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Abstract 

In planning a proof, a student searches through a space of 
inferences leading forward from the givens of the problem and 
backward from the to-be-proven statement. One dimension of 
growth of expertise is that students become more tuned in the 
search of this problem space. This can be shown to result 
from the application of various learning operators to production 
embodiments of the inference rules. Rules are evaluated after 
the solution of a problem according to whether they led to or 
led away from the solution. Rules that contributed to a 
solution are strengthened and an attempt is made to formulate 
general versions of these rules that w i l l apply in other 
situations. Rules that led away from the solution are weakened 
and a discrimination process is evoked to try to add features to 
the rules that w i l l try to restrict them to the correct 
circumstances of application. Composition is a learning process 
that collapses successful sequences of rule operations into single 
macro-rule productions. There is also a process that converts 
the backward reasoning rules formed by composition into 
forward reasoning rules. The effect of these learning processes 
is to put into production conditions tests for problem features 
that are heunstically predictive of the rule's success. 

In t roduc t ion 
I have been involved in research (Anderson, Greeno, Kline, &. 

Neves, 1981; Neves & Anderson, 1981) to characterize the 
organization of various proof skills possessed by high school 
students in geometry and to identify how these proof skills are 
acquired. In this paper I w i l l concentrate on the skill involved 
in planning a proof to a geometry problem and, in particular, 
how the search for such a plan improves with practice. The 
direct goal in this research is to provide an accurate 
psychological model of bow high school students learn to do 
geometry problems by doing geometry problems. A perhaps-
not-incidental by-product is a set of ideas for how learning 
mechanisms might be used to guide problem-solving. A l l this 
research is done in the context of a general production system 
simulation of human cognition called ACT. 

Organ iza t ion of the Task and the Sk i l l 
The planning process we are trying to model is how students 

find a sequence of legal deductions that allow them to derive a 
to-be-proven statement from the givens. Figure 1 illustrates a 
triangle congruence problem which is simple but nonetheless is 
challenging for the just beginning student. It is taken from the 
textbook we have been studying (Jurgensen, Donnelly, Maier, & 
Rising, 1975). Figure 2 illustrates the attempt of one of our 
subjects to solve this problem. First he tried to use the SSS 
method which worked on the p r e v i o u s H o w e v e r , he 
noted that there seemed no way to g e t a n d turned to 
side-angle-side. He immediately saw would provide 
one side and another side. He had a l i t t le di f f icul ty 
seeing the included angle. His protocol at the critical point 
(after identifying the two congruent segments) reads "But where 
would /l and [2 are right angles come in . . . Oh, 1 see how 
they work." This evidence, consistent wi th the rest of the 
protocol, shows that he did not see that right angles implied 
angle congruence until he needed angle congruence for the SAS 
postulate. At this point his plan was complete. He had some 
di f f icul ty converting It into a legal two column proof (e.g., 
remembering that the reason that justif ied was called 
the "reflexive property of congruence") but there was no more 
planning in his protocol. 

Figure 2 illustrates in simple form the backward search that 
is typical of novices in geometry and other domains (Larkin, 
McDermott, Simon, & Simon, 1980). Our simulation program 
plans in part by generating such a planning tree. In this tree 
there are disjunctions of methods to accomplish a goal (e.g„ 
either SSS or SAS to prove triangle congruence) and each 
method can break down into a conjunction of subgoals (i.e.. 
two sides and an included angle). Novices and our simulation 
(wi th a novice knowledge base) tend to search such a proof 
tree in a depth-first manner. 

In more experienced students one sees forward inference from 
the givens. For instance, in problem 1 a student wi th some 
experience would likely recognize that and are congruent 
before he had consciously chosen the side-angle-side method. 
Potentially, geometry problems could be solved by pure forward 
search, but many potential forward inferences (eg. , those 
authorized by the reflexive rule) would be wasted. Optimal 
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performance w i l l arise from a mixture of forward and 
backward search. Figure 3 gives a problem that nicely 
illustrates the trade-off between forward and backward search. 
The majority of the subjects we have looked at in solving this 
problem (all at some intermediate level of ski l l) first reasoned 
forward t o the inference that A M C B M D without 
knowing how they would use the fact. Then they worked 
backward to a proof plan that involved this forward inference. 
Our simulation at one setting did the same (see Anderson et a l „ 
1981 for details). 

Figure 3 
It has been documented in other domains such as physics 

(Larkin. McDermott. Simon. & Simon. 1980) that the 
proportion of backward search decreases and the proportion of 
forward search increases with expertise. In our simulation the 
amount of forward inference depends on the existence of 
production rules that w i l l make the forward inferences, on their 
strength, and whether various tests on their applicability are 
met. It is typical of our simulation that it w i l l generate some 
set of forward inferences and then settle into a backward 
reasoning mode to complete the proof plan. This also seems 
typical of students who frequently starts off marking some set 
of forward inferences on the diagram. Forward inferences tend 
to precede backward inferences in our simulation because they 
require less coordination and can therefore be more quickly 
executed. 

It is clear that either in forward or backward inference 
mode, there is a serious search problem for students. In 
forward inference mode one wants to only make those 
inferences that w i l l play an essential role in the final proof. 
In backward inference mode one wants to pursue only those 
methods that lead to success. Neither our students nor the 
simulation are always successful in their search. However, it 
seems clear that one dimension of expertise is the ability to 
make more judicious decisions about the paths to search. The 
main focus of this paper is how that expertise is gained. ( I f 
the reader would like a problem likely to create the experience 
of search for his level of expertise. I suggest he consider 
solving the problem in Figure 4.) 

The central theses of our work on geometry is that there are 
certain features of a problem that are predictive of the success 
of a particular inference path and that the student learns the 
correlations (through proving problems). Some correlations 
between problem features and inference rules are logically 
determined. So. for instance, a student w i l l learn that if he is 
trying to prove two triangles congruent and they both involve 
right angles, it is likely that he should try a right angle 
postulate. Other correlations between problem features and 
inference rules reflect more about biases in problem 
construction than say logical necessity. So. for instance, a 
student learns that if he sees a triangle that looks as if it is 
isosceles, it is l ikely that he w i l l want to prove that it is 
isosceles. Whatever the reason for the correlation between 
features and inference methods, the student can use these 

It is the character of heuristics that they should not always 
work and that it is possible to create problems that wi l l violate 
these heuristics and which w i l l , as a consequence, create 
difficulties. Figure 5 illustrates such a problem which occurred 
in the textbook we were using. The problem appears as an 
exercise immediately after the section that presents the 
hypotenuse-leg postulate for right-angle triangles. The majority 
of the subjects we have given this problem to report reasoning 
from the fact that and are complementary to the fact 
that is a right angle. Then they can apply the hypotenuse-
leg theorem. However, a simpler proof exists by simply noting 
the two triangles share and then applying the side-angle-side 
proof. However, subjects are led by various heuristics such as 
(1) Problems tend to use the postulates introduced in the 
section; (2) If right-angles are mentioned and it is a triangle 
congruence problem, use a right-angle postulate; (3) Use all the 
givens in a problem. Students are generally not instructed as 
to such heuristics; they have picked them up by example. 

Figure 5 

Learn ing Mechanisms 
I w i l l discuss six methods for using the experience of past 

problems to improve search on current problems. We have 
worked on each method in our computer simulation and have 
reason for believing that each is found in high school students. 
The first, analogy to prior problems, is somewhat distinct from 
the rest and w i l l therefore be treated separately. The other five 
are principles concerned with extracting general and reliable 
rules from examples. They are the principles of rule 
evaluation, generalization, discrimination, composition, and 
forward inference formation, These last five make critical use 
of the production system architecture in which the simulation is 
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( b ) 

Figure 7 
problems and proceeded to copy the proof to one problem over 
to the other. The first line for part (a) read RO = NY so 
analogously he wrote A f i > CD for part (b). The second line 
for part (a) read ON = ON so analogously he wrote BC > BC 
for part (b)! His semantic sensibilities detected the problem: he 
abandoned the attempt to use the analogy, and proceeded to 
solve part (b) on its own. 

While these two examples illustrate analogy by showing how 
it can fai l , it is clear that it succeeds more often than not. 
One major problem with it is that it does not provide any 
permanent benefit as seen by the fact that al l analogies are to 
problems encountered in the current or previous day. It may 
be that formulating analogies causes more permanent operators 
to be formed. The generalization process that w i l l be described 
could apply after solution by analogy although solution by 
analogy is not a pre-requisite to generalization. 

Other more elaborate production embodiments of these rules are 
also possible. The simulation keeps a record of the rules it 
applied in working on a problem. By comparing this record 
with tlie final proof plan it can determine which choices of 
proof method in working backwards were successful and which 
were mistakes.. A l itt le care is required here: Suppose a goal 
is set to prove two angles congruent by showing they are 
corresponding parts of congruent triangles. Suppose all methods 
tried for proving congruent triangles fail and the angle 
congruence is eventually proven by resorting to supplementary 
angle postulate. The mistake is not in the methods attempted 
for proving the triangles congruent rather the mistake was in 
setting the subgoal of triangle congruence. Forward inferences 
can be classified as successful if they figure in the final proof 
and as mistaken otherwise. 

Success and error classifications are used by the learning 
mechanisms to be described shortly, but they are also used to 
simply strengthen or weaken the rules responsible for the 
decisions. The mechanisms for strengthening and weakening a 
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implemented. The first, analogy, does not. 

Analogy 
Despite the fact that its role is somewhat singular in our 

theory, our protocols are rich in evidence of successful 
problem-solving by analogy and many more less than successful 
attempts to use analogy. In the theory, analogy involves two 
processes. First, there is the noticing of the similarity between 
the specifications of a current problem and the specifications of 
a previous problem. Second, an attempt is made to map the 
solution of the previous similar problem to the current problem. 
The first process in our protocol is sufficiently rapid that it 
cannot be decomposed into substeps. A student w i l l typically 
simply announce after reading the problem--"This is similar to 
Problem X." We have not been able to identify any instances 
where this Problem X occurred any earlier than in the previous 
days lesson. So. there appears to be important memory 
limitations to the range of similarity noticing in analogy 
process. 

We have implemented a partial graph matching process to 
model this similarity noticing. This partial matching process is 
also used in our work on generalization. The basic idea is an 
attempt to identify subgraphs on which the problems overlap. 
An early version of this is described in Anderson, Kline, and 
Beasley (1979, 1980) and a more advanced version by Kline 
(1981). The ideas are variations on techniques suggested by 
Hayes-Roth and McDermott (1976) and Vere (1977). 

Such a similarity detection mechanism is very much 
influenced by how the problems are represented. Consider 
Fihure 6. In terms of many features such as shape and 
orientation, problems (a) and (c> are more similar than (a) and 
(b). However, it turns out that the more profitable similarities 
exist between (a) and (b). Many of the unsuccessful attempts 
to use' analogy in our protocols can be accounted for by 
subjects being distracted by such superficial similarities. 

In contrast to the rapid similarity-detection, the efforts to 
map a proof from one problem to another are quite long and 
definitely analyzable into substeps. It seems that the student 
has transformed his initial problem space into a new problem 
space of finding the mapping. We have not in our simulation 
work modelled this mapping process systematically. Figure 7 
illustrates one of the more striking examples of failure of the 
mapping. The student noted the similarity between the two 



production and the impact of production strength on conflict 
resolution has been described elsewhere (Anderson. Kline. & 
Beasley. 1979), However, it is important to note that 
disastrous results w i l l not occur if a bad rule is formulated 
since the strength evaluation mechanism wi l l separate out 
successful from unsuccessful rules and eventually only the 
former w i l l be selected in conflict resolution. This means that 
we do not have to be concerned that the learning mechanisms 
always be correct in the production rules they formulate. 

General izat ion 
Generalization attempts to extract common features of two 

instances and successfully apply the same inference method. 
This is done by testing for similarity between the problem 
descriptions before the rule of inference applies. Consider 
problems (a) and (b) of Figure 6. In both cases, the initial 
step involves setting as a subgoal to prove congruent triangles 
that overlap with the to-be-proven-congruent triangles. The 
representation of the state of knowledge for problem (a) at the 
point of setting this subgoal might involve the fol lowing 
clauses: 

The extraction of such similarities is described in Anderson, 
Kline, and Beasley (1980) and Anderson and Kline (1979) and 
is similar to ideas proposed earlier by Hayes-Roth and 
McDermott (1976) and by Vere (1977). As noted earlier, 
generalization involves the same mechanisms used in similarity 
detection for analogy. The above example illustrates how it 
might be used to extract from examples the principle of 
chaining the goal of proving triangle congruence to a subgoal 
of proving the triangle congruence of overlapping triangles. 
Note that the generalization preserves features specific to the 
two examples that are predictive of the method's success— 
namely, that parts of the overlapping triangles are congruent. 

The evidence is quite clear that subjects do extract from 
examples methods that work over a class of examples containing 
the same features. The overlapping triangles rule above is one 
although it usually appears to be more general in that problem 
solvers w i l l try to chain to overlapping triangles whenever they 

contain one or two congruent pieces--not a specific side and 
angle. A more general production such as this could derive 
from the one above by further generalization (with appropriate 
representational assumptions >. 

Although students do have these general rules without a 
doubt: it is unclear that they emerge by the generalization 
mcchams/m suggested above. As an alternative, they might 
derive by a retrospective analysis of a single problem rather 
than a generalization between two. Our protocol data cannot 
inform us on this issue and we are tooling up to do the right 
kinds of controlled experiments. Work on extraction of object 
categories (Anderson & Kline, 1979; Fho & Anderson. 1981) 
has provided good evidence for a generalization process in that 
domain. 

The problem with such productions is that their conditions are 
too general and do not lead to selectivity of search. It is also 
the case that the generalization process itself might produce 
overly general productions. Overly general rules can be 
restricted by a discrimination mechanism which compares 
successful and unsuccessful applications of a production, tries 
to determine the features which distinguish the successful 
applications, and proposes new productions derived from the old 
but which contain these distinguishing features in their 
conditions. Again, the details of the discrimination procedure 
have been described in Anderson and Kline (1979), Anderson. 
Kline, and Beasley (1980) and 1 w i l l simply describe here their 
application to the geometry domain. 
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As in the case of generalization, the fact is indisputable that 
subjects form discriminations on their original rules. Indeed, 
one subject articulated a rule essentially identical to P1 after 
the history illustrated in Figure 2. However, again as in the 
case of generalization, what is unclear is whether these 
discriminations are achieved by the mechanisms described here. 
Again, that issue awaits more detailed experimental research. 

Composit ion 

The variables in this production have been named to correspond 
to the terms in Figure 8 for purposes of readability. This 
production would immediately recognize the solution to a 
problem like that in Figure 8. This composition is achieved 
basically by adding together the conditions of the five original 
productions and making them the condition of the composed 
production; adding together the actions and making these the 
action of the composed production, editing out the unnecessary 
or redundant clauses in the composed production. 

The details for the editing of the unnecessary clauses are 
given in Neves and Anderson (1981) but basically they involve 
(a) eliminating clauses from the conditions of productions late 
in the sequence which are satisfied by the actions of 
productions early in the sequence and (b) eliminating the setting 
and testing of goals which are met in the sequence. With 
respect to (b) composition serves the effect of collapsing 
several levels in the proof plan into a single level. 

There is a question of when to evoke composition. The 
original implementation by Neves and Anderson was to use 
composition on any immediately contiguous sequence of 
productions. However. I think it more reasonable to have it 
apply to a sequence of productions related by manipulation of 
the same goals—as in the case just illustrated. These two 
definitions of production sequence need not yield the same 
sequences in the ACT system. It is quite possible for 
immediately contiguous productions not to share similar goals. 

Creat ion of Forward Inferences 
It is a feature of the composition production P6 that it 

summarizes what had been a multi-level goal tree. The system 
had started with the goal of proving two angles congruent, set 
a subgoal of proving two triangles congruent, set a subgoal of 
proving two sides congruent, and then proceeded to pop the 
goals finally achieving the highest level goal. It would be 
useful to have this available as a forward inference rule so 
that, should the situation appear again, the inferences can be 
made to embellish the problem representation. This can be 
achieved by dropping the goal specification from P6 (a similar 
idea was proposed by Lark in, 1981). The resulting production 
would be: 

It is interesting to note that this production mattes a renexive 
inference in forward mode. To have a pure reflexive rule as a 
forward inference: 

THEN by reflexivity 
would be a sheer disaster since it would complicate the problem 
representation with many useless inferences. However, cast as 
part of a larger operator as above it is a very profitable 
forward inference. 

To review, forward inferences can be made when composition 
creates a macro-operator which achieves a stated goal by a 
sequence of inferences that previously had involved the 
embedding of subgoals. The forward inference can be created 
from the composition by deleting the goal clause. It is useful 
to understand why one would only want to drop goal clauses 
from the macro-operators rather than the original working-
backwards productions. The original productions are so l i t t le 
constrained that the goal clauses provide important additional 
tests of applicability. After a macro-operator is composed there 
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Figure 9 
are enough tests in the non-goal aspects of its condition to 
make it quite l ikely that the inferences w i l l be useful. That is. 
it is unlikely to be an accident that the conjunction of tests arc 
satisfied. 

There is clear evidence for such a forward inference rule in 
some more advanced students. For them, the pattern in Figure 
9 is something that w i l l trigger the set of inferences even when 
it appears embedded in a larger problem. However, we have 
poor evidence on what the exact origins are of this forward 
inference rule. 

F ina l Points 
There are two major issues that need to be pursued. One. as 

noted throughout the paper, is the detailed empirical verification 
of these mechanisms. The second is a sufficiency proof of 
their operation by simulating a student's course through a 
textbook. While we have worked up individual examples of 
successful tuning by these learning mechanisms, we have not 
done the large scale simulation to show that their cumulative 
effect after hundreds of problems w i l l match the degree of 
tuning we see in the typical student. We intend to pursue this 
and I am reasonably optimistic given that we have achieved 
success with such large-scale simulations of our learning 
mechanisms in the domain of concept formation (Anderson & 
Kline. 1979) and syntax acquisition (Anderson. 1981). 
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