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Abstract

In planning a proof, a student searches through a space of
inferences leading forward from the givens of the problem and
backward from the to-be-proven statement. One dimension of
growth of expertise is that students become more tuned in the
search of this problem space. This can be shown to result
from the application of various learning operators to production
embodiments of the inference rules. Rules are evaluated after
the solution of a problem according to whether they led to or
led away from the solution. Rules that contributed to a
solution are strengthened and an attempt is made to formulate
general versions of these rules that will apply in other
situations. Rules that led away from the solution are weakened
and a discrimination process is evoked to try to add features to
the rules that will try to restrict them to the correct
circumstances of application. Composition is a learning process
that collapses successful sequences of rule operations into single
macro-rule productions. There is also a process that converts
the backward reasoning rules formed by composition into
forward reasoning rules. The effect of these learning processes
is to put into production conditions tests for problem features
that are heunstically predictive of the rule's success.

Introduction

| have been involved in research (Anderson, Greeno, Kline, &.

Neves, 1981; Neves & Anderson, 1981) to characterize the
organization of various proof skills possessed by high school
students in geometry and to identify how these proof skills are
acquired. In this paper | will concentrate on the skill involved
in planning a proof to a geometry problem and, in particular,
how the search for such a plan improves with practice. The
direct goal in this research is to provide an accurate
psychological model of bow high school students learn to do
geometry problems by doing geometry problems. A perhaps-
not-incidental by-product is a set of ideas for how learning
mechanisms might be used to guide problem-solving. All this
research is done in the context of a general production system
simulation of human cognition called ACT.
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Organization of the Task and the Skill

The planning process we are trying to model is how students
find a sequence of legal deductions that allow them to derive a
to-be-proven statement from the givens. Figure 1 illustrates a
triangle congruence problem which is simple but nonetheless is
challenging for the just beginning student. It is taken from the
textbook we have been studying (Jurgensen, Donnelly, Maier, &
Rising, 1975). Figure 2 illustrates the attempt of one of our
subjects to solve this problem. First he tried to use the SSS
method which worked on the previ problem. wever, he
noted that there seemed no way to g n d turned to
side-angle-side. He immediately saw . would provide
one side and = another side. He had a little difficulty
seeing the included angle. His protocol at the critical point
(after identifying the two congruent segments) reads "But where
would /I and [2 are right angles come in ... Oh, 1 see how
they work." This evidence, consistent with the rest of the
protocol, shows that he did not see that right angles implied
angle congruence until he needed angle congruence for the SAS

postulate. At this point his plan was complete. He had some
difficulty converting It into a legal two _column proof (e.g.,
remembering that the reason that justified = was called

the "reflexive property of congruence") but there was no more

planning in his protocol.

Figure 2 illustrates in simple form the backward search that
is typical of novices in geometry and other domains (Larkin,
McDermott, Simon, & Simon, 1980). Our simulation program

plans in part by generating such a planning tree. In this tree
there are disjunctions of methods to accomplish a goal (e.g,
either SSS or SAS to prove triangle congruence) and each
method can break down into a conjunction of subgoals (i.e..
two sides and an included angle). Novices and our simulation
(with a novice knowledge base) tend to search such a proof
tree in a depth-first manner.

In more experienced students one sees forward inference from
the givens. For instance, in problem 1 a student with some
experience would likely recognize that [l and ,{2 are congruent
before he had consciously chosen the side-angle-side method.
Potentially, geometry problems could be solved by pure forward
search, but many potential forward inferences (eg., those
authorized by the reflexive rule) would be wasted. Optimal



performance will arise from a mixture of forward and
backward search. Figure 3 gives a problem that nicely
illustrates the trade-off between forward and backward search.
The majority of the subjects we have looked at in solving this
problem (all at some intermediate level of skill) first reasoned
forward to the inference that g% A N M D without
knowing how they would use the fact. Then they worked
backward to a proof plan that involved this forward inference.
Our simulation at one setting did the same (see Anderson et al,
1981 for details).
L) L 3
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Givan: M iy the midpoint of KB ond TU
Prove: M is the midpoint of EF

Figure 3
It has been documented in other domains such as physics
(Larkin.  McDermott. Simon. &  Simon. 1980) that the

proportion of backward search decreases and the proportion of
forward search increases with expertise. In our simulation the
amount of forward inference depends on the existence of
production rules that will make the forward inferences, on their
strength, and whether various tests on their applicability are
met. It is typical of our simulation that it will generate some
set of forward inferences and then settle into a backward
reasoning mode to complete the proof plan. This also seems
typical of students who frequently starts off marking some set
of forward inferences on the diagram. Forward inferences tend
to precede backward inferences in our simulation because they
less coordination and can therefore be more quickly

require
executed.

It is clear that either in forward or backward inference
mode, there is a serious search problem for students. In
forward inference mode one wants to only make those
inferences that will play an essential role in the final proof.

In backward inference mode one wants to pursue only those
methods that lead to success. Neither our students nor the
simulation are always successful in their search. However, it
seems clear that one dimension of expertise is the ability to
make more judicious decisions about the paths to search. The
main focus of this paper is how that expertise is gained. (If
the reader would like a problem likely to create the experience
of search for his level of expertise. | suggest he consider
solving the problem in Figure 4.)

The central theses of our work on geometry is that there are
certain features of a problem that are predictive of the success
of a particular inference path and that the student learns the
correlations (through proving problems). Some correlations
between problem features and inference rules are logically
determined. So. for instance, a student will learn that if he is
trying to prove two triangles congruent and they both involve
right angles, it is likely that he should try a right angle
postulate. Other correlations between problem features and
inference  rules reflect more about biases in  problem
construction than say logical necessity. So. for instance, a
student learns that if he sees a triangle that looks as if it is
isosceles, it is likely that he will want to prove that it is
isosceles. Whatever the reason for the correlation between

features and inference methods, the student can use these
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feature-method correlations as beurustics o guide search.  An
impotlant sk for our lusmg mechamgms 15 Lo discover and
eaploil lhese correistung. It 15 clear that students become

more judiciovs 1 choiee of proof peths because ihey learn
more and more features 1bat are predictive of the correct acon
path

It is the character of heuristics that they should not always
work and that it is possible to create problems that will violate

these heuristics and which will, as a consequence, create
difficulties. Figure 5 illustrates such a problem which occurred
in the textbook we were using. The problem appears as an
exercise immediately after the section that presents the

hypotenuse-leg postulate for right-angle triangles. The majority
of the subjects we have given this problem to report reasoning
from the fact that /B and fK are complementary to the fact
that {A is a right angle. Then they can apply the hypotenuse-
leg theorem. However, a simpler proof exists by simply noting
the two triangles share fK and then applying the side-angle-side
proof. However, subjects are led by various heuristics such as
(1) Problems tend to use the postulates introduced in the
section; (2) If right-angles are mentioned and it is a triangle
congruence problem, use a right-angle postulate; (3) Use all the
Students are generally not instructed as

givens in a problem.
to such heuristics; they have picked them up by example.
K
GIVEN: LGBK 15 0 right ¢
LMis comp 1o LK
AK « 8K
A ] ER « AR
PROVE: AGBK = HAK
G H

Figure 5

Learning Mechanisms

I will discuss six methods for using the experience of past
problems to improve search on current problems. We have
worked on each method in our computer simulation and have
reason for believing that each is found in high school students.
The first, analogy to prior problems, is somewhat distinct from
the rest and will therefore be treated separately. The other five
are principles concerned with extracting general and reliable
rules from examples. They are the principles of rule
evaluation, generalization, discrimination, composition, and
forward inference formation, These last five make critical use
of the production system architecture in which the simulation is



implemented. The first, analogy, does not.
Analogy

Despite the fact that its role is somewhat singular in our
theory, our protocols are rich in evidence of successful

problem-solving by analogy and many more less than successful
attempts to use analogy. In the theory, analogy involves two
processes.  First, there is the noticing of the similarity between
the specifications of a current problem and the specifications of
a previous problem. Second, an attempt is made to map the
solution of the previous similar problem to the current problem.
The first process in our protocol is sufficiently rapid that it
cannot be decomposed into substeps. A student will typically
simply announce after reading the problem--"This is similar to
Problem X." We have not been able to identify any instances
where this Problem X occurred any earlier than in the previous

days lesson. So. there appears to be important memory
limitations to the range of similarity noticing in analogy
process.

We have implemented a partial graph matching process to

model this similarity noticing. This partial matching process is

also used in our work on generalization. The basic idea is an
attempt to identify subgraphs on which the problems overlap.
An early version of this is described in Anderson, Kline, and

Beasley (1979, 1980) and a more advanced version by Kline
(1981).  The ideas are variations on techniques suggested by
Hayes-Roth and McDermott (1976) and Vere (1977).

Such a similarity detection mechanism is very much
influenced by how the problems are represented. Consider
Fihure 6. In terms of many features such as shape and
orientation, problems (a) and (c> are more similar than (a) and
(b). However, it turns out that the more profitable similarities

exist between (a) and (b). Many of the unsuccessful attempts
to use' analogy in our protocols can be accounted for by
subjects being distracted by such superficial similarities.
{a) 8
Given: At o IT
[BEA & /PEC
Prove, AABD & ACBD
A [+] [o
(b} n
Given: TN = ON
JONO & /RON
MH = OP
Prove: AMQO m APRN
] N © P
fct 8
Given. AN o BT
[REF o /PEG
aBaFT
- TR {r)
AF 4 Prove: AABD & ACBD
Figure &
In contrast to the rapid similarity-detection, the efforts to

map a proof from one problem to another are quite long and
definitely analyzable into substeps. It seems that the student
has transformed his initial problem space into a new problem
space of finding the mapping. We have not in our simulation
work modelled this mapping process systematically. Figure 7
illustrates one of the more striking examples of failure of the
mapping. The student noted the similarity between the two
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Given: RO = NY, NORY Given: A8 >CD, ABCD

Prove: RN=OY Prove: AC» BD
RO = NY AB>CD
ON = ON BC > BE
RO+ON=ON+NY
RONY it
RO+ ON = RN L
ON+ NY 20V
RN= QY
Figure 7
problems and proceeded to copy the proof to one problem over
to the other. The first line for part (a) read RO = NY so
analogously he wrote Afi > CD for part (b). The second line

for part (a) read ON = ON so analogously he wrote BC > BC
for part (b)! His semantic sensibilities detected the problem: he
abandoned the attempt to use the analogy, and proceeded to
solve part (b) on its own.

illustrate analogy by showing how
it can fail, it is clear that it succeeds more often than not.
One major problem with it is that it does not provide any
permanent benefit as seen by the fact that all analogies are to
problems encountered in the current or previous day. It may
be that formulating analogies causes more permanent operators
to be formed. The generalization process that will be described
could apply after solution by analogy although solution by
analogy is not a pre-requisite to generalization.

While these two examples

Rule Evaluation

The core of our uumulation is a sal of produclion rules for
mekmg Torward and backward imferences. Below | illusizate,
in ioformal syntax, produclions cmbodying the SAS rule for
forward and backward inference,

1F XY T OV, T2 W, amd vz ¥ juvw
THEN &3 XYZ ¥ s UVW

IF the goal is lo prove LAXYZ T AUvw
THEN sct as subgoals to_prove T+ 0v, 72 +VW,
and (XYZ T JUVW

Other more elaborate production embodiments of these rules are
also possible. The simulation keeps a record of the rules it
applied in working on a problem. By comparing this record
with tlie final proof plan it can determine which choices of
proof method in working backwards were successful and which
were mistakes.. A little care is required here: Suppose a goal
is set to prove two angles congruent by showing they are
corresponding parts of congruent triangles. Suppose all methods
tried for proving congruent triangles fail and the angle
congruence is eventually proven by resorting to supplementary
angle postulate. The mistake is not in the methods attempted
for proving the triangles congruent rather the mistake was in
setting the subgoal of triangle congruence. Forward inferences
can be classified as successful if they figure in the final proof
and as mistaken otherwise.

Success and error classifications are used by the learning
mechanisms to be described shortly, but they are also used to
simply strengthen or weaken the rules responsible for the
decisions.  The mechanisms for strengthening and weakening a



production and the impact of production strength on conflict

resolution has been described elsewhere (Anderson. Kline. &
Beasley. 1979), However, it is important to note that
disastrous results will not occur if a bad rule is formulated
since the strength evaluation mechanism will separate out
successful from unsuccessful rules and eventually only the
former will be selected in conflict resolution. This means that

we do not have to be concerned that the learning mechanisms
always be correct in the production rules they formulate.

Generalization

Generalization attempts to extract
instances and successfully apply the same
This is done by testing for similarity between
descriptions before the rule of inference applies. Consider
problems (a) and (b) of Figure 6. In both cases, the initial
step involves setting as a subgoal to prove congruent triangles
The

common features of two
inference  method.
the problem

that overlap with the to-be-proven-congruent triangles.
representation of the state of knowledge for problem (a) at the
point of setting this subgoal might involve the following
clauses:
The goal s 1o prove A ABD ™ A cBp
2. LA ABD conains 43 AEB
5. LACBD contams LA CEB
—— . ———
4, AE v EC
5. [BEA T [CEA
6. B i al lop
7. &1 ABC coolns 4 ABD
5. 4 ABC contaims SACBD

Similarly, the state of knowledge for probiem (b! when ths
subcoal 13 set maght be:

1. The goal 1 lo prove A MQO ¥ A PRN
2. AMQO contrins ¢4 NGO
3. L PRN contains AAORN
4. NQY SR
3. {QNO ¥ [RON
6. MP 15 a borizonial lioe al the base
7. Q 1w ot the top
8. R is at the top
These two siales of knowledge can be generahized by extracting

what they bave 1 common. This generaized sitvation can be
Msipoed the commen sction of subgoal prool of the conloined
inangles by the producuion:
IF the goal 15 1o prove A XYZ ¥ A UVW

and 4 XVZ contans A SVZ

and £ UVW contains A TVW

ama 3V

md [YSZ PIVTW

THEN sel x5 & subgosl (o prove &ASYZ = 8 TVW

The extraction of such similarities is described in Anderson,
Kline, and Beasley (1980) and Anderson and Kline (1979) and
is similar to ideas proposed earlier by Hayes-Roth and
McDermott (1976) and by Vere (1977). As noted earlier,
generalization involves the same mechanisms used in similarity
detection for analogy. The above example illustrates how it
might be used to extract from examples the principle of
chaining the goal of proving triangle congruence to a subgoal
of proving the triangle congruence of overlapping triangles.
Note that the generalization preserves features specific to the
two examples that are predictive of the method's success—
namely, that parts of the overlapping triangles are congruent.

The evidence is quite clear that subjects do extract from
examples methods that work over a class of examples containing
the same features. The overlapping triangles rule above is one
although it usually appears to be more general in that problem
solvers will try to chain to overlapping triangles whenever they

contain one or
angle. A more general
from the one above by further generalization
representational assumptions >.

two congruent pieces--not a specific side and
production such as this could derive
(with appropriate

rules without a
the generalization

Although students do have these general
doubt: it is wunclear that they emerge by
mcchams/m  suggested above. As an alternative, they might
derive by a retrospective analysis of a single problem rather
than a generalization between two. Our protocol data cannot
inform us on this issue and we are tooling up to do the right
kinds of controlled experiments. =~ Work on extraction of object
categories (Anderson & Kline, 1979; Fho & Anderson. 1981)
has provided good evidence for a generalization process in that
domain.

Discrimination
The miliml rules that a kysiem has come from  more-or-fess

ditect encoilings of  postulalcs. S0, Tor mstanee, the SS5
postulale can lead 1o o rule of the form
IF the goal 15 to prove & XYZ = & UMW
THEN sct as subggals o prove XY *O%. 12 TUW.
and ZX 2 WU

The problem with such productions is that their conditions are
too general and do not lead to selectivity of search. It is also
the case that the generalization process itself might produce
overly general productions. Overly general rules can be
restricted by a discrimination mechanism which compares
successful and unsuccessful applications of a production, tries
to determine the features which distinguish the successful
applications, and proposes new productions derived from the old
but which contain these distinguishing features in their
conditions. Again, the details of the discrimination procedure
have been described in Anderson and Kline (1979), Anderson.
Kline, and Beasley (1980) and 1 will simply describe here their
application to the geometry domain.

Consider the  represenlalion 1w Figure 1 of the sludent's
plannng for the problem m Figure | Afler completing thus
problem ihe learming program wonld identify the attempl 10 use
S55 as a muslake and SAS os Lhe correct method.  Companng
this suwation Lo the previous  prohlemn thal was suvccessfully
solved by 535, the program would oote thal thys problem
differs only mw the fact that nighl angles are mentioned.  Thus,
it could propose lhe [oflowing disctimibalion:

Pl F I goal 15 lo prove £ XVZ = 23 UVW
and «#2 XYZ conlains no right angtes
and & UVW centains no nghl sngles

THEN set as subpoals io_prove T Ov,

and ZX = WU
The discrminatimg  <lauses are found by  locating  addilienal

clauses in the dals base thal cousirain the vansbles. The ahove
discrimmmation 1% probably oo spectfic and skould not be himied
onty o night  angles. Through generalization with  other
productions that do not involve right angles. the no night angle
requirement culd be replaced by the requircment ihat ne snples
be mentioned,

7w,

It 15 alse possible 10 form s discrimtnabon of o different
variely by cmbellishing the SAS rule o encode what 1%
distinclaive  aboul the current situation.  This can lead o 2
production of U following sert:

Pl It the goal 15 Lo prove 4 XYZ T A4 UVW

ond &3 XYZ conlains a night angle lraangle /XYZ

and o UVW conluns s nighl angle Lriangle /UVW

THEN sct as goals o prove fwe 4 “FVZ}LG%
and /XYZ = (UVW

This type of discrisunstion was nol produced w our original
ACT sunulation hut has proven useful i pome of our miore
recenl, special purpose simulstions | Anderson, 19810,



As in the case of generalization, the fact is indisputable that
subjects form discriminations on their original rules. Indeed,
one subject articulated a rule essentially identical to P1 after
the history illustrated in Figure 2. However, again as in the
case of generalization, what is unclear is whether these
discriminations are achieved by the mechanisms described here.

Again, that issue awaits more detailed experimental research.

Composition

Neves and Auderson (198)). developing ideas pul forth by
Lewis (1978}, applied n iearning mechamism called composition
to prool generation in geomelry. The bagic 1dea behind (be
composiiion mechamism 15 o packape sequences of production
steps inlo siaple operalors. A somewhat similar idea 0 the
domain of logic proofs has been advanced by Smith (19801
Figure B illusirates onc of the problems where we applied tlus
mechanisii. The firsl pass of this sysiem over the problem was
accomplished by a sequence of five productions. The firsl
production o apply 1 solving ths problen was:

PlL; IF the goal 15 o prove [X < {u

and /X 5 poart of A XVZ
snd U 15 part of AUVW
THEN tbe subgoal 15 lo prove AXYZT AUVW
This production would sel as 3 subgoal lo prove & ABC =
A DBC. AL ths point the followinp production apphed.
P IF the gosl s lo prove A XYZT AUVW
and E' Uv
and ZX * WU — A
THEMN the subgoal 15 to prove YZ =« VW
This produclion, aigbzd_lg the smuation n Figure & setl as (he
subgoal Lo prove < BC as 2 sicp on Ibe way lo using SSS.
Al this point the following production applied,
P3: IF the goal 15 to prove ¥ X
THEN this may be concluded by reflexivily
This production added BC ¥ BC and ablowed the [ollowing
roduction to spply:
d P4: Ilgpll{e oal 5 lo prove & XYZ 7 4 UVW
md XY T OV
and YZ ¥ VW
and TR T U
THEN the vgual may be concluded by 555
where XY = AB, UV » DB, ¥YZ = BC, VW » BC, ZX * CA,
and WU = CD.  This sdds the information that & ABC ¥

& DBC.  Fually, the followmg production applied which
recopnizes that the lo-be-proven conclusion 15 now ctlablighed:
Ps: IF the goal 15 o prove /X /U

and &3 XYZ T A UVW
THEN the goal may be concuded because of congruent
ports of congruent triangles
The ¢omposition process. operating on this sequence, produced a
single production Lhal served as a macro-gperatof:

Pé: IF the gosl u o prove [AY /D
and /A 15 parl of A ABC
and LI_) 15 parl of & DRC
and AB T DB
o TV
THEN conclude AB = AB by reflexivity
and conclude &5 ABC £ A DBC by 558
and conclude the goal because of congruent parts
of congruent inangles
{a}
A Given: AB « BE
] CiwlB

Prove: /A @ /D

Figure 8
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The variables in this production have been named to correspond

to the terms in Figure 8 for purposes of readability. This
production would immediately recognize the solution to a
problem like that in Figure 8. This composition is achieved

basically by adding together the conditions of the five original
productions and making them the condition of the composed
production; adding together the actions and making these the
action of the composed production, editing out the unnecessary
or redundant clauses in the composed production.

the unnecessary clauses are
but basically they involve

The details for the editing of
given in Neves and Anderson (1981)
(a) eliminating clauses from the conditions of productions late
in the sequence which are satisfied by the actions of
productions early in the sequence and (b) eliminating the setting
and testing of goals which are met in the sequence. With
respect to (b) composition serves the effect of collapsing
several levels in the proof plan into a single level.

There The

original

is a question of when to evoke composition.
implementation by Neves and Anderson was to use
composition on any immediately contiguous sequence of
productions. However. | think it more reasonable to have it
apply to a sequence of productions related by manipulation of

the same goals—as in the case just illustrated. These two
definitions of production sequence need not yield the same
sequences in the ACT system. It is quite possible for

immediately contiguous productions not to share similar goals.

Creation of Forward Inferences

It is a feature of the composition production P6 that it
summarizes what had been a multi-level goal tree. The system
had started with the goal of proving two angles congruent, set
a subgoal of proving two triangles congruent, set a subgoal of
proving two sides congruent, and then proceeded to pop the
goals finally achieving the highest level goal. It would be
useful to have this available as a forward inference rule so
that, should the situation appear again, the inferences can be
made to embellish the problem representation. This can be
achieved by dropping the goal specification from P6 (a similar
idea was proposed by Larkin, 1981). The resulting production

would be:

PT: TF {A 15 part &3 ABC

sad [D 15 part of & DBC

and « DB

and TA 2 BC —

conclude AB T AR by reflexivity

and conciude &1 ABC + 4 DBC by 558
and conclude A "-"‘[D because of congruent

parts of congruent Lriangles .
It is interesting to note that this production maftes a Tehexive

inference in forward mode. To have a pure reflexive rule as a
forward inference:

IF A8

THEN AB £ A&B by reflexivity

would be a sheer disaster since it would complicate the problem
representation with many useless inferences. However, cast as
part of a larger operator as above it is a very profitable
forward inference.

THEN

forward inferences can be made when composition
which achieves a stated goal by a
sequence of inferences that previously had involved the
embedding of subgoals. The forward inference can be created
from the composition by deleting the goal clause. It is useful
to understand why one would only want to drop goal clauses
from the macro-operators rather than the original working-
backwards productions. The original productions are so little
constrained that the goal clauses provide important additional
tests of applicability. After a macro-operator is composed there

To review,
creates a macro-operator



X
c
B
L ]
Given: AB and TD bisect
aach gther
Prove: AAXC VABXD
Figure 9
are enough tests in the non-goal aspects of its condition to
make it quite likely that the inferences will be useful. That is.

it is unlikely to be an accident that the conjunction of tests arc
satisfied.

We do not ave asny ewvidence for P6 or PT as specific
inference rules—-probebly becausc the patiern in Figure 6 occurs
but once 1o the lextbook eaercuses. [n conmtrast lhe patiern in
Figuere 9 or shight varisots of « occur quite freguenlly m the

chapier, The problem i Figure 9 can be solved by the
followwng three produclions.
PB: IF oal u prove XYZ 4 Uvw

and OVad 2 TVW

THEN get as 2 nlbgoll lo prove [XYZ = {UV\'-'

P9: IF the % lo XYz ¥ juyw
apd %72
THEN thic can be concluded by vertical angles
Pl0: IF the goal 15 lo prove 4 XYZ T Quvw

apd XY = UV, YZ = VW, and /XYZ « JUVW
THEN thus can be concluded by SAS
Composing these (hree produclions logelher we get:
Pil: IF the goat is to prove ¢ 0!!2 a Uvw
and XY Yz~ yw
and XYW and UYZ
THEN conclude /XYZT [UYW by verlical angles
aod conclude A XYZ T UYW by SAS
Deicting the goal clause we get the following forward

inference:
Bl2: IF there are o4 XYZ and uYw

T and r

and XYW and TT2

THEN conclude LX\Z T JUYW by vertical anples

and & XYZ'T 42 UYW by SAS
There is clear evidence for such a forward inference rule in
some more advanced students. For them, the pattern in Figure
9 is something that will trigger the set of inferences even when
it appears embedded in a larger problem. However, we have
poor evidence on what the exact origins are of this forward

inference rule.

Final Points

There are two major issues that need to be pursued. One. as
noted throughout the paper, is the detailed empirical verification
of these mechanisms. The second is a sufficiency proof of
their operation by simulating a student's course through a
textbook. While we have worked up individual examples of
successful tuning by these learning mechanisms, we have not
done the large scale simulation to show that their cumulative
effect after hundreds of problems will match the degree of
tuning we see in the typical student. We intend to pursue this
and | am reasonably optimistic given that we have achieved
success with such large-scale simulations of our learning
mechanisms in the domain of concept formation (Anderson &
Kline. 1979) and syntax acquisition (Anderson. 1981).
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