
humans.

Most subsets described in taxonomies are disjoint. Arcs
labeled ds are used in k-Nl l to represent this disjointness
property in a concise and easily interpretable manner. A ds

K n o w l e d g e R e p r . - 3 : F i k e s
236

arc f rom a node x to a node z indicates that the set
represented by x is a subset of the set represented by z and
that the x set is disjoint f rom any other set represented by a
node with an outoing dsis arc to z. For example, the ds arcs in
the figure (i.e., Figure 2) emanating f rom the Humans and
Companies nodes indicate that the set of humans and the set
of companies are disjoint subsets of the set of legal persons.

Since each node in most taxonomies represents a distinct
entity, and in general an entity can be represented by any
number of nodes in a K-Nf " I , arcs labeled de (for "distinct
element") are used to indicate that two or more nodes each
represents a distinct element of a set. In particular, a de arc
f rom a node x to a node z indicates that the entity
represented by x is an element of the set represented by z and
that the x entity is distinct f rom any othei entity represented
by a node that has an outgoing de arc to z. l o r example, the
de arcs in the figure emanating f rom the (i . M . and lo rd nodes
indicate that G.M. and Ford are distinct members of the set
of companies.

F arcs are used to indicate "element of" relationships without
making a commitment to distinctness. f o r example, Fred,
J i l l , and Mary may be known to be distinct elements of
Riders, the set of people that rode to the airport in Fred's
car. If some fact is known about the driver of the car and the
identity of the driver has not yet been determined, then a
node I) representing the driver may be linked to set Riders by
an e arc. The node I) can be used to encode informat ion
about the unnamed driver without specifically indicating
which of the distinct elements of Riders is the driver.

Situations

SNIFFER assumes that relationships other than elemcntOf and
subsetOf are represented by nodes having outgoing case arcs
pointing to the participants in the relationship (such as node
I* in the figure, which represents the relationship "Ford built
Lizzy"). T his representational convention allows an arbitrary
amount of in format ion to be stored with a relationship (using
outgoing case aics) and allows associative retrieval of the
relationship using the network's indexing facilit ies. Such
relationships are grouped by type into sets and these sets are
considered to be subsets of the set of all "situations". For
example. Builds (the set of all situations in which bui lding
takes place) and Implications are disjoint subsets of Situations
in the figure, and node V represents an element of the Builds
set. a particular bui lding situation in which Ford is the agent
and LlZZy is the Object b u i l t . (The situation repres/ented by P look
place over an intervall of time from StartTime to Find time 'these turne
eases would be present in a more complete description of I'.)

Spaces and Vistas

Perhaps the primary feature that distinguishes K-NFT from
other semantic networks is that a net can be partit ioned into
subnets, and relationships among the subnets can be explicit ly
and easily represented (see llendnx. 1975. A l l nodes and arcs in
a K-NET are "elements" of at least one "space" (i.e., subnet).
In the figures, such spaces are depicted by boxes. For
example, node in the figure and the Pobj arc f rom V to Lizzy
are elements of the Knowledge space. A space can be (and
usually is) a node in some other space. For example, in the
figure the con.se arc f rom node I points to a node in the
Knowledge space that is itself a space. When retrieving
informat ion f rom a network, it is convenient to have only a
specified list of spaces, called a "vista", visible to the
retriever. For example, the vista that would typically be used
when retrieving informat ion f rom the space pointed to by the
conse arc in the figure consists of the space itself and the
Knowledge space.

Negations, Disjunctions, and Implications

A representation scheme for negations, disjunctions, and
implications must allow one or moie "woi lds" to be described
and a relationship to be asserted among, the worlds (e.g., that
at least one of them is true), K -NFT 'S part i t ioning facil i t ies
provide the required capabilities for cieating just such a
scheme.

A negation occurring in some space s describes a col lect ion of
entities and relationships, and asserts that no collection
satisfying the description can exist in the world represented
by space s. We represent such a negation as shown in Figure
3a by creating a space to describe the collection, and by
adding the created space to space s as a node with an outgoing
e arc to negations, the node that represents the set of all
negation relationships. For example, the statement "G.M.
does not build convertibles" would be represented using a
space describing a collection consisting of an ent i ty C, an
elemenlOf relationship between C and the set of convertibles,
and a build relationship with agent G.M. and object C

A disjunction occurring in a space s describes alternative
collections of entities and relationships, and asserts that
entities and relationships satisfying at least one of those
descriptions exists in the world represented by space s. As
shown in Figure 3b, we describe each disjunct in a separate
space and represent a disjunction as a set of such disjunct
spaces.

An implication occuiring in a space s describes two
collections of entities and relationships, and asserts that if
entities and relationships exist in the world lepresented by
space s that satisfy the first of the two descriptions (the
antecedent), then entities and relationships satisfying the
second description (the consequent) also exist in that world.
We represent an implication as shown in f igure 3c by a node
wit l i outgoing case aics to spaces containing the descriptions
of the antecedent and consequent. More concrete examples of
implications wi l l be presented in the next section.

Q u a n t i f i c a t i o n

One of the important features of K-NFT is thai it provides
facilit ies for repiesenting arbitrar i ly nested existential and
universal quantifiers. Fxistential quant i f icat ion is a
" b u i l t - i n " concept in the sense that we take the occurrence of
an element (i.e.. a node or arc) in a space to be an assertion
of ihe existence with respect to that space of the enti ty or
relationship represented by the element. In particular, if an
element occurs in the system's "knowledge space", then that
element represents the system's belief that a corresponding
entity or relationship exists in the domain being modeled.

\ xistenlia! quanti f icat ion and negation could be used to
represent any universally quantif ied formula (VxC X)P(x) by
making use of the fol lowing transformation:

(Vx€X) l ' (x) =r — [(V \ C X) r < x)] ==
~ | . (3 x C X) ~ r (x)] .

The K-NFf representation of the transformed formula is
shown in Figure A.

Although this representation is logically sound, it is extremely
unappealing intuit ively. The fo l lowing transformation
suggests a more attractive representation:

(Vx C X)lP(x) = (Vx) [(x e X) =* P (x)] .

That is. any universally quantif ied formula can be represented
as an implicat ion whose antecedent specifies the " typ ing" of
the universally quantif ied variable and whose consequent

Knowledge P e p r . - 3 : F l k e s
237

http://con.se

specifies the statement that is being made about any entity
that satisfies the type restrictions.

Overview Description of SNIFFER

A distinguishing feature of the universally quantif ied variable
x in this impl icat ion is that it occurs in both the antecedent
and the consequent. We have made use of this feature by
adopting the convention in K NEt that if a node occurs in
both the antecedent and the consequent spaces of an
impl icat ion, then we consider it to be the representation of a
universally quanti f ied variable. I his convention is, in fact,
used as the primary means of representing, universal
quanti f icat ion in our system.

When the main connective of a formula is an impl icat ion, it
is not necessary to embed the formula in another impl icat ion
to represent the universal quanti f icat ion. Thai is:

Figure ?. shows the K - N F T representation of a concrete
example of such an impl icat ion, namely the statement ' To r all
M in the set of Mustangs, there exists a B such that B is an
element of the Builds situations, the agent of B is Ford, and
the object bui l t is M."

Arbitrary nesting, of quantif iers may be achieved by placing
implications in the consequent spaces of other implications,
hoi example:

Figure 5 summarizes the conventions for representing
quanti f icat ion by contrasting the k -M I representations of
(:] \ (;X)I ' (V) and (VxC X)P(x).

Procedural Augmentation

f o r many applications, it is important for the s> stem's
knowledge base to include sources of informat ion such as
lelational data bases 0f arithmetic algorithms external to the
K-NF. ' I n e t s . (Sec R e i k i , 197 7. for a n o t h r i e>ampk' i,l an inference
s y s t e m d e s i g n e d l (t o i n t e n c t w i t h , a re la t iona l i lata b a s e .) W e h a v e
adopted a set of conventions in K-NIT for dcsciibmg links to
such external knowledge souices.

The links to external knowledge sources are represented by
"theorems" (i.e.. implications containing universally
quantif ied variables) in the system's knowledge space that
have the fo rm exemplif ied by the network shown in Figuie
b. Such theorems are intcipictcd to mean that if there is a
successful application o\ the indicated funct ion to a set o\
arguments that satisfy the description given in the antecedent,
then the arguments and the results returned by the funct ion
can be used to create iclationships and entities satisfying the
description given in the consequent.

The particular theorem of Figure 6 indicates that an
application of IN I hki ISP'S PLUS funct ion can be used to
produce new instances of the Sums relation in the net. This
theorem makes it unnecessary for all the instances of the
Sums relation to be explicit ly represented in the knowledge
base. When SNIFFt-R attempts to match a pattern involv ing
the sum of two numbers, it can use this theorem to fo rm a
call of the IMILS funct ion and to translate the results of that
call into the desired Sums relationship. The manner in which
SNIFFFER uses knowledge about the Applications set to create
new relationships f rom the results of procedure calls is
discussed below in the section on special purpose binder tasks.

This section describes and illustrates the basic features used
by SNIFFFR in retrieving and denying in format ion f rom
K - N F T structures. We begin by considering how SNIFFFR is
invoked and by illustrating, how it would go about solving two
simple problems. Attention is then turned to the overall
control structure and to the operations performed by various
components.

Introduction

SNIFFFR is given as input a vista representing a query (the
OVISTA) and a vista representing the beliefs that are to be
considered true while answering the query (the K V I S I A) . Fike
other vistas, the OVIST A and k VISTA are lists of spaces. In
aggregate, the nodes and arcs of the various spaces in the
OVIST A describe a set of entities (i.e., objects and
relationships) whose existence is to be established in the
k VIST A. It a set of such entities can he found to exist, then
SNIFFER returns a list of "bindings" that link the OVISTA
descriptions to their K V I S I A instantiations. Otherwise,
SNIFFFR attempts to prove that no such collection of entities
can exist, so that a negative response can be given

For example, f igure 7 shows a k visTA and a ovist A for the
query "What company built Lizzy?". Gliven this OVISTA,
SNIFFFR seeks an element of the Builds situations set having
both Lizzy as its object and an element of the Companies set
as its agent. The Builds situation icpicsentcd by node I* in
the kVISTA is found by using the incoming e aics to the
Builds node as an index, and a "Yes" answei is generated with
I* as the binding for node Z and the lo rd node a the binding
for node ?X. The "Yes" answer indicates that the question
was based on a true pieunse, and the binding for x is the
actual value that was sought.

(j iven the k vis IA and OVIST A shown in Figure 8, SNIFFFR
must carry out a derivation to answer the query using the
k VIST A theorem "A l l Mustangs were built by Ford." The
theorem is found by indexing on the incoming e arcs to the
Builds node. A unif icat ion process detei mines that the
relevant instance of the theorem is one in which the
universally quantif ied variable M is replaced by Olc-Black.
The theorem allows a new Huilds situation lo be asserted if it
can be shown that Ole Black is an element of the Mustangs
set. A subproblemcm is created to f ind that Llement Of
relationship, and when the subproblcm is solved, the new
Builds situation is asserted ami the desired bindings are
assigned. In particular, node ?\ is again bound lo Fold and Z
is bound to the newly derived Builds situation.

Control Structure
As an introduction to SNIITTER control structure, consider the
fo l lowing simpl i f ied desciiption of how the system goes about
answering queries 'I he basic process consists of selecting an
unbound O V I S I A arc and f ind ing a match for the selected arc
in the k v is i A. The matching, arc then implies matches for
the nodes at each end of the selected O V I S I A arc. After each
arc is bound, the process is repeated unti l all the arcs and
nodes of the Q VIST A have been bound.

This conceptually simple process is complicated by a number
of factors. At each step in the process there are typically
many alternatives that may be fol lowed. For example, any of
the unbound arcs in the OVIST A might be selected for
consideration and each of these might be successfully bound
to many KVISTA arcs. Another complicating factor is that
some structures in the O V I S I A wi l l have no matches in the
Kvis)A, even though their existence is implied by statements
in the KVISTA. Deductive machinery must be invoked to
derive explicit representations of these implied structures.

K n o w l e d g e R e p r . - 3 : F l k e s
230

FIGURE 5 EXISTENTIAL AND UNIVERSAL QUANTIFICATION

FIGURE 6 LINKING RELATION SUMS TO PROCEDURE PLUS

With in the deductive machinery, choices must be made
between alternative strategies for pursuing a derivation and
among the collection of K V I S I A statements that could possibly
be used to derive the desired matching structure.

The control structure that we have evolved for SNIFTER allows
these various alternatives to be pursued in a pseudo-parallel
"best f i rs t " manner. K-NET's part i t ioning facilit ies and
INTLRLISP'S coroutines are used to create a system
environment that allows each alternative to have its own
subproblems, assumptions, and derived results, and for the
choices among these alternatives to be guided by both bu i l t - in
and user-supplied evaluation functions.

The Environment Tree and Task Agendas

SNIFTER proceeds by bui lding a tree of alternative proofs,
each node of which represents a data environment that
includes a set of choices of bindings for QVISTA elements and
derivation strategies. Each time a choice is to be made in an
environment, an offspr ing environment is created and the
results of the choice are established in the offspring. For
example, if a binding for a QVIS ' IA element is found, then an
offspr ing environment wi l l be created in which the binding
wi l l be assigned. The search for additional bindings can then
be continued in the parent environment, but S N I I M u is
committed to the assigned binding in the offspring.

Included in each environment is a task agenda (pauaned after
tin- ;agenda mechanism in KRL-0, SEE Bobiow and Winagrad, I ' m) tha t
defines n pr ior i ty levels and allows a list of tasks to be stored
at each pr ior i ty level. The S N I I T T R Executive typically
proceeds by selecting an environment to give control to and
then running the highest prior i ty task on the selected
environment's agenda. Each task is composed of a USP
funct ion and a set of arguments upon winch the funct ion is
operating. Typical tasks look for KVISIA descriptions
matching a given ovist A description or, if necessary, init iate
derivations to deduce new explicit descriptions f rom impl ic i t
descriptions contained in KVISTA "theorems".

The Executive also has its own task agenda that is used to
determine what to ih) at each step. Ini t ia l ly, this agenda has
three (asks on it; one to init ial ize an environment lice to seek
"Yes" answers to the query, one to init ial ize an environment
tree to seek "No " answers to the query, and the one mentioned
above that selects an environment, runs the task defined by
that environment's agenda, and reschedules itself.

The agenda associated with the top environment in an
environment tree in i t ia l ly contains a single task that selects
for consideration unbound arcs that lie in the QVISTA. Each
time the selector task is restarted, it selects another QVISTA
arc, creates a "binder" task that wi l l seek bindings for the
selected arc, schedules the created task, and reschedules itself.

When a binder task f inds a KVISTA arc that is a "candidate"
(i.e., potential) binding, it creates a new of fspr ing
environment in the environment tree that is a copy of the
parent, assigns the binding in the of fspr ing environment, and
reschedules itself in the parent environment. Hence, at any
given step, each terminal environment in the tree includes a
partially formed alternative answer to the query.

Provisions have been made for attaching "demon" functions
to QVISTA nodes and spaces in an environment. Demons
attached to a QVISTA node, which are " f i red" when a binding
is assigned to the node, allow binder tasks to "pause" unt i l
other bindings have been assigned that can be used as indices.
Demons attached to a QVISTA space, which are f i red when
bindings have been assigned to all the arcs and nodes in that
space, are useful in completing derivations and returning
results. Eor example, demons are attached to each Q V I S I A
space in the in i t ia l environment of an environment tree.

Knowedge

When the last of these demons fires in an environment,
bindings wi l l have been assigned to all QVISIA elements in
that environment and an answer can be generated. The last
demon causes the answer to be generated by scheduling an
appropriate task on the Executive's agenda.

When an offspring environment is created, it inherits copies
of its parent environment's data structures. including the
agenda, demons, and list of assigned bindings. If a task or
demon represents a "paused" coroutine that wi l l be "resumed"
when the task i:> run. then copying it conceptually produces a
copy of the coroutine so that the original task or demon and
the copy can run independently in their respective
environments. I or example, if a binder task is in a state such
that it wil l consider relationship II as the next candidate
binding and it is copied into an offspring environment's
agenda. the'n the copy wi l l also independently consider R as
the next candidate binding. Similarly, a demon can be
independently f i led in each environment in which bindings
for all the space's elements have been assigned. This powerful
capability is implemented using the "spaghetti stack" facil i t ies
f o u n d III IN' ITRI ISP (Uohmw and Wej-,l>reit, 197.1).

Hinder Tasks and User-Supplied Specialists

The Selector task in each environment's agenda selects
unbound QYTSI'A arcs and creates binder tasks that seek
bindings for the selected arcs. The procedures used in the
binder tasks embody the system's retrieval and derivational
mechanisms.

Domain-Specific Augmentation

The primary way in which SNIRT.R can be augmented and
adapted to a particular problem domain is by providing
additional procedures that can act as "expert" binder tasks for
specialized classes of relationships. Such experts may add
heuristic guidance to the deduction process or add completely
new sources of knowledge.

Eor example, a binder task for ownership relationships might
add heuristic guidance by knowing that objects usually have a
unique owner. This task would look for bindings by
fo l lowing indices f rom the object to its owner rather than
f rom the person to all the objects he/she owns or f rom the
set of all ownership relationships.

Another expert binder task might be written for the
relationship between a person and his telephone number.
Rather than look for the person/number relationship in the
K-NFl. this procedure might look it up externally in a phone
book f i le. The procedure would then create new structures in
the K V I S I A to encode the retrieved informat ion and use this
new structure in the binding.

Strategy Selectors

When a QVISTA arc has been selected, it is passed through a
set of "strategy selectors", each of which is a funct ion that can
create a binder task for the arc and indicate whether
addit ional selectors should be consulted. When a new
funct ion for f ind ing bindings is added to the system, a
strategy selector is written for it and added to the set of
selectors. These strategy selectors provide a generalized form
of pattern directed invocation of the binder tasks.

When no "specialist" binder task is available for a selected
arc, a general purpose binder task is created that can seek
bindings for any relationship or its negation using natural
deduction theorem proving strategies. It uses the net's
indexing facil i t ies to f i rst f ind all atomic statements (i.e.,
relationships other than disjunctions, implications, or negated

R e p r . - 3 : P i k e s
241

conjunctions) that contain possible bindings for the selected
arc and then all nonatomic statements thai can be used to
derive bindings for the selected are. For example, the general
purpose binder task for arc Builds in Figure 8a would
consider incoming e and de arcs to the Builds node as
candidate bindings.

Ramification

When a binder task f inds a candidate binding, it can apply
the fo l lowing " rami f ica t ion" rules to determine what other
bindings aie directly implied by the candidate. First, if two
arcs are lo be bound to each other, then the t rom-node of the
f irst arc must be bound to the f rom-node of the second arc
and the lo-node of the f irst arc must be bound to the lo-node
of the second arc. Second, we assume that a node can have at
most one outgoing case (i.e., nontaxonomic) arc with any
given arc label. Therefore, if two nodes are to be bound to
each other and both nodes have outgoing case arcs with a
common label, then those case arcs must also be bound to
each other. For example, if in Figuic 7 arc . - , Builds
were the candidate binding for arc Z ~ - T - - > B u i l d s , then
bindings would be implied for nodes z and ?X, and for the
agt and obj arcs.

If a candidate binding implies a binding that is inconsistent
with an existing binding (for example, one that assigns two
different bindings to some O V I N I A node, where ds and de arcs
in the taxonomies indicate that the two bindings represent
distinct entities), then the candidate can be rejected and
another one sought Hence, this ramif icat ion process acts as a
powerful and efhc ienl t i l ler for candidate bindings as well as
a producer of new bindings.

Self Scheduling

The decision as to which binder task should be given control
in any given environment is made by al lowing each such task
to determine the pr ior i ty level at which it is scheduled on the
environment's task agenda. A task makes this determination
by assessing the d i f f i cu l ty of finding, bindings for its O V I N I A
arc based on estimates of the number of indices (i.e.,
matching, arcs) available in the kVIS'IA, knowledge about the
semantics of the relationship being sought, knowledge about
the effectiveness of the task's search method, etc. User
supplied specialists may be written that are particularly adept
at such assessments. The basic goal of the overall strategy is
for the system to first seek bindings for those OVINIA arcs
that are most highly constrained.

Deriving bindings for Element Of and SubsetOf
Relationships

Included in SNIFTI R are a set of (unctions embodying the
semantics of the taxononuc relationships e, de, s, and ds.
These functions provide the following, eight services:

Given a node representing some entity x, they can
generate nodes representing entities y such that x is an
element of y, y is an element of \, x is a subset of y,
or y is a subset of x.

Given two nodes representing entities x and y, they
can determine whether \ is an element of y, y is an
element of x, x is a subset of y, or y is a subset of x.
Possible answers are "Yes", "No" , and "Unknown".

The algorithms used fol low chains of s and ds arcs applying
recursive rules such as the fo l lowing:

Two sets are disjoint if each of the nodes representing
them has an outgoing ds arc to the same node, or if
the sets are each subsets of disjoint sets.

These functions are used in SNIFFTR wherever in format ion is
needed about SubsetOf or KlementOf relationships. In
particular, they are used by the general purpose binder task to
f ind candidate bindings for e and s arcs, and dur ing the
ramif icat ion process to test potential bindings of QVISTA
nodes as to whether the bindings can satisfy the KlementOf
and SubsetOf relationships specified for them in the QVISTA.
Hence, these very important classes of deductions are carried
out rapidly and "automatical ly" whenever they are needed, in
a manner that requires none of the standard deductive
machinery.

Derivations Using KVISTA Implications, Disjunctions,
and Negated Conjunctions

When the general purpose binder task has considered all the
"expl ic i t " candidate bindings for a given arc, it uses the
network's indexing facil it ies to f ind nonatomic statements
(i.e., implications, disjunctions, and negated con junct ions ')
that describe relationships having the same fo rm as the
binding being sought. For example, arc B—c— >Builds in
Figure 8 is used as the index for f ind ing an impl icat ion
containing a "bu i l d " relationship. Such nonatomic statements
are used as the baas for a derivation of the desired binding.

Applicabil i ty Tests

When such a nonatomic KVISTA statement is found, the
general purpose binder task carries out an applicabil i ty test to
determine if the statement can be used to derive a binding for
the given O V I N I A arc. This lest involves uni fy ing (i.e.,
matching) the K VISTA statement with the O V I N I A statement in
which the given O V I N I A aic is embedded and, when successful,
produces a set of substitutions for universally quanti f ied
variables that define (he "instance" of the KVISTA statement
applicable to f ind ing the desired binding.

Several complications in doing the applicabil i ty test arise
from the fact that ueithci KVIS'IA nor O V I N I A statements are
stored in a canonical form. l o i example, a negated
relationship in the antecedent of an impl icat ion can be used
to derive a binding for an unnegated form of the relationship,
but cannot he used to derive a binding for a negated form of
the relationship. In this section, we wi l l discuss the
mechanisms in SNIIEEER fo r dealing wi th these
complications.

Parity of Embedded Relationships

The applicabil i ty tester needs to deteimine what the logical
signs are of the relationships (i.e., terms) that a given KVISTA
statement can be used to prove. For example, the statement

can he rewritten in the fo l lowing ways:

and can therefore be used to prove x, ~y, ~u , or v. If, then, a
binding is being sought for a relationship matching x, this
statement may be useful in deriving the binding. However,
the statement cannot be used to derive a binding for ~x.

The logical signs of the relationships that a given statement
can be used to derive correspond to the logical signs that the
relationships have when the statement is converted into

t Double negations, negated disjunctions, and negated implications arc
eliminated from both the KVISTA and QVISTA by simplification rules.

K n o w l e d g e R e p r . - 3 : F i k e s
242

disjunctive normal form. For example, ihc disjunctive normal
form of the statement given above is The
logical signs of x, y. u, and v in this fo rm of the statement are
the same as those that the statement can he used to prove.

Dur ing the conversion to disjunctive normal form, only two
conversion rules change a relationship's logical sign. Namely:

Therefore, we can compute a "par i ty" for each relationship in
a statement to indicate the logical sign that it would have in
the statement's disjunctive normal form simply by counting
the number of negation spaces and antecedent spaces in which
it is embedded. the parity associated in (Ins way with
relationships allows a quick determination of whether a given
KVIS'I A statement can be used to produce the desired binding.

rarity of Embedded Variables

The appl icabi l i ty tester also needs to determine what type of
quanti f ier (i.e.. existential or universal) is associated with each
variable in the statement. For example, the statement

can also be writ ten:

and can therefore be used to piove) or
(Vx) l ' (x) . If, then, a binding is being sought for an
exiisienlially quanti f ied OVIST A node that is a participant in an
k relationship, this statement may be useful in deriving the
binding. However, the statement cannot be used to derive a
binding for a universally quantif ied node that is a participant
in an k relationship.

The quant i f icat ion types of the variables in the relationships
that a given statement can be used to derive correspond to the
quant i f icat ion types that the variables have in those
relationships when the statement is converted into prenex
normal fo rm. For example, the prenex normal form of the
statement given above is
R(z)) . The quant i f icat ion types of x, y, and z in this form of
the statement are the same as those that the statement can be
used to derive.

During the conversion to prenex normal fo rm, only two
conversion rules change a relationship's logical sign. Namely:

Therefore, we can compute a "par i ty" for each variable in a
statement to indicate the quanti f icat ion type that it would
have in the statement's prenex normal form simply by
counting the number of negation spaces and antecedent spaces
in which it is embedded.

Note that this is the same rule that is used for computing the
parity of relationships! Therefore. this single,
computationally simple rule is used to define a parity for
both arcs and nodes. The parity associated with an arc
indicates the logical sign of the relationship represented by
the arc, and the parity associated with a node indicates
whether the node represents a universally or existentially
quanti f ied variable.

Matching Embedded Structures

The match process carried out by the appl icabi l i ty tester is a
generalization of the ramif icat ion process described above

and is logically equivalent to uni f icat ion. An attempt is made
to f ind a set of substitutions that wi l l allow two sets of
descriptions to match as fol lows. The OVIST A contains a
description of the relationship that is being sought. When the
process begins, a k VIST A statement has been found that
describes an existing or derivable relationship. The question
being considered is whether a relationship that satisfies the
description given in the KVISIA statement wi l l also satisfy the
gv i s iA description. That question is answered by matching
the two descriptions. If the match is successful, it defines a
set of substitutions (for universally quanti f ied variables) that

' must be made in the KVISTA description for it to describe a
| relationship that would also satisfy the ovisi 'A description.
' These substitutions produce an "instance" of the K V I S I A

statement thai can be used as a basis for a derivat ion. For
1 example, if the selected O V I N I A arc is part of the relationship
1 Ota) and the candidate binding is in the consequent of

then the instance would be
created.

The basic rules that are used in doing the match are the
fo l lowing. When comparing the two descriptions, an
existential in the K VIST A can match only with an existential in
the QYTSI'A or a universal in the K V I S I A , and a universal in
the OVIST A can match only with a universal in the K VIST A or
a n e x i s t e n t i a l i n t h e OVIST A . Rememher that nodes lh :u a r e d e m e n t s
o f K V I S T A or O V I N I A spaces are cons idered to represent e x i s t e n t w l l y
Mii.intit ied entitit-. These rules are derived directly f rom the
rules for uni f icat ion. The key observation is that the derived
rules should correspond to the rules used for uni f icat ion in a
iefutal ion proof where the match is being done using, the
negation of the query.

As an example of the use of parity dur ing an applicabi l i ty
test, consider again the query shown in Figme 8. The general
pin pose binder task uses the ate B—c— > Ghistlcls as an index to
f ind implicat ion I as a candidate statement to use in the
derivation of a binding for (he arc 7.—Q-- Bu i ids . Since
both arcs have positive parity, a "bui lds" relationship derived
f rom the impl icat ion wi l l have the desired logical sign. The
unif icat ion process produces pairings for nodes z, ?X, and M,
and for the obj and agt arcs Al l the members of those pairs
have positive paiity except mode M. Node M's negative pai i ty
indicates that it is universally quanti f ied and can therefote be
paired with an existential KVISIA node having positive parity,
namely Ole Blaek. The resulting substitution of O le -Baek
for 1Y1 creates the instance of the impl icat ion that is used in
the derivation.

F.xtracting Embedded Structures

When an applicable non-atomic KVISTA statement has been
found, the derivation that is init iated can be thought of as
one designed to "extract" the desired embedded relationship
f rom the statement so that the relation or its negation can be
asserted at the top level of the KVISTA and the desired binding
can be assigned. For example, if the candidate binding is in
the disjunct x of a disjunction xVy , then f ind ing a solution to
the subproblem "prove ~y" wi l l allow x to be asserted and the
binding to be assigned.

Rules for Extraction

The derivation is begun by creating the appropriate instance
of the KVISTA statement (as indicated by the appl icabi l i ty
test) and then applying the fo l lowing extraction rules:

2 4 3

Note that the extraction rules for negated conjunctions and
for implications are merely rewrites of the rule for
disjunctions.

If an instantiated impl icat ion contains a universally
quanti f ied variable, then that variable becomes part of the
stibproblem produced by extracting either the antecedent or
the consequent and is free to be bound dur ing the process of
solving the subproblem. f o r example, suppose the original
impl icat ion is of the fo rm and
the instantiation is of the form ' H
the consequent is to be extracted, then the subproblem has the
form "F ind an \ such that Hx,;*)" The assertion that is made
when the subproblem is sol vetd is of the form Q(< binding of
x>,a).

Nesting

If the relationship being extracted is embedded in a nesting of
disjunctions, negated conjunctions, or implications (such as
the I5(x) _ then it is necessary to
apply a sequence of extraction rules to complete the
extraction. The rules are applied "top down" to the outermost
disjunct ion, negation. or impl icat ion f i rst , and all the desired
extraction rules are applied before any of the suhpioblcms are
worked on. Hence, in the above example, a single subproblem
is formed consisting of Solution of this
subproblem causes assertion of the desired l i (<b ind ing of
\ >) . Doing the complete extraction in one step results in the
extraction rules being applied only once, makes available to
the deductive machinery all the constraints imposed by all the
subproblems. and allows the subproblems to be worked on in
whatever order seems the most advantageous.

KVISTA and QVISTA Extension Spaces

Piocedures that carry out derivations such as the extractions
described above require facil i t ies for creating subproblems,
making assumptions, and asserting derived results. We have
used K-NTT'S part i t ioning features to create such a set of
derivation facil i t ies that are available for use by any binder
task. In particular, provisions have been made for adding
spaces (called "extension spaces") to the OVIST A or to the
KVISTA in an environment. KVISTA extension spaces are used
for making assumptions and for asserting derived results.
QVISTA extension spaces are used for expressing subproblems.

For example, consider an environment E1 where KI is the
current (i.e., most recently added) KVISTA extension space and
a binder task for the Q V I S I A impl icat ion is in i t iat ing a
derivation by assuming x and establishing y as a subproblem
to be proved. The derivation is init iated by creating an
environment K2 that is an of fspr ing of environment K I ,
adding to the KVISTA in F2 a new extension space K2
containing a copy of x, adding to the QVISTA in 12 a new
extension space Q2 containing a copy of y, and attaching a
demon to space Q2 in 1,2. When bindings are assigned to all
the elements of y, the demon is t i red in the current
environment (i.e., the environment in which all of the
bindings are assigned) and in that environment the demon
removes space K2 f rom the KVISTA, removes space Q2 f rom
the ovist A, asserts \ ^ > y in space KI (the new current KVISTA
extension space), and assigns this newly derived result as the
binding for the original Q V I S I A impl icat ion.

In order to maintain the relationship between derived results
and the assumptions that were used to derive them, the
fo l lowing three rules are used in creating bindings and
asserting results.

The first rule is that in each environment only those binder
tasks that are seeking bindings for arcs in the most recently
added subproblem are allov.e.l to run. This rule helps prevent

duplication of ef for t among environments and assures that
ef for t w i th in an environment created to pursue a particular
derivation strategy wi l l not be spent considering other
strategies.

The second rule restricts bindings assigned to elements of any
given QVISTA space to be elements of KVISIA spaces that
existed at the time the Q V I S I A space was created. In addit ion
to preventing results derived with the aid of assumptions
f rom being used as if they were independent of the
assumptions, this restriction is used to maintain the nesting of
quanti f ied variables during derivations, as described in the
sections below.

The third rule attempts to assure the widest avai labi l i ty of
derived results to as many subproblems in as many alternative
proof paths as possible. It specifies that each derived
relationship be asserted in the newest KVISIA extension space
in the set consisting of the space containing the statement
used to init iate the derivation and those K V I S T A spaces
containing elements that were used as bindings to solve the
subproblem created by the derivat ion. This rule allows a
derived result whose derivation does not make use of the
assumptions in recently added K V I S I A extension spaces to be
added in an earlier extension space and therefore be made
available to aid in the solution of subproblems created before
the assumptions were made.

Use of Extension Spaces for doing Extractions

During the mult iple level extraction process, the results of
some subproblems may be used in the formation and solution
of other subproblems. To make this possible and to prevent a
subproblem's results f rom being used before that subproblem
is solved, we maintain the order of the subproblems and their
results by putting each one in a separate space and adding
those spaces to QVISTA and Kvista A as extensions in the order
that the extraction rules are applied. For example, the
extraction of R(y) f rom

wi l l cause creation of the subproblem, prove i
Q(y), and wi l l produce the results (VxCX) l , (x) A ye A
l((y) The results (Vxf. X) l ' (x) and the existence of an entity y
that is an element of Y cannot be used in the proof of V(.\),
but can be used in the proof of P(y)AQ(y) . This ordering
constraint is maintained by creating extension spaces in the
fo l lowing order:

Q l : a Q V I S I A extension containing P(a) that accepts bindings
f rom the K V I S I A that was current when the extraction
was init iated.

K I : a KVISTA extension containing the
results of proving l*(;i).

Q2: a QVISTA extension containing that accepts
bindings f rom KI and the in i t ia l KVISIA.

Demons are attached to spaces Ql and Q2 that f i re upon
completion of the subproblem. Those demons cause spaces
Ql and Q2 to be removed f rom the Q V I S I A , space KI to be
removed f rom the K V I S I A , and the cumulative results,
(to be added to the then current
K V I S I A extension.

Special Purpose Binder Tasks

The basic SNIFFER includes a collection of funct ions that
fo rm special purpose binder tasks in addit ion to the general
purpose binder described above. The most important of these
embody the derivation strategies for queries containing
disjunctions, implications, and negated conjunctions. In this
section we wi l l describe this collection of functions.

Knowledge R e p r . - 3 : F ikes
244

Proving Disjunctions, Implications, and Negated Conjunctions

OVIST A queries are sometimes nonatomic, for example,
consider the questions "Were any Mustangs bui l t by Ford?"
and "Arc all red mustangs owned by playboys?".

The system's special purpose binder tasks for nonatomic
statements occuring in the QVISTA apply a strategy of
decomposing the statement into alternative simpler
subproblems using the fo l lowing rules:

To Prove: Generate n subproblems of the fo rm:

As was the case with the extraction rules discussed earlier, the
subproblems created for negated conjunctions and for
implications are merely rewrites of those produced for
disjunctions, bach binder task selects an order in which to
produce its subproblems so that the easier ones are produced
f irst.

Each solution to each of the subproblems produces a set of
bindings for the entire original statement being proved. Eaeh
time one of these binder tasks is run, it creates a subproblem
in a newly created offspring environment and reschedules
itself in the parent environment. In the of fspr ing
environment it adds a new extension space to K VISTA
containing a set of assumptions, adds a new extension space to
OVISTA containing an expression to be proved, and attaches a
demon to the new QVIS I A extension space. When the demon
is f i red by the solution of ihe subproblem in the O V I S I A
extension space, it schedules a task that creates bindings for
the entire original expression in the then current environment.

If SNFFFR 11 K automatically sought inconsistencies between its
knowledge base and assumptions that are made, then it would
be suff icient to create a single subproblem f rom a
disjunction. Namely, assume the negation of all the disjuncts
except one and then attempt to prove The remaining, one.
However, since SNFFR does not automatically check
assumptions for consistency, we must define two subproblems
from a disjunction. Namely, one that specifies a disjunct to
be proved, say x1, and an assumption and a
second one that consists only of trying to prove that the
assumption made in the first subproblem is false. However,
the second subproblem is then attempting to prove the
equivalent of the disjunction which itself defines
two subproblems, etc. Therefore, in fact, n subproblems are
defined and they have the form shown in the rule given
above. (Note that in an actual proof it is unlikely that many
of these subproblems wi l l be created since what appear to be
the easiest ones are established f irst. Only when the in i t ia l
ones are found to be d i f f i cu l t to solve do others need to be
attempted.)

The subproblem format ion rules for implications di f fers
f rom the rule for disjunctions in that the subproblems created
f rom implications may involve universally quantif ied
variables (represented by nodes that occur in both the
implication's antecedent and consequent spaces). In each such
subproblem, the nodes representing universally quantif ied
variables are "assumed" in the KVISTA extension space created
fo r the subproblem. They therefore represent an entity in the

Know ledge

knowledge vista about which nothing is known except the
other assumptions made by the subproblem. If the statement
to be proved in the subproblem can be shown to be true about
that entity, then it is true for all entities for which those
assumptions are true. Such a proof is suff icient to complete
the subproblem and therefore prove the impl icat ion.

Por example, if SNIFPER is attempting to prove that only
insecure people own red Mustangs (represented by the
implicat ion " i f x is a red Mustang, then x is owned by an
insecure person"), and the generator for implications creates a
subproblem that assumes the implication's antecedent and
attempts to prove its consequent, then the assumption for that
subproblem would be that some newly created node x*
represents an entity that is a red Mustang, and the statement
to be proved would be that the entity represented by x' is
owned by an insecure person.

funct ion Applications

In a previous section we discussed the procedural
augmentation of K - N E T through the use of the Applications
set. A special purpose binder task creates elements of the
Applications set in the KVISTA by call ing the indicated
funct ion with the indicated arguments. This binder task is
needed when a subproblem is created consisting of the
antecedent of a K V I S I A implication that describes a
"procedural attachment" lo the network. Such subproblems
describe an element of the Applications set that can be created
as soon as bindings are determined for each of the
arguments. If the binder task is called before all the
argument bindings have been determined, then it attaches
demons to the unbound argument nodes that wi l l restart the
binder task when all of them have been bound. When all
arguments are present, the procedure is called and new
network structures are added to the K V I S I A to represent the
result.

The use of the Application set allows a K - N I - T to explicit ly
represent meta-relationships between sets of relationships and
the procedures that compute them. If a user has no need to
represent such meta-rciationships expl ic i t ly, then procedural
augmentation may be realized much more eff ic ient ly through
the use of user-supplied binder tasks. Por example, rather
than include the theorem of Figure 7b, a specialist for the
Sums relationship set may be added that knows how to call
funct ion PLUS and add new in format ion to the KVISTA as
described for Applications.

Case Analysis Proofs

There is an important class of problems that the deduction
mechanisms we have described thus far cannot solve.
Namely, those that require a case analysis proof (SIT Lovcland
and Shekel. 197."*, jnd Moore, i*̂ 75) For example, consider the
problem of pioving some relation R given a K VIST A
containing Ihe mechanisms
we have described would go into an in f in i te loop attempting
to solve this problem. What is needed is a case analysis
mechanism that wi l l , for example, attempt to prove R in the
case where I* is true and then attempt to prove R again in the
case where is true. Since R can be proved in both those
cases and the KVISTA contains a statement indicating that
either I* or Q is true, the problem is solved.

A major d i f f i cu l ty in creating a design for a case analysis
proof mechanism is the development of a procedure for
dehnmg the cases, Every nonatomic statement in the KVISTA
defines a candidate set of cases (e.g., an impl icat ion x=>y
defines the set Therefore, the problem of def in ing
ihe cases can be considered to be one of selecting an
appropriate nonatomic KVISIA statement.

R e p r . - 3 : F l k e s
245

We are currently experimenting with the fo l lowing scheme
which appears to be an effective way of making the selection.
It is based on the observation that for a case analysis proof to
be necessary, it must not be possible (or be impossibly
d i f f i cu l t) to complete a proof without the case assumptions.
Therefore, in each case the assumptions must be useful at
some point in the proof. The key, then, to def ining the cases
for a case analysis proof is in the recognition dur ing the
attempt to construct a standard proof of the need for each of
the assumptions in some potential set of cases.

Disjunctions in the KVISTA, for example, are selected to be the
basis for a case analysis proof by recording each time one of
the disjuncts is extracted (i.e., contains a relationship that
matches some relationship in the q V I S I A) during a proof
attempt. If all the disjuncts of a particular instance of a
disjunction have been extracted, then we can conclude that
each of the disjuncts would be a useful case assumption and
therefore that the disjunction could be the basis for a
potentially successful case analysis proof. The same
conclusion can be made when both the antecedent and the
consequent of an implication or all the conjuncts of a negated
conjunction have been extracted.

When such a " fu l l y extracted" K V I S I A statement is found, the
f i rst common parent of the environments in which the
extractions were init iated is found, and a new task is added to
that parent environment's agenda to init iate the case analysis
proof. That proof attempts to derive bindings for the port ion
of the ovist A for which bindings were being derived each
time one of the extractions was done. The task creates an
of fspr ing environment and in that environment assumes the
f irst case, establishes the statements to be proved in a new
QVISTA extension space, and attaches a demon to the new
QVisiA extension. The demon does the same thing for the
next case. The last demon asserts the statements that have
been proved in each case and assigns the appropriate bindings.

Note that in the example given above, any of the three
K V I S I A statements could be used as the basis for a case
analysis proof (e.g.. ~P and R is an acceptable set of cases).
Our selection procedure could f i nd any one (or all) of them,
depending on the order in which new environments are
created in the environment tree.

To achieve completeness, one must also consider cases defined
by relationships that occur in the ini t ia l QVISTA in both a
negated and unnegated form. For example, P(x) and ~P(y)
occurmg in the Q V I S I A define a useful set of cases
{P(<binding of x>), ~P(<b indmg of x>)} when the binding
of x along one proof path is the same as the binding of y
along another path.

Concluding Remarks

The goal of this research is to provide a uni f ied system that
has powerful, general mechanisms and that can be made very
eff ic ient for solving the most frequently encountered
problems in particular application areas. The central idea is
to use specialized repiesentalions and deduction schemes
where they can be effective, while having a logically complete
mechanism to fa l l back on when the special mechanisms fa i l .

In producing K-NETI and SNIFFFR, we have attempted to create
convenient hooks for adding specialists, and useful bui ld ing
blocks f rom which those specialists can be constructed. These
hooks include the l inks to procedures (and hence to other
representation structures) that are included in K - N F T , the
pattern-directed strategy selectors in SNI IT FR that are capable
of invoking user-supplied tasks, and S N I R T R ' S agenda control
mechanism. The bui lding blocks include the taxonomy
derivation functions, the uni f icat ion machinery, and the
facil it ies for manipulating extension spaces.

We plan to continue our experimentation wi th various
specialist routines, both for the rapid handling of particular
types of deduction and retrieval and for the extension of the
system to include new types of problem solving activities,
including reasoning with uncertainties and about processes.
Preliminary experience indicates that the faci l i t ies provided
make this exploration manageable and productive.

An important goal of future work wi th SNIFFER is to
determine the effectiveness of its control mechanisms,
particularly the use of iNtLRt is f coroutines and mult ip le level
agendas. The use of these mechanisms to coordinate mult ip le
types of problem solving activities is of particular interest to
us, as is the use of heuristics to guide the allocation of
resources among the various strategies that SNIFFER
coordinates. We have only begun to gain experience in these
areas. However, the modular control structure of SNIFFER and
the strong cross-indexing of K-NFT provide a very supportive
environment for future explorations.

Acknowledgements

The research reported in this paper was supported at SKI by
the Advance Research Projects Agency under contracts
DAAG29-76-C-0011 and D A A (G - 7 6 - C - O O I 2 with the U.S.
A rmy Research Off ice. The Xerox Palo A l to Research Center
has provided support to the f irst author dur ing the wr i t ing
and preparation of this paper. Nils Nilsson has been an
important contr ibutor to the design of this system,
particularly with regard to the deductive machinery. Ann
Robinson. Johnathon Slocum, and Mike Wilber have been
major participants in the overall implementation ef for t .
Danny Bobrow has provided important critiques of our
efforts to describe the work.

References
Bobrow, D. C. and Wegbreit. B. "A Model and Stack
Implementation for Mult ip le Environments".
Communications of the A C M , Vol. I(>, No. 10. Oct. 1973.

Bledsoe. W. W.. Boyer. R. S.. and Henneman, W. H.
"Computer Pioofs of I.unit Theorems". A r t i f i c ia l Intelligence
Journal, Vol. 3, 19/2, pp. 27-60.

Bobrow, D. G., and Winograd, T. "An Overview of K R L , A
Knowledge Representation Language". Cognit ive Science,
Vol . I, No. 1. Jan. 1977.

Hendrix, G. G. "Expanding the Ut i l i t y of Semantic Networks
through Part i t ioning". Fourth International Joint Conference
on Ar t i f i c ia l Intelligence, 1975.

1 oveland. D. and Shekel, M. "A Hole in Goal Trees". Th i rd
International Joint Conference on Ar t i f i c ia l Intelligence,
1973, pp. 153-161.

Moore, R. C. "Reasoning f rom Incomplete Knowledge in a
Procedural Deduction System". M IT A K I R - 3 4 7 , Dec. 1975.

Reiter. R. "An Approach to Deductive Question-Answering
Systems". S IGART Newsletter, Natural Language Interfaces
Issue, Feb. 1977, pp. 41-43.

Teitelman. W. INTERLISP Reference Manual. XEROX
Palo A l to Research Center, 1975.

Walker, D., Editor. "Speech Understanding Research, Final
Report, Project 4762". Ar t i f i c ia l Intelligence Center, Stanford
Research Institute, Menlo Park Ca., 1976.

Knowledge P e p r . - 3 : F l k e s
246

