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Abstract 

We describe a knowledge representation scheme called K-NHT 
and a problem solving system called SNIFFER designed to 
answer queries using a K-NET knowledge base. K-NtT uses a 
partit ioned semantic net to combine the expressive 
capabilities of the f irst-order predicate calculus with linkage 
to procedural knowledge and with fu l l indexing of objects to 
the relationships in which they participate. Facilities are also 
included for representing taxonomies of sets and fo r 
maintaining hierarchies of contexts. SNin-TR is a manager 
and coordinator of deductive and problem-solving processes. 
The basic system includes a logically complete set of natural 
deduction facil i t ies that do not require statements to be 
converted into clause or prenex normal fo rm. Using 
SN'II tFR's coroutine-based control structure, alternative proofs 
may be constructed in pseudo-parallel and results shared 
among them. In addit ion, SNitf ER can also manage the 
application of specialist procedures that have specific 
knowledge about a particular domain or about the topology of 
the K-NER structures, f o r example, specialist procedures are 
used to manipulate taxonomic informat ion and to link the 
system to informat ion in external data bases. 

Introduction 

This paper describes a question answering system whose 
principal components are a network-based knowledge 
representation scheme called K-NL'l and a problem solving 
system called SN I I f I t< (an acronym for Semantic Net 
Interpretation fac i l i t y f o r t i f i ed with E xternal Routines), 
designed to answer queries using a k-NLT knowledge base. 

The goal of the ef for t has been to create a design that allows 
specialized representations and deductive .schemes to be used 
where they are effective, while providing, recourse to a 
logically complete natural deduction mechanism when 
necessary. SNII-'R-.R has been designed with the intention that 
most o( the question answering work wil l be performed by 
special domain-dependent procedures These specialists can 
lake advantage o( the particular topology of the K-NI-.T 
structures designed to represent domain-specif ic types of 
knowledge. Specialist procedures also allow SNIHI R to do 
certain types of problem solving usually considered outside 
the range of conventional deduction. Tor example, specialists 
may be added that know how to extract in format ion f rom 
conventional data bases or do scheduling and planning. In 
this paper we seek to indicate the handles for adding 
specialized knowledge while eoncn t ra i ing on 'he fundamental 
issues of implementing natural deduction for nelwoik systems. 

SNIEEER and K-NET are evolving systems, versions of which 
have been used as major components in larger systems 
developed in the SRI Ar t i f i c ia l Intelligence (enter, including, 
the SKI Speech Understanding System (Walker 1976). 

To help the reader relate our work to other knowledge 
representation facil i t ies and problem solving systems, we 
begin by presenting the distinguishing and characterizing 
features of our system before focusing on a more detailed 
overview that elaborates on these features and provides 
concrete examples. 

Characterizing Features of K-NET 

K-Nt i provides facil it ies for creating a partit ioned semantic 
network of labeled nodes connected by labeled unidirectional 
arcs. A node represents an entity in the world being modeled 
and an arc represents a binary relationship between the nodes 
that it connects. I or example, the nodes .John and Men in 
Figure 1 represent a man John and the set of all men, 
respectively. The arc labeled V f rom Joint to Men indicates 
that John is an element of the set of men. Relationships can 
be considered to be entities and be represented by nodes with 
"case" arcs point ing to the participants in the relationship. 
For example, node Q represents the ownership relationship 
(situation) existing between John and the automobile 
"Ole-Black" over the time interval f rom tj to t2 

K-NET can be characterized by the fo l lowing list of features: 

* Facilities are provided for representing mult iple "worlds" 
and the relationships among them. In particular, the network 
can be pait i t ioncd into subnets (called spaces). Spaces can be 
hierarchically embedded by treating an entire space at one 
level in the hieiarchy as a single node in a space at the next 
higher level. A "context" mechanism exists that allows only a 
given sel of spaces to be "visible" to the retrieval procedures 
at any one time. Fxamples of alternative worlds include those 
contained in a disjunction, or the world composed of the set 
of beliefs that John has about Sally as opposed to the world 
composed of the set of beliefs that Sally has about herself. 

* The expressive facil i t ies of the representation scheme 
include those of the first order predicate calculus, including 
existential and universal quanti f icat ion. (Higher order predicates 
arc also tepesentiale in K-N{" [ , but only tuvial interrelat ion facilities 
exist for them m SNltihR ) That is, the knowledge base can 
contain statements represented as negations ("John does not 
love Mary."), disjunctions ("John loves either Sally or Sue."), 
or implications ("If Sue answers John's phone call, then John 
wi l l ask Sue for a date."), and containing a ib i l iary nestings of 
existential and universal quantif iers ("Fvery boy has been in 
love sometime."). 

* Taxonomies of sets are modeled by the topology of the 
network so that they become the basic skeleton upon which 
the knowledge base is built. For example, one can directly 
represent the relationships "Ford is an element of Companies 
distinct f rom G.M." and "Mustangs is a subset of Automobiles 
distinct f rom M o d e l - T V . One can also associate with a : et 
characteristic properties common to all elements of the set, 
such as "A l l Mustangs are buil t by Fold" . 
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* Procedures may be attached to the network to interface it 
to other knowledge sources such as conventional data bases or 
arithmetic algorithms. When called by SNilFliR, these 
procedures extend the network by creating new nodes and arcs 
representing the in format ion acquired f rom the other 
sources. Links to these procedures are explicit ly represented 
in the network so that their existence and role can be 
reasoned about and discussed by the system. 

* The network provides indices that facil i tate associative 
retrieval of the relationships in which any given knowledge 
base entity is involved. For example, retrieval of all females 
that John loves can be indexed through the node representing 
John, the node representing the set of loving relationships, or 
the node representing the set of females. The basic 
mechanism is one that allows immediate access to all of a 
node's incoming and outgoing arcs that are visible in any 
given set of spaces. 

Characterizing Features of SNIIFFER 

S N I R T R is a "natural" deduction system (as m Bledsoe, ft ai.. 
1972) that is given two net structures as input, one representing 
a knowledge base and the other representing a query (usually 
a translation of a question original ly stated in English). It 
treats the query as a pattern and attempts to f ind instances of 
the pattern in the knowledge base, or equivalontly. it treats the 
query as a theorem to be proved and attempts to f i nd 
instantiations for its existentially quantif ied variables. 
Results are returned in the form of sets of "bindings" for the 
variables in the pattern. f o r example, the question "Who 
does John love?" is translated into a net structure representing 
the pattern "John loves x" (or the theorem 
(3\ ) [Loves(John,x) ] ) , and SNI I MR returns bindings for x 
such as (x, Mary). Answers may either be retrieved f rom the 
knowledge base or derived using knowledge base theorems and 
procedures. 

SNIEEER can be characterized by the fo l lowing list of features: 

* Associative retrieval of relationships f rom the knowledge 
base is performed using the K - N I r indexing facil it ies. 

* L f f ic ient . special purpose deductive procedures are used 
for extracting informat ion f rom the K-Nt I taxonomies. For 
example, if the knowledge base indicates that x is an element 
of the set of Mustangs, that Mustangs are a subset of the set 
of sports tars, and that sports cars are a subset of the set of 
automobiles, then SNIIEER can conclude that x is an 
automobile by using procedures that fo l low the chain of 
element Of and stihsctOf arcs, thereby bypassing the more 
cumbersome, general-purpose deductive machinery. 

* Facilities-are included for answering questions and using 
knowledge base statements composed of conjunctions, 
disjunctions, and implications, containing arbi trar i ly 
embedded universally and existentially quantif ied variables. 

* Queries and knowledge base statements are processed in 
the "natural" fo rm in which they are input, without 
converting into a canonical f o rm such as clause f o rm or 
prenex normal fo rm. This capability eliminates "explosive" 
conversions (such as converting the disjunction (aA I )Ae) V 
( J A c A f ) V ( g A h A i ) into clause fo rm which consists of 27 
clauses each containing 3 disjuncts) and unnecessary 
conversions (such as conversion of a disjunctive question's 
complex disjuncts when one of its simple disjuncts can easily 
be shown to be true). In addi t ion, the intuitiveness and 
heuristic value of the form in which statements are input (as 
implications, for example) is maintained. 

* A logically complete set of natural deduction rules are 
used that reason backwards f rom the question. These rules 

use such techniques as case analysis, hypothetical reasoning, 
and the establishing of subgoals. For example, to answer a 
question that is in the form of an impl icat ion, SNIIFFE R: might 
use hypothetical reasoning by assuming the impl icat ion's 
antecedent and then pursuing a proof of the consequent as a 
subgoal. 

* A f lexible coroutine-based control structure allows the 
construction of alternative proofs ]n a pseudo-parallel 
manner, with results being shared among the alternatives, 
bach partial proof has its own local scheduler to determine 
how its proof attempt should be continued. There is an 
executive scheduler that uses in format ion supplied by the 
local schedulers to determine which partial proof is to be 
given control at each step. The various schedules provide the 
facil i t ies necessary to allow reasonable heuristic guidance of 
the total deduction and retrieval process. 

* User-supplied procedures may participate in the attempt 
to f ind answers in two ways. Fiist, procedures included in the 
K-Nt r knowledge base may be invoked to access in fo rmat ion 
in knowledge sources that are external to K-NET. Second, 
SNIEEFR allows the inclusion of user-supplied procedures that 
extend the system's problem solving capabilities. Such 
procedures may add heuristics to the deductive strategies or 
even integrate new knowledge sources into the system, such as 
data bases and planners. Facilities are available to these 
procedures for creating, alternative proofs, manipulat ing 
schedules, altering priorit ies, and establishing "demons" so 
that the usei can create strategies that augment and interact 
with those that already exist in the system. 

* SNIFFFR is implemented as a "generator" (see Teiteman, 
1975) so that after returning an answer it can be restarted to 
seek a second answer to a query. For example, given the 
question "Who owns a Mustang?" SNIFFFR may f i rs t produce 
the answer "John", then be "pulsed" again to produce "Mary", 
etc This style of answer production allows the user to 
examine each answer as it is produced and dynamical ly 
determine whether additional answers are needed. 

* " N o " answers are determined by f ind ing an af f i rmat ive 
answer to the question's negation. For example, if given the 
question "Does John love Mary?", SNIFFFR wi l l attempt to 
prove "John does not love Mary" in addit ion to attempting to 
prove "John loves Mary". 

Overview Description of K-NKT 

In this section we wi l l describe and illustrate how K-NKT is 
used to encode knowledge. Throughout the section reference 
wi l l be made to the example knowledge base shown in Figure 
2, which represents some facts about automobiles. 

Taxonomies 

Major portions of the semantics of a task domain can often 
be expressed naturally by a taxonomy of sets that indicates 
the major sets of objects in the domain and the relationships 
between the sets. The power of the taxonomy can be 
enhanced further by the inclusion of statements that specify 
necessary and/or suff icient conditions for membership in the 
sets. K-NET provides the fo l lowing facil i t ies designed 
specifically for encoding such taxonomies. 

S arcs indicate "subset of " relationships. For example, the s 
arc in Figure I f rom the Men node to the Humans node 
indicates that the set of men is a subset of the set of all 
humans. 

Most subsets described in taxonomies are disjoint. Arcs 
labeled ds are used in k-Nl l to represent this disjointness 
property in a concise and easily interpretable manner. A ds 
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arc f rom a node x to a node z indicates that the set 
represented by x is a subset of the set represented by z and 
that the x set is disjoint f rom any other set represented by a 
node with an outoing dsis arc to z. For example, the ds arcs in 
the figure (i.e., Figure 2) emanating f rom the Humans and 
Companies nodes indicate that the set of humans and the set 
of companies are disjoint subsets of the set of legal persons. 

Since each node in most taxonomies represents a distinct 
entity, and in general an entity can be represented by any 
number of nodes in a K-Nf " I , arcs labeled de ( for "distinct 
element") are used to indicate that two or more nodes each 
represents a distinct element of a set. In particular, a de arc 
f rom a node x to a node z indicates that the entity 
represented by x is an element of the set represented by z and 
that the x entity is distinct f rom any othei entity represented 
by a node that has an outgoing de arc to z. l o r example, the 
de arcs in the figure emanating f rom the ( i . M . and lo rd nodes 
indicate that G.M. and Ford are distinct members of the set 
of companies. 

F arcs are used to indicate "element of" relationships without 
making a commitment to distinctness. f o r example, Fred, 
J i l l , and Mary may be known to be distinct elements of 
Riders, the set of people that rode to the airport in Fred's 
car. If some fact is known about the driver of the car and the 
identity of the driver has not yet been determined, then a 
node I) representing the driver may be linked to set Riders by 
an e arc. The node I) can be used to encode informat ion 
about the unnamed driver without specifically indicating 
which of the distinct elements of Riders is the driver. 

Situations 

SNIFFER assumes that relationships other than elemcntOf and 
subsetOf are represented by nodes having outgoing case arcs 
pointing to the participants in the relationship (such as node 
I* in the figure, which represents the relationship "Ford built 
Lizzy"). T his representational convention allows an arbitrary 
amount of in format ion to be stored with a relationship (using 
outgoing case aics) and allows associative retrieval of the 
relationship using the network's indexing facilit ies. Such 
relationships are grouped by type into sets and these sets are 
considered to be subsets of the set of all "situations". For 
example. Builds (the set of all situations in which bui lding 
takes place) and Implications are disjoint subsets of Situations 
in the figure, and node V represents an element of the Builds 
set. a particular bui lding situation in which Ford is the agent 
and LlZZy is the Object b u i l t . ( The situation repres/ented by P look 
place over an intervall of time from StartTime to Find time 'these turne 
eases would be present in a more complete description of I'.) 

Spaces and Vistas 

Perhaps the primary feature that distinguishes K-NFT from 
other semantic networks is that a net can be partit ioned into 
subnets, and relationships among the subnets can be explicit ly 
and easily represented (see llendnx. 1975. A l l nodes and arcs in 
a K-NET are "elements" of at least one "space" (i.e., subnet). 
In the figures, such spaces are depicted by boxes. For 
example, node in the figure and the Pobj arc f rom V to Lizzy 
are elements of the Knowledge space. A space can be (and 
usually is) a node in some other space. For example, in the 
figure the con.se arc f rom node I points to a node in the 
Knowledge space that is itself a space. When retrieving 
informat ion f rom a network, it is convenient to have only a 
specified list of spaces, called a "vista", visible to the 
retriever. For example, the vista that would typically be used 
when retrieving informat ion f rom the space pointed to by the 
conse arc in the figure consists of the space itself and the 
Knowledge space. 

Negations, Disjunctions, and Implications 

A representation scheme for negations, disjunctions, and 
implications must allow one or moie "woi lds" to be described 
and a relationship to be asserted among, the worlds (e.g., that 
at least one of them is true), K -NFT 'S part i t ioning facil i t ies 
provide the required capabilities for cieating just such a 
scheme. 

A negation occurring in some space s describes a col lect ion of 
entities and relationships, and asserts that no collection 
satisfying the description can exist in the world represented 
by space s. We represent such a negation as shown in Figure 
3a by creating a space to describe the collection, and by 
adding the created space to space s as a node with an outgoing 
e arc to negations, the node that represents the set of all 
negation relationships. For example, the statement "G.M. 
does not build convertibles" would be represented using a 
space describing a collection consisting of an ent i ty C, an 
elemenlOf relationship between C and the set of convertibles, 
and a build relationship with agent G.M. and object C 

A disjunction occurring in a space s describes alternative 
collections of entities and relationships, and asserts that 
entities and relationships satisfying at least one of those 
descriptions exists in the world represented by space s. As 
shown in Figure 3b, we describe each disjunct in a separate 
space and represent a disjunction as a set of such disjunct 
spaces. 

An implication occuiring in a space s describes two 
collections of entities and relationships, and asserts that if 
entities and relationships exist in the world lepresented by 
space s that satisfy the first of the two descriptions (the 
antecedent), then entities and relationships satisfying the 
second description (the consequent) also exist in that world. 
We represent an implication as shown in f igure 3c by a node 
wit l i outgoing case aics to spaces containing the descriptions 
of the antecedent and consequent. More concrete examples of 
implications wi l l be presented in the next section. 

Q u a n t i f i c a t i o n 

One of the important features of K-NFT is thai it provides 
facilit ies for repiesenting arbitrar i ly nested existential and 
universal quantifiers. Fxistential quant i f icat ion is a 
" b u i l t - i n " concept in the sense that we take the occurrence of 
an element (i.e.. a node or arc) in a space to be an assertion 
of ihe existence with respect to that space of the enti ty or 
relationship represented by the element. In particular, if an 
element occurs in the system's "knowledge space", then that 
element represents the system's belief that a corresponding 
entity or relationship exists in the domain being modeled. 

\ xistenlia! quanti f icat ion and negation could be used to 
represent any universally quantif ied formula (VxC X)P(x) by 
making use of the fol lowing transformation: 

(Vx€X) l ' ( x ) =r — [ ( V \ C X ) r < x ) ] == 
~ | . ( 3 x C X ) ~ r ( x ) ] . 

The K-NFf representation of the transformed formula is 
shown in Figure A. 

Although this representation is logically sound, it is extremely 
unappealing intuit ively. The fo l lowing transformation 
suggests a more attractive representation: 

(Vx C X)lP(x) = (Vx ) [ ( x e X) =* P ( x ) ] . 

That is. any universally quantif ied formula can be represented 
as an implicat ion whose antecedent specifies the " typ ing" of 
the universally quantif ied variable and whose consequent 
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specifies the statement that is being made about any entity 
that satisfies the type restrictions. 

Overview Description of SNIFFER 

A distinguishing feature of the universally quantif ied variable 
x in this impl icat ion is that it occurs in both the antecedent 
and the consequent. We have made use of this feature by 
adopting the convention in K NEt that if a node occurs in 
both the antecedent and the consequent spaces of an 
impl icat ion, then we consider it to be the representation of a 
universally quanti f ied variable. I his convention is, in fact, 
used as the primary means of representing, universal 
quanti f icat ion in our system. 

When the main connective of a formula is an impl icat ion, it 
is not necessary to embed the formula in another impl icat ion 
to represent the universal quanti f icat ion. Thai is: 

Figure ?. shows the K - N F T representation of a concrete 
example of such an impl icat ion, namely the statement ' To r all 
M in the set of Mustangs, there exists a B such that B is an 
element of the Builds situations, the agent of B is Ford, and 
the object bui l t is M." 

Arbitrary nesting, of quantif iers may be achieved by placing 
implications in the consequent spaces of other implications, 
hoi example: 

Figure 5 summarizes the conventions for representing 
quanti f icat ion by contrasting the k -M I representations of 
( : ] \ ( ;X)I ' (V) and (VxC X)P(x). 

Procedural Augmentation 

f o r many applications, it is important for the s> stem's 
knowledge base to include sources of informat ion such as 
lelational data bases 0f arithmetic algorithms external to the 
K-NF. ' I n e t s . (Sec R e i k i , 197 7. for a n o t h r i e>ampk' i,l an inference 
s y s t e m d e s i g n e d l ( t o i n t e n c t w i t h , a re la t iona l i lata b a s e . ) W e h a v e 
adopted a set of conventions in K-NIT for dcsciibmg links to 
such external knowledge souices. 

The links to external knowledge sources are represented by 
"theorems" (i.e.. implications containing universally 
quantif ied variables) in the system's knowledge space that 
have the fo rm exemplif ied by the network shown in Figuie 
b. Such theorems are intcipictcd to mean that if there is a 
successful application o\ the indicated funct ion to a set o\ 
arguments that satisfy the description given in the antecedent, 
then the arguments and the results returned by the funct ion 
can be used to create iclationships and entities satisfying the 
description given in the consequent. 

The particular theorem of Figure 6 indicates that an 
application of IN I hki ISP'S PLUS funct ion can be used to 
produce new instances of the Sums relation in the net. This 
theorem makes it unnecessary for all the instances of the 
Sums relation to be explicit ly represented in the knowledge 
base. When SNIFFt-R attempts to match a pattern involv ing 
the sum of two numbers, it can use this theorem to fo rm a 
call of the IMILS funct ion and to translate the results of that 
call into the desired Sums relationship. The manner in which 
SNIFFFER uses knowledge about the Applications set to create 
new relationships f rom the results of procedure calls is 
discussed below in the section on special purpose binder tasks. 

This section describes and illustrates the basic features used 
by SNIFFFR in retrieving and denying in format ion f rom 
K - N F T structures. We begin by considering how SNIFFFR is 
invoked and by illustrating, how it would go about solving two 
simple problems. Attention is then turned to the overall 
control structure and to the operations performed by various 
components. 

Introduction 

SNIFFFR is given as input a vista representing a query (the 
OVISTA) and a vista representing the beliefs that are to be 
considered true while answering the query (the K V I S I A ) . Fike 
other vistas, the OVIST A and k VISTA are lists of spaces. In 
aggregate, the nodes and arcs of the various spaces in the 
OVIST A describe a set of entities (i.e., objects and 
relationships) whose existence is to be established in the 
k VIST A. It a set of such entities can he found to exist, then 
SNIFFER returns a list of "bindings" that link the OVISTA 
descriptions to their K V I S I A instantiations. Otherwise, 
SNIFFFR attempts to prove that no such collection of entities 
can exist, so that a negative response can be given 

For example, f igure 7 shows a k visTA and a ovist A for the 
query "What company built Lizzy?". Gliven this OVISTA, 
SNIFFFR seeks an element of the Builds situations set having 
both Lizzy as its object and an element of the Companies set 
as its agent. The Builds situation icpicsentcd by node I* in 
the kVISTA is found by using the incoming e aics to the 
Builds node as an index, and a "Yes" answei is generated with 
I* as the binding for node Z and the lo rd node a the binding 
for node ?X. The "Yes" answer indicates that the question 
was based on a true pieunse, and the binding for x is the 
actual value that was sought. 

( j iven the k vis IA and OVIST A shown in Figure 8, SNIFFFR 
must carry out a derivation to answer the query using the 
k VIST A theorem "A l l Mustangs were built by Ford." The 
theorem is found by indexing on the incoming e arcs to the 
Builds node. A unif icat ion process detei mines that the 
relevant instance of the theorem is one in which the 
universally quantif ied variable M is replaced by Olc-Black. 
The theorem allows a new Huilds situation lo be asserted if it 
can be shown that Ole Black is an element of the Mustangs 
set. A subproblemcm is created to f ind that Llement Of 
relationship, and when the subproblcm is solved, the new 
Builds situation is asserted ami the desired bindings are 
assigned. In particular, node ?\ is again bound lo Fold and Z 
is bound to the newly derived Builds situation. 

Control Structure 
As an introduction to SNIITTER control structure, consider the 
fo l lowing simpl i f ied desciiption of how the system goes about 
answering queries 'I he basic process consists of selecting an 
unbound O V I S I A arc and f ind ing a match for the selected arc 
in the k v is i A. The matching, arc then implies matches for 
the nodes at each end of the selected O V I S I A arc. After each 
arc is bound, the process is repeated unti l all the arcs and 
nodes of the Q VIST A have been bound. 

This conceptually simple process is complicated by a number 
of factors. At each step in the process there are typically 
many alternatives that may be fol lowed. For example, any of 
the unbound arcs in the OVIST A might be selected for 
consideration and each of these might be successfully bound 
to many KVISTA arcs. Another complicating factor is that 
some structures in the O V I S I A wi l l have no matches in the 
Kvis)A, even though their existence is implied by statements 
in the KVISTA. Deductive machinery must be invoked to 
derive explicit representations of these implied structures. 
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FIGURE 5 EXISTENTIAL AND UNIVERSAL QUANTIFICATION 

FIGURE 6 LINKING RELATION SUMS TO PROCEDURE PLUS 



With in the deductive machinery, choices must be made 
between alternative strategies for pursuing a derivation and 
among the collection of K V I S I A statements that could possibly 
be used to derive the desired matching structure. 

The control structure that we have evolved for SNIFTER allows 
these various alternatives to be pursued in a pseudo-parallel 
"best f i rs t " manner. K-NET's part i t ioning facilit ies and 
INTLRLISP'S coroutines are used to create a system 
environment that allows each alternative to have its own 
subproblems, assumptions, and derived results, and for the 
choices among these alternatives to be guided by both bu i l t - in 
and user-supplied evaluation functions. 

The Environment Tree and Task Agendas 

SNIFTER proceeds by bui lding a tree of alternative proofs, 
each node of which represents a data environment that 
includes a set of choices of bindings for QVISTA elements and 
derivation strategies. Each time a choice is to be made in an 
environment, an offspr ing environment is created and the 
results of the choice are established in the offspring. For 
example, if a binding for a QVIS ' IA element is found, then an 
offspr ing environment wi l l be created in which the binding 
wi l l be assigned. The search for additional bindings can then 
be continued in the parent environment, but S N I I M u is 
committed to the assigned binding in the offspring. 

Included in each environment is a task agenda (pauaned after 
tin- ;agenda mechanism in KRL-0, SEE Bobiow and Winagrad, I ' m ) tha t 
defines n pr ior i ty levels and allows a list of tasks to be stored 
at each pr ior i ty level. The S N I I T T R Executive typically 
proceeds by selecting an environment to give control to and 
then running the highest prior i ty task on the selected 
environment's agenda. Each task is composed of a USP 
funct ion and a set of arguments upon winch the funct ion is 
operating. Typical tasks look for KVISIA descriptions 
matching a given ovist A description or, if necessary, init iate 
derivations to deduce new explicit descriptions f rom impl ic i t 
descriptions contained in KVISTA "theorems". 

The Executive also has its own task agenda that is used to 
determine what to ih) at each step. Ini t ia l ly, this agenda has 
three (asks on it; one to init ial ize an environment lice to seek 
"Yes" answers to the query, one to init ial ize an environment 
tree to seek "No " answers to the query, and the one mentioned 
above that selects an environment, runs the task defined by 
that environment's agenda, and reschedules itself. 

The agenda associated with the top environment in an 
environment tree in i t ia l ly contains a single task that selects 
for consideration unbound arcs that lie in the QVISTA. Each 
time the selector task is restarted, it selects another QVISTA 
arc, creates a "binder" task that wi l l seek bindings for the 
selected arc, schedules the created task, and reschedules itself. 

When a binder task f inds a KVISTA arc that is a "candidate" 
(i.e., potential) binding, it creates a new of fspr ing 
environment in the environment tree that is a copy of the 
parent, assigns the binding in the of fspr ing environment, and 
reschedules itself in the parent environment. Hence, at any 
given step, each terminal environment in the tree includes a 
partially formed alternative answer to the query. 

Provisions have been made for attaching "demon" functions 
to QVISTA nodes and spaces in an environment. Demons 
attached to a QVISTA node, which are " f i red" when a binding 
is assigned to the node, allow binder tasks to "pause" unt i l 
other bindings have been assigned that can be used as indices. 
Demons attached to a QVISTA space, which are f i red when 
bindings have been assigned to all the arcs and nodes in that 
space, are useful in completing derivations and returning 
results. Eor example, demons are attached to each Q V I S I A 
space in the in i t ia l environment of an environment tree. 

Knowedge 

When the last of these demons fires in an environment, 
bindings wi l l have been assigned to all QVISIA elements in 
that environment and an answer can be generated. The last 
demon causes the answer to be generated by scheduling an 
appropriate task on the Executive's agenda. 

When an offspring environment is created, it inherits copies 
of its parent environment's data structures. including the 
agenda, demons, and list of assigned bindings. If a task or 
demon represents a "paused" coroutine that wi l l be "resumed" 
when the task i:> run. then copying it conceptually produces a 
copy of the coroutine so that the original task or demon and 
the copy can run independently in their respective 
environments. I or example, if a binder task is in a state such 
that it wil l consider relationship II as the next candidate 
binding and it is copied into an offspring environment's 
agenda. the'n the copy wi l l also independently consider R as 
the next candidate binding. Similarly, a demon can be 
independently f i led in each environment in which bindings 
for all the space's elements have been assigned. This powerful 
capability is implemented using the "spaghetti stack" facil i t ies 
f o u n d III IN' ITRI ISP (Uohmw and Wej-,l>reit, 197.1). 

Hinder Tasks and User-Supplied Specialists 

The Selector task in each environment's agenda selects 
unbound QYTSI'A arcs and creates binder tasks that seek 
bindings for the selected arcs. The procedures used in the 
binder tasks embody the system's retrieval and derivational 
mechanisms. 

Domain-Specific Augmentation 

The primary way in which SNIRT.R can be augmented and 
adapted to a particular problem domain is by providing 
additional procedures that can act as "expert" binder tasks for 
specialized classes of relationships. Such experts may add 
heuristic guidance to the deduction process or add completely 
new sources of knowledge. 

Eor example, a binder task for ownership relationships might 
add heuristic guidance by knowing that objects usually have a 
unique owner. This task would look for bindings by 
fo l lowing indices f rom the object to its owner rather than 
f rom the person to all the objects he/she owns or f rom the 
set of all ownership relationships. 

Another expert binder task might be written for the 
relationship between a person and his telephone number. 
Rather than look for the person/number relationship in the 
K-NFl. this procedure might look it up externally in a phone 
book f i le. The procedure would then create new structures in 
the K V I S I A to encode the retrieved informat ion and use this 
new structure in the binding. 

Strategy Selectors 

When a QVISTA arc has been selected, it is passed through a 
set of "strategy selectors", each of which is a funct ion that can 
create a binder task for the arc and indicate whether 
addit ional selectors should be consulted. When a new 
funct ion for f ind ing bindings is added to the system, a 
strategy selector is written for it and added to the set of 
selectors. These strategy selectors provide a generalized form 
of pattern directed invocation of the binder tasks. 

When no "specialist" binder task is available for a selected 
arc, a general purpose binder task is created that can seek 
bindings for any relationship or its negation using natural 
deduction theorem proving strategies. It uses the net's 
indexing facil i t ies to f i rst f ind all atomic statements (i.e., 
relationships other than disjunctions, implications, or negated 
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conjunctions) that contain possible bindings for the selected 
arc and then all nonatomic statements thai can be used to 
derive bindings for the selected are. For example, the general 
purpose binder task for arc Builds in Figure 8a would 
consider incoming e and de arcs to the Builds node as 
candidate bindings. 

Ramification 

When a binder task f inds a candidate binding, it can apply 
the fo l lowing " rami f ica t ion" rules to determine what other 
bindings aie directly implied by the candidate. First, if two 
arcs are lo be bound to each other, then the t rom-node of the 
f irst arc must be bound to the f rom-node of the second arc 
and the lo-node of the f irst arc must be bound to the lo-node 
of the second arc. Second, we assume that a node can have at 
most one outgoing case (i.e., nontaxonomic) arc with any 
given arc label. Therefore, if two nodes are to be bound to 
each other and both nodes have outgoing case arcs with a 
common label, then those case arcs must also be bound to 
each other. For example, if in Figuic 7 arc . - , Builds 
were the candidate binding for arc Z ~ - T - - > B u i l d s , then 
bindings would be implied for nodes z and ?X, and for the 
agt and obj arcs. 

If a candidate binding implies a binding that is inconsistent 
with an existing binding ( for example, one that assigns two 
different bindings to some O V I N I A node, where ds and de arcs 
in the taxonomies indicate that the two bindings represent 
distinct entities), then the candidate can be rejected and 
another one sought Hence, this ramif icat ion process acts as a 
powerful and efhc ienl t i l ler for candidate bindings as well as 
a producer of new bindings. 

Self Scheduling 

The decision as to which binder task should be given control 
in any given environment is made by al lowing each such task 
to determine the pr ior i ty level at which it is scheduled on the 
environment's task agenda. A task makes this determination 
by assessing the d i f f i cu l ty of finding, bindings for its O V I N I A 
arc based on estimates of the number of indices (i.e., 
matching, arcs) available in the kVIS'IA, knowledge about the 
semantics of the relationship being sought, knowledge about 
the effectiveness of the task's search method, etc. User 
supplied specialists may be written that are particularly adept 
at such assessments. The basic goal of the overall strategy is 
for the system to first seek bindings for those OVINIA arcs 
that are most highly constrained. 

Deriving bindings for Element Of and SubsetOf 
Relationships 

Included in SNIFTI R are a set of (unctions embodying the 
semantics of the taxononuc relationships e, de, s, and ds. 
These functions provide the following, eight services: 

Given a node representing some entity x, they can 
generate nodes representing entities y such that x is an 
element of y, y is an element of \, x is a subset of y, 
or y is a subset of x. 

Given two nodes representing entities x and y, they 
can determine whether \ is an element of y, y is an 
element of x, x is a subset of y, or y is a subset of x. 
Possible answers are "Yes", "No" , and "Unknown". 

The algorithms used fol low chains of s and ds arcs applying 
recursive rules such as the fo l lowing: 

Two sets are disjoint if each of the nodes representing 
them has an outgoing ds arc to the same node, or if 
the sets are each subsets of disjoint sets. 

These functions are used in SNIFFTR wherever in format ion is 
needed about SubsetOf or KlementOf relationships. In 
particular, they are used by the general purpose binder task to 
f ind candidate bindings for e and s arcs, and dur ing the 
ramif icat ion process to test potential bindings of QVISTA 
nodes as to whether the bindings can satisfy the KlementOf 
and SubsetOf relationships specified for them in the QVISTA. 
Hence, these very important classes of deductions are carried 
out rapidly and "automatical ly" whenever they are needed, in 
a manner that requires none of the standard deductive 
machinery. 

Derivations Using KVISTA Implications, Disjunctions, 
and Negated Conjunctions 

When the general purpose binder task has considered all the 
"expl ic i t " candidate bindings for a given arc, it uses the 
network's indexing facil it ies to f ind nonatomic statements 
(i.e., implications, disjunctions, and negated con junct ions ' ) 
that describe relationships having the same fo rm as the 
binding being sought. For example, arc B—c— >Builds in 
Figure 8 is used as the index for f ind ing an impl icat ion 
containing a "bu i l d " relationship. Such nonatomic statements 
are used as the baas for a derivation of the desired binding. 

Applicabil i ty Tests 

When such a nonatomic KVISTA statement is found, the 
general purpose binder task carries out an applicabil i ty test to 
determine if the statement can be used to derive a binding for 
the given O V I N I A arc. This lest involves uni fy ing (i.e., 
matching) the K VISTA statement with the O V I N I A statement in 
which the given O V I N I A aic is embedded and, when successful, 
produces a set of substitutions for universally quanti f ied 
variables that define (he "instance" of the KVISTA statement 
applicable to f ind ing the desired binding. 

Several complications in doing the applicabil i ty test arise 
from the fact that ueithci KVIS'IA nor O V I N I A statements are 
stored in a canonical form. l o i example, a negated 
relationship in the antecedent of an impl icat ion can be used 
to derive a binding for an unnegated form of the relationship, 
but cannot he used to derive a binding for a negated form of 
the relationship. In this section, we wi l l discuss the 
mechanisms in SNIIEEER fo r dealing wi th these 
complications. 

Parity of Embedded Relationships 

The applicabil i ty tester needs to deteimine what the logical 
signs are of the relationships (i.e., terms) that a given KVISTA 
statement can be used to prove. For example, the statement 

can he rewritten in the fo l lowing ways: 

and can therefore be used to prove x, ~y, ~u , or v. If, then, a 
binding is being sought for a relationship matching x, this 
statement may be useful in deriving the binding. However, 
the statement cannot be used to derive a binding for ~x. 

The logical signs of the relationships that a given statement 
can be used to derive correspond to the logical signs that the 
relationships have when the statement is converted into 

t Double negations, negated disjunctions, and negated implications arc 
eliminated from both the KVISTA and QVISTA by simplification rules. 
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disjunctive normal form. For example, ihc disjunctive normal 
form of the statement given above is The 
logical signs of x, y. u, and v in this fo rm of the statement are 
the same as those that the statement can he used to prove. 

Dur ing the conversion to disjunctive normal form, only two 
conversion rules change a relationship's logical sign. Namely: 

Therefore, we can compute a "par i ty" for each relationship in 
a statement to indicate the logical sign that it would have in 
the statement's disjunctive normal form simply by counting 
the number of negation spaces and antecedent spaces in which 
it is embedded. the parity associated in (Ins way with 
relationships allows a quick determination of whether a given 
KVIS'I A statement can be used to produce the desired binding. 

rarity of Embedded Variables 

The appl icabi l i ty tester also needs to determine what type of 
quanti f ier (i.e.. existential or universal) is associated with each 
variable in the statement. For example, the statement 

can also be writ ten: 

and can therefore be used to piove ) or 
(Vx ) l ' ( x ) . If, then, a binding is being sought for an 
exiisienlially quanti f ied OVIST A node that is a participant in an 
k relationship, this statement may be useful in deriving the 
binding. However, the statement cannot be used to derive a 
binding for a universally quantif ied node that is a participant 
in an k relationship. 

The quant i f icat ion types of the variables in the relationships 
that a given statement can be used to derive correspond to the 
quant i f icat ion types that the variables have in those 
relationships when the statement is converted into prenex 
normal fo rm. For example, the prenex normal form of the 
statement given above is 
R(z)) . The quant i f icat ion types of x, y, and z in this form of 
the statement are the same as those that the statement can be 
used to derive. 

During the conversion to prenex normal fo rm, only two 
conversion rules change a relationship's logical sign. Namely: 

Therefore, we can compute a "par i ty" for each variable in a 
statement to indicate the quanti f icat ion type that it would 
have in the statement's prenex normal form simply by 
counting the number of negation spaces and antecedent spaces 
in which it is embedded. 

Note that this is the same rule that is used for computing the 
parity of relationships! Therefore. this single, 
computationally simple rule is used to define a parity for 
both arcs and nodes. The parity associated with an arc 
indicates the logical sign of the relationship represented by 
the arc, and the parity associated with a node indicates 
whether the node represents a universally or existentially 
quanti f ied variable. 

Matching Embedded Structures 

The match process carried out by the appl icabi l i ty tester is a 
generalization of the ramif icat ion process described above 

and is logically equivalent to uni f icat ion. An attempt is made 
to f ind a set of substitutions that wi l l allow two sets of 
descriptions to match as fol lows. The OVIST A contains a 
description of the relationship that is being sought. When the 
process begins, a k VIST A statement has been found that 
describes an existing or derivable relationship. The question 
being considered is whether a relationship that satisfies the 
description given in the KVISIA statement wi l l also satisfy the 
gv i s iA description. That question is answered by matching 
the two descriptions. If the match is successful, it defines a 
set of substitutions ( for universally quanti f ied variables) that 

' must be made in the KVISTA description for it to describe a 
| relationship that would also satisfy the ovisi 'A description. 
' These substitutions produce an "instance" of the K V I S I A 

statement thai can be used as a basis for a derivat ion. For 
1 example, if the selected O V I N I A arc is part of the relationship 
1 Ota) and the candidate binding is in the consequent of 

then the instance would be 
created. 

The basic rules that are used in doing the match are the 
fo l lowing. When comparing the two descriptions, an 
existential in the K VIST A can match only with an existential in 
the QYTSI'A or a universal in the K V I S I A , and a universal in 
the OVIST A can match only with a universal in the K VIST A or 
a n e x i s t e n t i a l i n t h e OVIST A . Rememher that nodes lh :u a r e d e m e n t s 
o f K V I S T A or O V I N I A spaces are cons idered to represent e x i s t e n t w l l y 
Mii.intit ied entitit-. These rules are derived directly f rom the 
rules for uni f icat ion. The key observation is that the derived 
rules should correspond to the rules used for uni f icat ion in a 
iefutal ion proof where the match is being done using, the 
negation of the query. 

As an example of the use of parity dur ing an applicabi l i ty 
test, consider again the query shown in Figme 8. The general 
pin pose binder task uses the ate B—c— > Ghistlcls as an index to 
f ind implicat ion I as a candidate statement to use in the 
derivation of a binding for (he arc 7.—Q-- Bu i ids . Since 
both arcs have positive parity, a "bui lds" relationship derived 
f rom the impl icat ion wi l l have the desired logical sign. The 
unif icat ion process produces pairings for nodes z, ?X, and M, 
and for the obj and agt arcs Al l the members of those pairs 
have positive paiity except mode M. Node M's negative pai i ty 
indicates that it is universally quanti f ied and can therefote be 
paired with an existential KVISIA node having positive parity, 
namely Ole Blaek. The resulting substitution of O le -Baek 
for 1Y1 creates the instance of the impl icat ion that is used in 
the derivation. 

F.xtracting Embedded Structures 

When an applicable non-atomic KVISTA statement has been 
found, the derivation that is init iated can be thought of as 
one designed to "extract" the desired embedded relationship 
f rom the statement so that the relation or its negation can be 
asserted at the top level of the KVISTA and the desired binding 
can be assigned. For example, if the candidate binding is in 
the disjunct x of a disjunction xVy , then f ind ing a solution to 
the subproblem "prove ~y" wi l l allow x to be asserted and the 
binding to be assigned. 

Rules for Extraction 

The derivation is begun by creating the appropriate instance 
of the KVISTA statement (as indicated by the appl icabi l i ty 
test) and then applying the fo l lowing extraction rules: 
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Note that the extraction rules for negated conjunctions and 
for implications are merely rewrites of the rule for 
disjunctions. 

If an instantiated impl icat ion contains a universally 
quanti f ied variable, then that variable becomes part of the 
stibproblem produced by extracting either the antecedent or 
the consequent and is free to be bound dur ing the process of 
solving the subproblem. f o r example, suppose the original 
impl icat ion is of the fo rm and 
the instantiation is of the form ' H 
the consequent is to be extracted, then the subproblem has the 
form "F ind an \ such that Hx,;*)" The assertion that is made 
when the subproblem is sol vetd is of the form Q(< binding of 
x>,a). 

Nesting 

If the relationship being extracted is embedded in a nesting of 
disjunctions, negated conjunctions, or implications (such as 
the I5(x) _ then it is necessary to 
apply a sequence of extraction rules to complete the 
extraction. The rules are applied "top down" to the outermost 
disjunct ion, negation. or impl icat ion f i rst , and all the desired 
extraction rules are applied before any of the suhpioblcms are 
worked on. Hence, in the above example, a single subproblem 
is formed consisting of Solution of this 
subproblem causes assertion of the desired l i (<b ind ing of 
\ > ) . Doing the complete extraction in one step results in the 
extraction rules being applied only once, makes available to 
the deductive machinery all the constraints imposed by all the 
subproblems. and allows the subproblems to be worked on in 
whatever order seems the most advantageous. 

KVISTA and QVISTA Extension Spaces 

Piocedures that carry out derivations such as the extractions 
described above require facil i t ies for creating subproblems, 
making assumptions, and asserting derived results. We have 
used K-NTT'S part i t ioning features to create such a set of 
derivation facil i t ies that are available for use by any binder 
task. In particular, provisions have been made for adding 
spaces (called "extension spaces") to the OVIST A or to the 
KVISTA in an environment. KVISTA extension spaces are used 
for making assumptions and for asserting derived results. 
QVISTA extension spaces are used for expressing subproblems. 

For example, consider an environment E1 where KI is the 
current (i.e., most recently added) KVISTA extension space and 
a binder task for the Q V I S I A impl icat ion is in i t iat ing a 
derivation by assuming x and establishing y as a subproblem 
to be proved. The derivation is init iated by creating an 
environment K2 that is an of fspr ing of environment K I , 
adding to the KVISTA in F2 a new extension space K2 
containing a copy of x, adding to the QVISTA in 12 a new 
extension space Q2 containing a copy of y, and attaching a 
demon to space Q2 in 1,2. When bindings are assigned to all 
the elements of y, the demon is t i red in the current 
environment (i.e., the environment in which all of the 
bindings are assigned) and in that environment the demon 
removes space K2 f rom the KVISTA, removes space Q2 f rom 
the ovist A, asserts \ ^ > y in space KI (the new current KVISTA 
extension space), and assigns this newly derived result as the 
binding for the original Q V I S I A impl icat ion. 

In order to maintain the relationship between derived results 
and the assumptions that were used to derive them, the 
fo l lowing three rules are used in creating bindings and 
asserting results. 

The first rule is that in each environment only those binder 
tasks that are seeking bindings for arcs in the most recently 
added subproblem are allov.e.l to run. This rule helps prevent 

duplication of ef for t among environments and assures that 
ef for t w i th in an environment created to pursue a particular 
derivation strategy wi l l not be spent considering other 
strategies. 

The second rule restricts bindings assigned to elements of any 
given QVISTA space to be elements of KVISIA spaces that 
existed at the time the Q V I S I A space was created. In addit ion 
to preventing results derived with the aid of assumptions 
f rom being used as if they were independent of the 
assumptions, this restriction is used to maintain the nesting of 
quanti f ied variables during derivations, as described in the 
sections below. 

The third rule attempts to assure the widest avai labi l i ty of 
derived results to as many subproblems in as many alternative 
proof paths as possible. It specifies that each derived 
relationship be asserted in the newest KVISIA extension space 
in the set consisting of the space containing the statement 
used to init iate the derivation and those K V I S T A spaces 
containing elements that were used as bindings to solve the 
subproblem created by the derivat ion. This rule allows a 
derived result whose derivation does not make use of the 
assumptions in recently added K V I S I A extension spaces to be 
added in an earlier extension space and therefore be made 
available to aid in the solution of subproblems created before 
the assumptions were made. 

Use of Extension Spaces for doing Extractions 

During the mult iple level extraction process, the results of 
some subproblems may be used in the formation and solution 
of other subproblems. To make this possible and to prevent a 
subproblem's results f rom being used before that subproblem 
is solved, we maintain the order of the subproblems and their 
results by putting each one in a separate space and adding 
those spaces to QVISTA and Kvista A as extensions in the order 
that the extraction rules are applied. For example, the 
extraction of R(y) f rom 

wi l l cause creation of the subproblem, prove i 
Q(y), and wi l l produce the results (VxCX) l , (x ) A ye A 
l((y) The results (Vxf. X) l ' (x ) and the existence of an entity y 
that is an element of Y cannot be used in the proof of V(.\), 
but can be used in the proof of P(y)AQ(y) . This ordering 
constraint is maintained by creating extension spaces in the 
fo l lowing order: 

Q l : a Q V I S I A extension containing P(a) that accepts bindings 
f rom the K V I S I A that was current when the extraction 
was init iated. 

K I : a KVISTA extension containing the 
results of proving l*(;i). 

Q2: a QVISTA extension containing that accepts 
bindings f rom KI and the in i t ia l KVISIA. 

Demons are attached to spaces Ql and Q2 that f i re upon 
completion of the subproblem. Those demons cause spaces 
Ql and Q2 to be removed f rom the Q V I S I A , space KI to be 
removed f rom the K V I S I A , and the cumulative results, 
( to be added to the then current 
K V I S I A extension. 

Special Purpose Binder Tasks 

The basic SNIFFER includes a collection of funct ions that 
fo rm special purpose binder tasks in addit ion to the general 
purpose binder described above. The most important of these 
embody the derivation strategies for queries containing 
disjunctions, implications, and negated conjunctions. In this 
section we wi l l describe this collection of functions. 
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Proving Disjunctions, Implications, and Negated Conjunctions 

OVIST A queries are sometimes nonatomic, for example, 
consider the questions "Were any Mustangs bui l t by Ford?" 
and "Arc all red mustangs owned by playboys?". 

The system's special purpose binder tasks for nonatomic 
statements occuring in the QVISTA apply a strategy of 
decomposing the statement into alternative simpler 
subproblems using the fo l lowing rules: 

To Prove: Generate n subproblems of the fo rm: 

As was the case with the extraction rules discussed earlier, the 
subproblems created for negated conjunctions and for 
implications are merely rewrites of those produced for 
disjunctions, bach binder task selects an order in which to 
produce its subproblems so that the easier ones are produced 
f irst. 

Each solution to each of the subproblems produces a set of 
bindings for the entire original statement being proved. Eaeh 
time one of these binder tasks is run, it creates a subproblem 
in a newly created offspring environment and reschedules 
itself in the parent environment. In the of fspr ing 
environment it adds a new extension space to K VISTA 
containing a set of assumptions, adds a new extension space to 
OVISTA containing an expression to be proved, and attaches a 
demon to the new QVIS I A extension space. When the demon 
is f i red by the solution of ihe subproblem in the O V I S I A 
extension space, it schedules a task that creates bindings for 
the entire original expression in the then current environment. 

If SNFFFR 11 K automatically sought inconsistencies between its 
knowledge base and assumptions that are made, then it would 
be suff icient to create a single subproblem f rom a 
disjunction. Namely, assume the negation of all the disjuncts 
except one and then attempt to prove The remaining, one. 
However, since SNFFR does not automatically check 
assumptions for consistency, we must define two subproblems 
from a disjunction. Namely, one that specifies a disjunct to 
be proved, say x1, and an assumption and a 
second one that consists only of trying to prove that the 
assumption made in the first subproblem is false. However, 
the second subproblem is then attempting to prove the 
equivalent of the disjunction which itself defines 
two subproblems, etc. Therefore, in fact, n subproblems are 
defined and they have the form shown in the rule given 
above. (Note that in an actual proof it is unlikely that many 
of these subproblems wi l l be created since what appear to be 
the easiest ones are established f irst. Only when the in i t ia l 
ones are found to be d i f f i cu l t to solve do others need to be 
attempted.) 

The subproblem format ion rules for implications di f fers 
f rom the rule for disjunctions in that the subproblems created 
f rom implications may involve universally quantif ied 
variables (represented by nodes that occur in both the 
implication's antecedent and consequent spaces). In each such 
subproblem, the nodes representing universally quantif ied 
variables are "assumed" in the KVISTA extension space created 
fo r the subproblem. They therefore represent an entity in the 
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knowledge vista about which nothing is known except the 
other assumptions made by the subproblem. If the statement 
to be proved in the subproblem can be shown to be true about 
that entity, then it is true for all entities for which those 
assumptions are true. Such a proof is suff icient to complete 
the subproblem and therefore prove the impl icat ion. 

Por example, if SNIFPER is attempting to prove that only 
insecure people own red Mustangs (represented by the 
implicat ion " i f x is a red Mustang, then x is owned by an 
insecure person"), and the generator for implications creates a 
subproblem that assumes the implication's antecedent and 
attempts to prove its consequent, then the assumption for that 
subproblem would be that some newly created node x* 
represents an entity that is a red Mustang, and the statement 
to be proved would be that the entity represented by x' is 
owned by an insecure person. 

funct ion Applications 

In a previous section we discussed the procedural 
augmentation of K - N E T through the use of the Applications 
set. A special purpose binder task creates elements of the 
Applications set in the KVISTA by call ing the indicated 
funct ion with the indicated arguments. This binder task is 
needed when a subproblem is created consisting of the 
antecedent of a K V I S I A implication that describes a 
"procedural attachment" lo the network. Such subproblems 
describe an element of the Applications set that can be created 
as soon as bindings are determined for each of the 
arguments. If the binder task is called before all the 
argument bindings have been determined, then it attaches 
demons to the unbound argument nodes that wi l l restart the 
binder task when all of them have been bound. When all 
arguments are present, the procedure is called and new 
network structures are added to the K V I S I A to represent the 
result. 

The use of the Application set allows a K - N I - T to explicit ly 
represent meta-relationships between sets of relationships and 
the procedures that compute them. If a user has no need to 
represent such meta-rciationships expl ic i t ly, then procedural 
augmentation may be realized much more eff ic ient ly through 
the use of user-supplied binder tasks. Por example, rather 
than include the theorem of Figure 7b, a specialist for the 
Sums relationship set may be added that knows how to call 
funct ion PLUS and add new in format ion to the KVISTA as 
described for Applications. 

Case Analysis Proofs 

There is an important class of problems that the deduction 
mechanisms we have described thus far cannot solve. 
Namely, those that require a case analysis proof (SIT Lovcland 
and Shekel. 197."*, jnd Moore, i*̂ 75) For example, consider the 
problem of pioving some relation R given a K VIST A 
containing Ihe mechanisms 
we have described would go into an in f in i te loop attempting 
to solve this problem. What is needed is a case analysis 
mechanism that wi l l , for example, attempt to prove R in the 
case where I* is true and then attempt to prove R again in the 
case where is true. Since R can be proved in both those 
cases and the KVISTA contains a statement indicating that 
either I* or Q is true, the problem is solved. 

A major d i f f i cu l ty in creating a design for a case analysis 
proof mechanism is the development of a procedure for 
dehnmg the cases, Every nonatomic statement in the KVISTA 
defines a candidate set of cases (e.g., an impl icat ion x=>y 
defines the set Therefore, the problem of def in ing 
ihe cases can be considered to be one of selecting an 
appropriate nonatomic KVISIA statement. 
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We are currently experimenting with the fo l lowing scheme 
which appears to be an effective way of making the selection. 
It is based on the observation that for a case analysis proof to 
be necessary, it must not be possible (or be impossibly 
d i f f i cu l t ) to complete a proof without the case assumptions. 
Therefore, in each case the assumptions must be useful at 
some point in the proof. The key, then, to def ining the cases 
for a case analysis proof is in the recognition dur ing the 
attempt to construct a standard proof of the need for each of 
the assumptions in some potential set of cases. 

Disjunctions in the KVISTA, for example, are selected to be the 
basis for a case analysis proof by recording each time one of 
the disjuncts is extracted (i.e., contains a relationship that 
matches some relationship in the q V I S I A ) during a proof 
attempt. If all the disjuncts of a particular instance of a 
disjunction have been extracted, then we can conclude that 
each of the disjuncts would be a useful case assumption and 
therefore that the disjunction could be the basis for a 
potentially successful case analysis proof. The same 
conclusion can be made when both the antecedent and the 
consequent of an implication or all the conjuncts of a negated 
conjunction have been extracted. 

When such a " fu l l y extracted" K V I S I A statement is found, the 
f i rst common parent of the environments in which the 
extractions were init iated is found, and a new task is added to 
that parent environment's agenda to init iate the case analysis 
proof. That proof attempts to derive bindings for the port ion 
of the ovist A for which bindings were being derived each 
time one of the extractions was done. The task creates an 
of fspr ing environment and in that environment assumes the 
f irst case, establishes the statements to be proved in a new 
QVISTA extension space, and attaches a demon to the new 
QVisiA extension. The demon does the same thing for the 
next case. The last demon asserts the statements that have 
been proved in each case and assigns the appropriate bindings. 

Note that in the example given above, any of the three 
K V I S I A statements could be used as the basis for a case 
analysis proof (e.g.. ~P and R is an acceptable set of cases). 
Our selection procedure could f i nd any one (or all) of them, 
depending on the order in which new environments are 
created in the environment tree. 

To achieve completeness, one must also consider cases defined 
by relationships that occur in the ini t ia l QVISTA in both a 
negated and unnegated form. For example, P(x) and ~P(y) 
occurmg in the Q V I S I A define a useful set of cases 
{P(<binding of x>), ~P(<b indmg of x>)} when the binding 
of x along one proof path is the same as the binding of y 
along another path. 

Concluding Remarks 

The goal of this research is to provide a uni f ied system that 
has powerful, general mechanisms and that can be made very 
eff ic ient for solving the most frequently encountered 
problems in particular application areas. The central idea is 
to use specialized repiesentalions and deduction schemes 
where they can be effective, while having a logically complete 
mechanism to fa l l back on when the special mechanisms fa i l . 

In producing K-NETI and SNIFFFR, we have attempted to create 
convenient hooks for adding specialists, and useful bui ld ing 
blocks f rom which those specialists can be constructed. These 
hooks include the l inks to procedures (and hence to other 
representation structures) that are included in K - N F T , the 
pattern-directed strategy selectors in SNI IT FR that are capable 
of invoking user-supplied tasks, and S N I R T R ' S agenda control 
mechanism. The bui lding blocks include the taxonomy 
derivation functions, the uni f icat ion machinery, and the 
facil it ies for manipulating extension spaces. 

We plan to continue our experimentation wi th various 
specialist routines, both for the rapid handling of particular 
types of deduction and retrieval and for the extension of the 
system to include new types of problem solving activities, 
including reasoning with uncertainties and about processes. 
Preliminary experience indicates that the faci l i t ies provided 
make this exploration manageable and productive. 

An important goal of future work wi th SNIFFER is to 
determine the effectiveness of its control mechanisms, 
particularly the use of iNtLRt is f coroutines and mult ip le level 
agendas. The use of these mechanisms to coordinate mult ip le 
types of problem solving activities is of particular interest to 
us, as is the use of heuristics to guide the allocation of 
resources among the various strategies that SNIFFER 
coordinates. We have only begun to gain experience in these 
areas. However, the modular control structure of SNIFFER and 
the strong cross-indexing of K-NFT provide a very supportive 
environment for future explorations. 
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