
Learning to Program 

John R. Anderson 
Depar tment of Psycho logy 
Carnegie-Mel lon Un ivers i ty 

P i t t sbu rgh , PA 1 5 2 1 3 

Abs t rac t Ski l l Organizat ion and Compi la t ion 

Three aspects of learning to program are descr ibed-the 
organization and compilation of problem-solving operators, the 
impact of knowledge representation, and the impact of working 
memory limitations. The GRAPES system simulates the 
organization and compilation of these operators. The simulation 
of one problem solving episode is discussed. Also discussed are 
the impact of different data notations and the impact of working 
memory load on successful application of LISP functions. 

In t roduc t ion 

This paper is concerned with the cognitive factors that are 
involved in acquiring a skill like programming in LISP. Among the 
relevant factors are the following: 

1. Understanding sufficient instruction about the system 

to enable effective problem-solving. 
2. Organization and compilation of this knowledge into 

a procedural form. 
3 Tuning of the operators that underlie the procedural 

form. 
4. Representing the problem optimally for the operators 

possessed. 
5. Expanding working memory capacity to keep 

relevant knowledge available. 

The first is the focus of most of the educational effort 
- whether in textbooks, user's manuals, or the classroom. The 
other four are largely ignored. They are things that are learned 
implicitly in the act of solving problems. In looking at novices 
learning how to program in LISP, they spend less than 25% of 
their time actually trying to absorb the relevant knowledge and 
more than 75% of their time learning how to use that knowledge. 
We have yet to see a novice understand any instruction of modest 
complexity such that he could do the task without error. There 
are always serious holes in the understanding which are only 
dealt with in the act of solving problems. 

This paper will describe what we have learned about topics 2,4, 
and 5 above. I want to stress, however, that our findings are not 
unique to LISP or indeed to programming. Similar things are 
being found in areas such as geometry and physics (e.g. 
Anderson, 1981; Larkin, 1981). 

We have developed a production system, called GRAPES, that 
simulates the problem solving involved in programming and the 
learning that occurs in the course of this problem solving. 
GRAPES uses a set of problem solving operators that decompose 
goals into subgoals. A programming problem is solved in 
GRAPES by decomposing an initial goal to program a function 
into subgoals and these into subgoals, etc., until goals are 
reached which correspond to LISP code. Given the right 
operators GRAPES can solve moderately difficult LISP problems, 
write, test, and debug the code (see Anderson, farrel l & Sauers, 
1982). This is a critical sufficiency test because humans 
eventually are capable of this. However, more interesting is its 
simulation of the behavior of novices in their first hours of 
learning LISP. Here I will consider one of the many simulations 
we have performed and what this simulation says about skill 
organization and knowledge compilation. 

Simula t ion of ONETWO 

The case comes from a subject, SS, who had written just three 
functions--to take first, second, and third elements of a list. Then 
she was given the ONETWO problem. The ONETWO problem 
required the subject to write a function which would take a list as 
an argument and return a now list consisting of the first two 
elements of the argument list. The LISP functions that the subject 
knew at this time included CONS, but the subject had not yet 
learned about LIST. She knew about CAR and CDR and with 
these she had defined functions that would return the first, 
second, and third arguments of a list. These were the only 
functions that she had written up to this point in time. 

In i t ia l A t t emp t at ONETWO. She flailed at writing the 
function ONETWO and the experimenter suggested writing a 
simpler function, ADDTWO, which would take two arguments and 
make a list out of them. This problem she was able to make some 
headway on. It is interesting to speculate why ADDTWO was 
more tractable than ONETWO. As we will see, the basic problem 
and its solution did not change in going from ONETWO to 
ADDTWO. However, by reducing the complexity of the task by 
one level, the burden on working memory was reduced so that 
the subject was better able to match operators. A later section 
discusses in more detail the impact of working memory 
limitations. 

Figures 1-6 illustrate the simulation's attempts to solve 
ONETWO. Given the perfect correspondence between the 
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The subject and GRAPES mentally simulated what the 
outcome would be of the code (CONS '(A B) '(C D)). This 
involved retrieving the definition of CONS again. As evidence 
that her definition of CONS was not in error, she correctly 
determined that ((A B) C D) would result as a answer. This 
corresponded to an error she had encountered frequently and we 
assume she had acquired an operator to repair this which 
embedded the second argument to CONS in a extra list. In this 
way, she and GRAPES recover from their errbr and make up the 
corcrete example (CONS '(A B) '((C D))). 

The M a p p i n g . Figure 3 illustrates the simulation of SS's initial 
attempt to map from the concrete code to an abstract LISP 
function. First she maps CONS in the concrete code into CONS 

F i g u r e 1 
simulation and SS's protocols, we infer that these figures also 
describe the goal structures that were guiding her problem 
solutions. Figure 1 illustrates the first work that was done on the 
ADDTWO subproblem. The first operator decomposes this into 
the subgoals of coding the function and checking the code. The 
first operator set subgoals to come up with concrete examples of 
the input to ADDTWO and what its output should be, to find some 
code that could be typed at the top level that would convert the 
concrete input into the concrete output, to check this code, and 
then to map this code into an abstract function. The inputs she 
chose to pass to ADDTWO were (A B) and (C D). Why she chose 
list arguments we are unsure. The result she wanted for these 
inputs was ( (A B) (CD)). 

Figure 2 illustrates the processes by which she decided how to 
create this example at the top level. After deciding on the 
example, she went through an episode where she explicitly 
reviewed the definition of all the functions she knew, searching 
for an appropriate one. She selected CONS. We represented the 
definition of CONS to GRAPES as 

The first argument of CONS is any S-expression and 

the second argument is a list. Its result is a list. The 

first element of the result is the first argument. The 

rest of the result consists of the second argument. 

She and GRAPES chose CONS on the basis of the fact that a list 
was wanted and CONS makes lists. Having selected CONS the 
subgoals were now to determine what arguments to pass to 
CONS in order to get the intended result. 

The critical piece of information in selecting the first argument 
is the definition statement The first element of the result is the first 
argument. GRAPES interfaces this with the desired result, ((A B) 
(C D)), to determine that the correct argument should be (A B). 

Next, SS and GRAPES turn to the second argument. The 
appropriate part of this definition is The rest of the result consists 
of the second argument. Matching this would retiieve ((C D)) as 
the second argument. However, our subject retrieved (C D). We 
assume (see detailed discussions in Anderson, Farrell and 
Sauers) that the semantic feature of consists were partially lost 
and this statement became The rest of the result contains the 
second argument. We manipulated GRAPES' working memory so 
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in the LISP {unction. At this point the structure of the function is 

(clef addtwo (lambda (one two) 

(cons <?> <?>))) 

The remaining task is to map the two concrete arguments into 
abstract arguments. She first focuses on mapping (A B). The 
following rule applies: 

IF the goal is to map a concrete expression of LISP 

and the expression is a data structure involving 

a term 

and the term corresponds to an argument of 

the function 

THEN the abstract expression can be obtained from 

the data structure 

by replacing the term with the argument 

So, in this case she is trying to map the concrete expression (A B) 
where the argument ONE corresponds to the term (A B). 
Therefore, after substituting the argument for the term, the 
abstract expression becomes simply ONE. This same rule applies 
to map the second concrete expression ((C D)). In this case the 
argument TWO corresponds to the term (C D) and the abstract 
expression after substitution is (TWO). Note this rule has 
correctly mapped the first expression but incorrectly mapped the 
second expression. The function definition at this point is 

(def addtwo 

(lambda (one two) 

(cons one (two)))) 

Figure 4 illustrates some of the subsequent evolution of this 
definition. The coding of ADDTWO had the brother goal of 
checking that code. Both SS and GRAPES called the LISP 
interpreter to try the code with the arguments (A B) and (C D). 
Both received the same error message "TWO undefined function 
object." This also corresponds to an error that SS had 
encountered a few times previously in her problem solving. In 

previous occasions, the cause had been failure to quote an 
argument. Therefore, we assumed that she had acquired an 
operator that used quote to stop evaluation. When this operator 
applied, her LISP code became 

(def addtwo 

(lambda (one two) 

(cons one '(two)))) 

Again, the code was tried. This time it returned the result ((A B) 
TWO). Comparing this with her desired result the problem was 
localized to the second argument given to CONS and GRAPES 
went back to retrying the goal of mapping ((C D)). 

Figure 5 
Figure 5 illustrates the simulation of this mapping. Having 

returned to this goal, the previous MAP FIND operator will not 
apply again. Therefore, a default rule applies which creates a 
new subgoal of coding a list consisting of a single argument. As 
in the case of coding the full ADD TWO problem, GRAPES falls 
back on the plan of making up a concrete example, coding it, 
checking the code, and then mapping the code into an abstract 
code for the function. The previous concrete example of ((C D)) 
is used. Again, CONS is chosen because it makes lists and again 
its definition is used to determine the correct arguments. This 
time the definition is correctly used and GRAPES plans the 
concrete code as (CONS '(C D) NIL). 

After mentally simulating this, GRAPES turns to the goal of 
mapping the concrete code (CONS '(C D) NIL) into a LISP 
function. The process of performing this mapping is quite 
analogous to the original mapping in Figure 3. Again, CONS is 
mapped into CONS. The same MAP-FIND operator as before 
maps (C D) into TWO. An operator for special LISP symbols, like 
NIL, maps NIL onto itself. So, the final successful code becomes 

(def addtwo 

(lambda (one two) 

(cons one (cons two nil)))) 

Return to ONETWO. Figure 6 illustrates the behavior of the 
simulation and the subject when they returned to the original 
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ONETWO problem. The code they generated is given below: 

(def onetwo 

(lambda (list) 

(cons (first list) 

(cons (second list) nil)))) 

Whereas the subject had taken an hour to code ADDTWO, she 
only took ten minutes to solve ONETWO and most of that time 
was spent confirming what the functions FIRST and SECOND did. 
ONETWO is solved by the same method that ADDTWO is solved, 
but without any rehearsal of the ONETWO method. Our 
assumption is that operators were compiled from this problem 
that summarized the planning steps that went into the problem 
solution. 

F i g u r e 6 
One of the operators that GRAPES compiled summarizes the 

problem solution illustrated in Figure 5 that started with the goal 
of creating a list of a single element and resulted in the action of 
CONSing that element with NIL. The compilation procedure 
recognizes that the various aspects of the concrete example and 
its code are intermediate results and are not essential to the final 
answer. It traces through these steps to determine if there are 
any connections from the top goal to the final CONSing action. 
The summary operator built is: 

IF the goal is to code a list consisting of 

one argument 

THEN CONS that argument with NIL 

and set as subgoals to code that argument 
Similarly, an operator is compiled to correspond to the outer 
CONS in the ADDTWO function. It has the form: 

IF the goal is to code into a list consisting 

of argument! and argument2 

THEN CONS argumentl into a list consisting of 

a rgumen t2 

and set as subgoals to code argumentl 

and to code a list consisting of argument2 

Conc lus ions f rom S imu la t ion . This example illustrates a 
number of conclusions that we have come to in simulating the 
problem-solving of our subjects. The first conclusion is that their 
behavior is hierarchically organized according to goal trees like 
the ones illustrated in Figures 1-6. The second conclusion is that 
subjects prefer to solve problems by analogy to concrete cases. 
In this episode the subject created an example at the top level 
which she then tried to map over into the code for the function. 

The third conclusion is the importance of knowledge 
compilation in extracting from an example problem operators that 
will streamline the solution of later problems. There are 
numerous technical issues in deciding how much to collapse into 
a single operation and we have hardly solved them all. However, 
for a discussion of what progress we have made consult 
Anderson(1982) and Anderson, Farrell, and Sauers(1982). The 
hierarchical organization imposed by goal structures such as the 
one in Figure 5 is important to the compilation process. It serves 
to indicate what aspects of the original problem solving episode 
should go together in the compiled operator. 

The fourth conclusion concerns the impact of working memory 
failure on performance. We saw that CONS was incorrectly 
applied because the subject momentarily misrepresented its 
definition. I will return later in this paper to the issue of how 
working memory failure impacts on incorrect application of a 
function. 

Representation 

How one represents a problem has a strong impact on one's 
problem solving. We have been trying to document the impact of 
data structure representations on subject's problem solving. 
Typically, LISP is now taught with respect to parenthesized 
notation. Subjects conceive of the effects of basic LISP 
operators like CAR, CDR, CONS, and LIST in terms of changes 
made on marks on a page. We think this representation has 
strong implications for the relative difficulty of the various 
functions and the types of errors. 

(CAR ' ( ( A ) ( B ) ) ) = (A) 
VERY EASY 

(CDR ' ( ( A ) ( B ) ) ) = ( ( B ) ) 
MORE DIFFICULT 
TYPICAL ERROR: = (B) 

(L IST ' ( A ) ' ( B ) ) = ( ( A ) ( B ) ) 
FAIRLY EASY 

(CONS ' ( A ) ' ( B ) ) = ( (A ) B) 
MOST DIFFICULT 
TYPICAL ERROR: = ( ( A ) ( B ) ) 

F i g u r e 7 

Figure 7 illustrates the four functions. CAR takes the first 
element of a list and subjects have little difficulty with it beyond 
overcoming the non-mnemonic character of the function name. 
CDR returns the remander of a list and subjects have more 
difficulty with it. A frequent error is illustrated in Figure 7. When 
the tail of the list contains a single list, subjects will return that list 
with one set of parentheses missing. The function LIST subjects 
find both mnemonic and easy to understand. They have the 
greatest difficulty with CONS. CONS inserts its first argument into 
the list that is its second argument. A frequent error is leaving an 
extra set of parentheses around the second argument. 
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Exactly why these errors are made is a little uncertain. Robin 
Jeffries has developed a GRAPES model that will produce these 
errors. It and many similar explanations turn on the fact that CDR 
and CONS are explained to subjects as moving parentheses. For 
instance, this instruction is quite explicit in Siklossy(1976). 
Subjects think thai CDR operates by deleting the first parenthesis 
and the first element and inserting the parenthesis in front of the 
rest of the list. If the last insert operation is omitted it is possible 
to have an error. Subjects think of CONS as deleting the left 
parenthesis of the second argument, inserting the first argument 
in front of that, and then inserting left parentheses. If they 
omitted the deletion operation they could produce the error in 
f igure 7. Subjects also think of CAR and LIST as moving 
parentheses, but omission of any step in CAR and LIST results in 
a nonsensical result as does omission of any of the other steps in 
CDR and CONS. Thus, the problem with CDR and CONS is that 
there are critical steps which, if omitted, will lead to non-
detectable errors Consistent with this view is that the same 
subject will randomly make and not make the errors. This is what 
we would expect if it were produced by occasionally forgetting a 
step. 

(CAR ( (A .N IL ) . ( (B .N IL ) .N IL ) ) ) = (A.NIL) 
VERY EASY 

(CDR ( (A .N IL ) . ( (B .N IL ) .N IL ) ) ) = ((B.NIL).NIL) 
VERY EASY 

(LIST (A.NIL) (B.NIL))= ( (A.NTL). ( (B.NIL) .NIL)) 
DIFFICULT 
TYPICAL ERROR: = ( (A.NIL) . (B.NIL) ) 

(CONS (A.NIL) (B.NIL)) = ( (A.NIL) . (B.NIL) ) 
FAIRLY EASY 

Figure 8 
One might think that the problems with CDR and CONS are 

unavoidable. However, this is certainly not the case. Originally, 
LISP' was taught as operating on a box structure, which is much 
closer to the actual computer-implementation of LISP. Figure 0 
illustrates how the functions apply to the dotted pair equivalent of 
the box notation (Weissman, 1967). We performed an experiment 
in which we explained the operation of these LISP functions with 
respect to the dotted pair equivalent of the box notation and 
contrasted this with the list notation. As we have informally 
observed, CDR is harder than CAR with the list notation and this 
is largely due to forgetting parentheses in examples like Figure 7. 
This difference went away with the dotted-pair notation. Again 
we confirmed our informal observation that CONS was more 
difficult than LIST and this was in part due to failing to put 
parenthesis around the second argument. We found that the 
difficulty reversed with the dotted-pair notation and the errors 
with LIST derived from failing to embed its second argument in a 
separate dotted-pair structure. This clearly indicates that the 
difference is not a matter of the greater mnemonic value of the 
word LIST rather than CONS, as some have suggested. 

"Now, I do not want to be read as advocating that LISP 
instruction go back to the box notation. There are good 
justifications for using the parenthesized list notation as basic 
and only later introducing the box representation. People find 
lists easier to reason about and the appropriate data structure 
usually turns out to be a list. However, there are applied 
consequences of understanding how representation impacts on 
difficulty of functions. The basic problem with CDR and CONS in 
the representation is that they destroy and reconstruct the 
structure of their arguments. If the destroy and reconstruct are 
not carried out properly, non-detectable wrong answers can 
result. There are ways to characterize the operations of CDR and 

CONS to avoid this difficulty. Rather than deleting the left 
parenthesis, the first element, and reinserting the left parenthesis, 
CDR could be characterized as erasing the first element. Rather 
than characterizing CONS as deleting the left parenthesis of the 
second argument, adding the first argument, and adding the left 
parenthesis, we could characterize CONS as squeezing its first 
argument into the front of the second. 

Problems of Memory Load 

One of the surprises to me in studying LISP novices is how 
much of their programming time is spent recovering from errors 
of memory. We intend to quantify this for each of our protocol 
subjects, but informally I would guess it averages around 50%. 
This includes time spent trying to reconstruct what forgotten 
subgoals are. Worse is when the subject misremembers a 
subgoal and solves a different one. Also subjects will often 
retrieve the wrong function to perform a task Subjects do not 
have the experience of so much wasted time because in 
retrospect they tend to forget their failures of memory and only 
remember their correct steps. So you might get remarks like, "I 
don't know how I could have spent two hours on solving this. I 
must have been asleep." 

Experts do not have the same frequency of memory errors on 
problems. In part this is because their short term memories are 
better, perhaps due to something like chunking. But they are also 
more reliable at recalling things that occurred half an hour earlier 
in the problem solving protocol (Jeffries, Turner, Atwood & 
Poison, 1981). This cannot be simply due to chunking. Their 
long term memories are more reliable for the domain and become 
reliable extensions of short-term memory. This better working 
memory for the domain of expertise seems a fairly general 
phenomenon. Chase and Ericsson (1981) have studied some 
subjects who reliably increased their digit span up to 80 digits 
from the usual 7 -+ 2. They also were able to show that this 
depended on reliable storage and retrieval from LTM. The 
interesting observation was that subjects with 80 digit spans were 
no different in other ways. In fact, their letter span was 7 -+2. I 
think the same thing happens in programming - we develop 
better working memories for partial information computed in the 
process of programming and this better working memory is 
specific to programming. 

One of the classic memory retrieval errors in novice LISP 
programming is using LIST instead of CONS. Anderson, Farrell 
and Sauers have shown how this can be explained in terms of 
what the subject's representation of what CONS and LIST do. 
The interesting observation is that these errors appear to be more 
frequent in the context of writing a complex function, thus , it 
seems when the working memory load increases, errors in 
function recall increase. 

We did an experiment to see if embedding an extra level of 
processing would result in increased errors. Figure 9 illustrates 
the materia! used in the experiment. There were three types of 
tasks. One involved recognizing the missing function that would 
transform the input into the output. The second involved 
evaluating the function as applied to a series of arguments. The 
third involved recognizing the argument which, if provided to the 
function, would produce the output. 
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(a) FUNCTION RECOGNITION 
(? ' (A) ' ( (B ) (C) (D)))= 

((A) (B) (C) (D)) 60% 

48% 
(? ' (A) (REVERSE ' ( (B ) (C) (D)) ) ) 

((A) (D) (C) (B)) 

(b) Evaluation 
52% (CONS ' (A) ' ( E C D ) ) = ? 

50% (CONS '(A) (REVERSE ' (B C D))) = ? 

(c) ARGUMENT PROVISION 
67% (CONS 'X ?) = (X (Y Z)) 

55% (CONS 'X (REVERSE ?)) = (X (Y Z)) 

F i g u r e 9 
The two types of functions used were LIST and CONS, 

although only CONS examples are illustrated in Figure 9. Thus, 
for function recognition the subjects choice was implicitly 
between LIST and CONS, although occasionally an APPEND was 
given. In evaluation and argument provision, the typical errors 
were incorrect number of parentheses with error much more 
frequent for CONS. Subjects got 79% of the LIST problems 
correct, but only 4 1 % of the CONS problems. This is in line with 
earlier remarks about the relative difficulty of the two functions. 

The principal manipulation of interest was whether the function 
had a REVERSE composed in. REVERSE simply changes the 
order of elements in a list; it does not change the appropriateness 
of a CONS or a LIST in the function generation problems. In 
evaluation and argument provision, it does not change the 
correct parentheses •- and we only scored these problems for 
parentheses, not whether the subject had correctly done the 
reversing. However, as can be seen from the percentages 
correct in Figure 9, errors did increase when a REVERSE was 
involved. Thus, adding an extra piece of information to working 
memory increased the error rate. This is an example of working 
memory spill over -- extra memory load in one aspect of the 
problem impacts on performance in a logically independent 
aspect. The effect on function recognition is particularly relevant 
here. We see that whether we credit a student with knowing the 
difference between LIST and CONS may depend on the working 
memory demands of the test context. 

Many situations contain working memory demands that pose 
needless difficulty for novices. Novices become overburdened in 
extracting needless detail and fail to extract the critical 
information for learning. One of the most frustrating instances of 
this in LISP is parenthesis counting. Novices will be on the verge 
of an insight, go off to check whether the parentheses are 
balanced for some expression, and lose any chance of getting the 
insight after they are finished with the balancing. The implication 
is that tutorial techniques that reduce working memory load 
should facilitate learning. 

References 

Anderson, J. R. Tuning of search of the problem space for 
geometry proofs. Proceeding of IJCAI 81. 

Anderson., J. R. Acquisition of cognitive skill. Psychological 
Review, 1982, 89, 369-106. 

Anderson, J. R. The Architecture of Cognition. Cambridge, MA: 
Harvard University Press, 1933. 

Anderson, J. R., Farrell, R , and Sauers, R. Learning to plan in 
LISP. ONR Technical Report ONR-C2 2, 1982. 

Andersen, J. R. and Kline, P.J. A learning system and its 
psychological implications. Proceedings of IJCAI 79. 

Chase, W.G. and Ericsson, K. A. Skilled memory. In J. R. 
Anderson (Ed.) Cognitive Skills and Their Acquisition. 
Hillsdale, NJ: Erlbaum, 1981. 

Jett ies, R., Turner, A. A., Poison, P. G and Atwood, M. E. The 
processes involved in designing software. In J. R. 
Anderson (Fd) Cognitive Skills and their Acquisition. 
Hillsdale, NJ: Erlbaum, 1981. 

Larkin, J. Enriching formal knowledge: A model for learning to 
solve textbook physics problems. In J. R. Anderson (Ed) 
Cognitive Skills and Their Acquisition. Hillsdale, NJ: 
Erlbaum, 1981. 

Sikloosy, L. Let's Talk LISP. Englewood Cliffs,N.J.: Prentice-Hall, 
I976. 

Soloway, E. M. From problems to programs via plans: The 
context and structure of knowledge for introductory LISP 
programming. Coins Technical Report 80 19. University of 
Massachusetts Amherst, 1980. 

Weissman, C. / ISP 7.5 Primer. Belmont, Ca.: Dickenson, 1907. 

This research was supported by the Personnel and 
Train ing Research Programs, Psychological Services 
D i v i s i o n , Of f ice of Naval Research, under Contract 
No.: N00014-81-C-0335, Contract Author i ty Number, 
NR 157-465 to John Anderson. 


