
Learning to Program

John R. Anderson
Depar tment of Psycho logy
Carnegie-Mel lon Un ivers i ty

P i t t sbu rgh , PA 1 5 2 1 3

Abs t rac t Ski l l Organizat ion and Compi la t ion

Three aspects of learning to program are descr ibed-the
organization and compilation of problem-solving operators, the
impact of knowledge representation, and the impact of working
memory limitations. The GRAPES system simulates the
organization and compilation of these operators. The simulation
of one problem solving episode is discussed. Also discussed are
the impact of different data notations and the impact of working
memory load on successful application of LISP functions.

In t roduc t ion

This paper is concerned with the cognitive factors that are
involved in acquiring a skill like programming in LISP. Among the
relevant factors are the following:

1. Understanding sufficient instruction about the system

to enable effective problem-solving.
2. Organization and compilation of this knowledge into

a procedural form.
3 Tuning of the operators that underlie the procedural

form.
4. Representing the problem optimally for the operators

possessed.
5. Expanding working memory capacity to keep

relevant knowledge available.

The first is the focus of most of the educational effort
- whether in textbooks, user's manuals, or the classroom. The
other four are largely ignored. They are things that are learned
implicitly in the act of solving problems. In looking at novices
learning how to program in LISP, they spend less than 25% of
their time actually trying to absorb the relevant knowledge and
more than 75% of their time learning how to use that knowledge.
We have yet to see a novice understand any instruction of modest
complexity such that he could do the task without error. There
are always serious holes in the understanding which are only
dealt with in the act of solving problems.

This paper will describe what we have learned about topics 2,4,
and 5 above. I want to stress, however, that our findings are not
unique to LISP or indeed to programming. Similar things are
being found in areas such as geometry and physics (e.g.
Anderson, 1981; Larkin, 1981).

We have developed a production system, called GRAPES, that
simulates the problem solving involved in programming and the
learning that occurs in the course of this problem solving.
GRAPES uses a set of problem solving operators that decompose
goals into subgoals. A programming problem is solved in
GRAPES by decomposing an initial goal to program a function
into subgoals and these into subgoals, etc., until goals are
reached which correspond to LISP code. Given the right
operators GRAPES can solve moderately difficult LISP problems,
write, test, and debug the code (see Anderson, farrel l & Sauers,
1982). This is a critical sufficiency test because humans
eventually are capable of this. However, more interesting is its
simulation of the behavior of novices in their first hours of
learning LISP. Here I will consider one of the many simulations
we have performed and what this simulation says about skill
organization and knowledge compilation.

Simula t ion of ONETWO

The case comes from a subject, SS, who had written just three
functions--to take first, second, and third elements of a list. Then
she was given the ONETWO problem. The ONETWO problem
required the subject to write a function which would take a list as
an argument and return a now list consisting of the first two
elements of the argument list. The LISP functions that the subject
knew at this time included CONS, but the subject had not yet
learned about LIST. She knew about CAR and CDR and with
these she had defined functions that would return the first,
second, and third arguments of a list. These were the only
functions that she had written up to this point in time.

In i t ia l A t t emp t at ONETWO. She flailed at writing the
function ONETWO and the experimenter suggested writing a
simpler function, ADDTWO, which would take two arguments and
make a list out of them. This problem she was able to make some
headway on. It is interesting to speculate why ADDTWO was
more tractable than ONETWO. As we will see, the basic problem
and its solution did not change in going from ONETWO to
ADDTWO. However, by reducing the complexity of the task by
one level, the burden on working memory was reduced so that
the subject was better able to match operators. A later section
discusses in more detail the impact of working memory
limitations.

Figures 1-6 illustrate the simulation's attempts to solve
ONETWO. Given the perfect correspondence between the

58 J. Anderson

The subject and GRAPES mentally simulated what the
outcome would be of the code (CONS '(A B) '(C D)). This
involved retrieving the definition of CONS again. As evidence
that her definition of CONS was not in error, she correctly
determined that ((A B) C D) would result as a answer. This
corresponded to an error she had encountered frequently and we
assume she had acquired an operator to repair this which
embedded the second argument to CONS in a extra list. In this
way, she and GRAPES recover from their errbr and make up the
corcrete example (CONS '(A B) '((C D))).

The M a p p i n g . Figure 3 illustrates the simulation of SS's initial
attempt to map from the concrete code to an abstract LISP
function. First she maps CONS in the concrete code into CONS

F i g u r e 1
simulation and SS's protocols, we infer that these figures also
describe the goal structures that were guiding her problem
solutions. Figure 1 illustrates the first work that was done on the
ADDTWO subproblem. The first operator decomposes this into
the subgoals of coding the function and checking the code. The
first operator set subgoals to come up with concrete examples of
the input to ADDTWO and what its output should be, to find some
code that could be typed at the top level that would convert the
concrete input into the concrete output, to check this code, and
then to map this code into an abstract function. The inputs she
chose to pass to ADDTWO were (A B) and (C D). Why she chose
list arguments we are unsure. The result she wanted for these
inputs was ((A B) (CD)).

Figure 2 illustrates the processes by which she decided how to
create this example at the top level. After deciding on the
example, she went through an episode where she explicitly
reviewed the definition of all the functions she knew, searching
for an appropriate one. She selected CONS. We represented the
definition of CONS to GRAPES as

The first argument of CONS is any S-expression and

the second argument is a list. Its result is a list. The

first element of the result is the first argument. The

rest of the result consists of the second argument.

She and GRAPES chose CONS on the basis of the fact that a list
was wanted and CONS makes lists. Having selected CONS the
subgoals were now to determine what arguments to pass to
CONS in order to get the intended result.

The critical piece of information in selecting the first argument
is the definition statement The first element of the result is the first
argument. GRAPES interfaces this with the desired result, ((A B)
(C D)), to determine that the correct argument should be (A B).

Next, SS and GRAPES turn to the second argument. The
appropriate part of this definition is The rest of the result consists
of the second argument. Matching this would retiieve ((C D)) as
the second argument. However, our subject retrieved (C D). We
assume (see detailed discussions in Anderson, Farrell and
Sauers) that the semantic feature of consists were partially lost
and this statement became The rest of the result contains the
second argument. We manipulated GRAPES' working memory so

J. Ande rson 59

in the LISP {unction. At this point the structure of the function is

(clef addtwo (lambda (one two)

(cons <?> <?>)))

The remaining task is to map the two concrete arguments into
abstract arguments. She first focuses on mapping (A B). The
following rule applies:

IF the goal is to map a concrete expression of LISP

and the expression is a data structure involving

a term

and the term corresponds to an argument of

the function

THEN the abstract expression can be obtained from

the data structure

by replacing the term with the argument

So, in this case she is trying to map the concrete expression (A B)
where the argument ONE corresponds to the term (A B).
Therefore, after substituting the argument for the term, the
abstract expression becomes simply ONE. This same rule applies
to map the second concrete expression ((C D)). In this case the
argument TWO corresponds to the term (C D) and the abstract
expression after substitution is (TWO). Note this rule has
correctly mapped the first expression but incorrectly mapped the
second expression. The function definition at this point is

(def addtwo

(lambda (one two)

(cons one (two))))

Figure 4 illustrates some of the subsequent evolution of this
definition. The coding of ADDTWO had the brother goal of
checking that code. Both SS and GRAPES called the LISP
interpreter to try the code with the arguments (A B) and (C D).
Both received the same error message "TWO undefined function
object." This also corresponds to an error that SS had
encountered a few times previously in her problem solving. In

previous occasions, the cause had been failure to quote an
argument. Therefore, we assumed that she had acquired an
operator that used quote to stop evaluation. When this operator
applied, her LISP code became

(def addtwo

(lambda (one two)

(cons one '(two))))

Again, the code was tried. This time it returned the result ((A B)
TWO). Comparing this with her desired result the problem was
localized to the second argument given to CONS and GRAPES
went back to retrying the goal of mapping ((C D)).

Figure 5
Figure 5 illustrates the simulation of this mapping. Having

returned to this goal, the previous MAP FIND operator will not
apply again. Therefore, a default rule applies which creates a
new subgoal of coding a list consisting of a single argument. As
in the case of coding the full ADD TWO problem, GRAPES falls
back on the plan of making up a concrete example, coding it,
checking the code, and then mapping the code into an abstract
code for the function. The previous concrete example of ((C D))
is used. Again, CONS is chosen because it makes lists and again
its definition is used to determine the correct arguments. This
time the definition is correctly used and GRAPES plans the
concrete code as (CONS '(C D) NIL).

After mentally simulating this, GRAPES turns to the goal of
mapping the concrete code (CONS '(C D) NIL) into a LISP
function. The process of performing this mapping is quite
analogous to the original mapping in Figure 3. Again, CONS is
mapped into CONS. The same MAP-FIND operator as before
maps (C D) into TWO. An operator for special LISP symbols, like
NIL, maps NIL onto itself. So, the final successful code becomes

(def addtwo

(lambda (one two)

(cons one (cons two nil))))

Return to ONETWO. Figure 6 illustrates the behavior of the
simulation and the subject when they returned to the original

60 J. Anderson

ONETWO problem. The code they generated is given below:

(def onetwo

(lambda (list)

(cons (first list)

(cons (second list) nil))))

Whereas the subject had taken an hour to code ADDTWO, she
only took ten minutes to solve ONETWO and most of that time
was spent confirming what the functions FIRST and SECOND did.
ONETWO is solved by the same method that ADDTWO is solved,
but without any rehearsal of the ONETWO method. Our
assumption is that operators were compiled from this problem
that summarized the planning steps that went into the problem
solution.

F i g u r e 6
One of the operators that GRAPES compiled summarizes the

problem solution illustrated in Figure 5 that started with the goal
of creating a list of a single element and resulted in the action of
CONSing that element with NIL. The compilation procedure
recognizes that the various aspects of the concrete example and
its code are intermediate results and are not essential to the final
answer. It traces through these steps to determine if there are
any connections from the top goal to the final CONSing action.
The summary operator built is:

IF the goal is to code a list consisting of

one argument

THEN CONS that argument with NIL

and set as subgoals to code that argument
Similarly, an operator is compiled to correspond to the outer
CONS in the ADDTWO function. It has the form:

IF the goal is to code into a list consisting

of argument! and argument2

THEN CONS argumentl into a list consisting of

a rgumen t2

and set as subgoals to code argumentl

and to code a list consisting of argument2

Conc lus ions f rom S imu la t ion . This example illustrates a
number of conclusions that we have come to in simulating the
problem-solving of our subjects. The first conclusion is that their
behavior is hierarchically organized according to goal trees like
the ones illustrated in Figures 1-6. The second conclusion is that
subjects prefer to solve problems by analogy to concrete cases.
In this episode the subject created an example at the top level
which she then tried to map over into the code for the function.

The third conclusion is the importance of knowledge
compilation in extracting from an example problem operators that
will streamline the solution of later problems. There are
numerous technical issues in deciding how much to collapse into
a single operation and we have hardly solved them all. However,
for a discussion of what progress we have made consult
Anderson(1982) and Anderson, Farrell, and Sauers(1982). The
hierarchical organization imposed by goal structures such as the
one in Figure 5 is important to the compilation process. It serves
to indicate what aspects of the original problem solving episode
should go together in the compiled operator.

The fourth conclusion concerns the impact of working memory
failure on performance. We saw that CONS was incorrectly
applied because the subject momentarily misrepresented its
definition. I will return later in this paper to the issue of how
working memory failure impacts on incorrect application of a
function.

Representation

How one represents a problem has a strong impact on one's
problem solving. We have been trying to document the impact of
data structure representations on subject's problem solving.
Typically, LISP is now taught with respect to parenthesized
notation. Subjects conceive of the effects of basic LISP
operators like CAR, CDR, CONS, and LIST in terms of changes
made on marks on a page. We think this representation has
strong implications for the relative difficulty of the various
functions and the types of errors.

(CAR ' ((A) (B))) = (A)
VERY EASY

(CDR ' ((A) (B))) = ((B))
MORE DIFFICULT
TYPICAL ERROR: = (B)

(L IST ' (A) ' (B)) = ((A) (B))
FAIRLY EASY

(CONS ' (A) ' (B)) = ((A) B)
MOST DIFFICULT
TYPICAL ERROR: = ((A) (B))

F i g u r e 7

Figure 7 illustrates the four functions. CAR takes the first
element of a list and subjects have little difficulty with it beyond
overcoming the non-mnemonic character of the function name.
CDR returns the remander of a list and subjects have more
difficulty with it. A frequent error is illustrated in Figure 7. When
the tail of the list contains a single list, subjects will return that list
with one set of parentheses missing. The function LIST subjects
find both mnemonic and easy to understand. They have the
greatest difficulty with CONS. CONS inserts its first argument into
the list that is its second argument. A frequent error is leaving an
extra set of parentheses around the second argument.

J. Anderson 61

Exactly why these errors are made is a little uncertain. Robin
Jeffries has developed a GRAPES model that will produce these
errors. It and many similar explanations turn on the fact that CDR
and CONS are explained to subjects as moving parentheses. For
instance, this instruction is quite explicit in Siklossy(1976).
Subjects think thai CDR operates by deleting the first parenthesis
and the first element and inserting the parenthesis in front of the
rest of the list. If the last insert operation is omitted it is possible
to have an error. Subjects think of CONS as deleting the left
parenthesis of the second argument, inserting the first argument
in front of that, and then inserting left parentheses. If they
omitted the deletion operation they could produce the error in
f igure 7. Subjects also think of CAR and LIST as moving
parentheses, but omission of any step in CAR and LIST results in
a nonsensical result as does omission of any of the other steps in
CDR and CONS. Thus, the problem with CDR and CONS is that
there are critical steps which, if omitted, will lead to non-
detectable errors Consistent with this view is that the same
subject will randomly make and not make the errors. This is what
we would expect if it were produced by occasionally forgetting a
step.

(CAR ((A .N IL) . ((B .N IL) .N IL))) = (A.NIL)
VERY EASY

(CDR ((A .N IL) . ((B .N IL) .N IL))) = ((B.NIL).NIL)
VERY EASY

(LIST (A.NIL) (B.NIL))= ((A.NTL). ((B.NIL) .NIL))
DIFFICULT
TYPICAL ERROR: = ((A.NIL) . (B.NIL))

(CONS (A.NIL) (B.NIL)) = ((A.NIL) . (B.NIL))
FAIRLY EASY

Figure 8
One might think that the problems with CDR and CONS are

unavoidable. However, this is certainly not the case. Originally,
LISP' was taught as operating on a box structure, which is much
closer to the actual computer-implementation of LISP. Figure 0
illustrates how the functions apply to the dotted pair equivalent of
the box notation (Weissman, 1967). We performed an experiment
in which we explained the operation of these LISP functions with
respect to the dotted pair equivalent of the box notation and
contrasted this with the list notation. As we have informally
observed, CDR is harder than CAR with the list notation and this
is largely due to forgetting parentheses in examples like Figure 7.
This difference went away with the dotted-pair notation. Again
we confirmed our informal observation that CONS was more
difficult than LIST and this was in part due to failing to put
parenthesis around the second argument. We found that the
difficulty reversed with the dotted-pair notation and the errors
with LIST derived from failing to embed its second argument in a
separate dotted-pair structure. This clearly indicates that the
difference is not a matter of the greater mnemonic value of the
word LIST rather than CONS, as some have suggested.

"Now, I do not want to be read as advocating that LISP
instruction go back to the box notation. There are good
justifications for using the parenthesized list notation as basic
and only later introducing the box representation. People find
lists easier to reason about and the appropriate data structure
usually turns out to be a list. However, there are applied
consequences of understanding how representation impacts on
difficulty of functions. The basic problem with CDR and CONS in
the representation is that they destroy and reconstruct the
structure of their arguments. If the destroy and reconstruct are
not carried out properly, non-detectable wrong answers can
result. There are ways to characterize the operations of CDR and

CONS to avoid this difficulty. Rather than deleting the left
parenthesis, the first element, and reinserting the left parenthesis,
CDR could be characterized as erasing the first element. Rather
than characterizing CONS as deleting the left parenthesis of the
second argument, adding the first argument, and adding the left
parenthesis, we could characterize CONS as squeezing its first
argument into the front of the second.

Problems of Memory Load

One of the surprises to me in studying LISP novices is how
much of their programming time is spent recovering from errors
of memory. We intend to quantify this for each of our protocol
subjects, but informally I would guess it averages around 50%.
This includes time spent trying to reconstruct what forgotten
subgoals are. Worse is when the subject misremembers a
subgoal and solves a different one. Also subjects will often
retrieve the wrong function to perform a task Subjects do not
have the experience of so much wasted time because in
retrospect they tend to forget their failures of memory and only
remember their correct steps. So you might get remarks like, "I
don't know how I could have spent two hours on solving this. I
must have been asleep."

Experts do not have the same frequency of memory errors on
problems. In part this is because their short term memories are
better, perhaps due to something like chunking. But they are also
more reliable at recalling things that occurred half an hour earlier
in the problem solving protocol (Jeffries, Turner, Atwood &
Poison, 1981). This cannot be simply due to chunking. Their
long term memories are more reliable for the domain and become
reliable extensions of short-term memory. This better working
memory for the domain of expertise seems a fairly general
phenomenon. Chase and Ericsson (1981) have studied some
subjects who reliably increased their digit span up to 80 digits
from the usual 7 -+ 2. They also were able to show that this
depended on reliable storage and retrieval from LTM. The
interesting observation was that subjects with 80 digit spans were
no different in other ways. In fact, their letter span was 7 -+2. I
think the same thing happens in programming - we develop
better working memories for partial information computed in the
process of programming and this better working memory is
specific to programming.

One of the classic memory retrieval errors in novice LISP
programming is using LIST instead of CONS. Anderson, Farrell
and Sauers have shown how this can be explained in terms of
what the subject's representation of what CONS and LIST do.
The interesting observation is that these errors appear to be more
frequent in the context of writing a complex function, thus , it
seems when the working memory load increases, errors in
function recall increase.

We did an experiment to see if embedding an extra level of
processing would result in increased errors. Figure 9 illustrates
the materia! used in the experiment. There were three types of
tasks. One involved recognizing the missing function that would
transform the input into the output. The second involved
evaluating the function as applied to a series of arguments. The
third involved recognizing the argument which, if provided to the
function, would produce the output.

62 J. Anderson

(a) FUNCTION RECOGNITION
(? ' (A) ' ((B) (C) (D)))=

((A) (B) (C) (D)) 60%

48%
(? ' (A) (REVERSE ' ((B) (C) (D))))

((A) (D) (C) (B))

(b) Evaluation
52% (CONS ' (A) ' (E C D)) = ?

50% (CONS '(A) (REVERSE ' (B C D))) = ?

(c) ARGUMENT PROVISION
67% (CONS 'X ?) = (X (Y Z))

55% (CONS 'X (REVERSE ?)) = (X (Y Z))

F i g u r e 9
The two types of functions used were LIST and CONS,

although only CONS examples are illustrated in Figure 9. Thus,
for function recognition the subjects choice was implicitly
between LIST and CONS, although occasionally an APPEND was
given. In evaluation and argument provision, the typical errors
were incorrect number of parentheses with error much more
frequent for CONS. Subjects got 79% of the LIST problems
correct, but only 4 1 % of the CONS problems. This is in line with
earlier remarks about the relative difficulty of the two functions.

The principal manipulation of interest was whether the function
had a REVERSE composed in. REVERSE simply changes the
order of elements in a list; it does not change the appropriateness
of a CONS or a LIST in the function generation problems. In
evaluation and argument provision, it does not change the
correct parentheses •- and we only scored these problems for
parentheses, not whether the subject had correctly done the
reversing. However, as can be seen from the percentages
correct in Figure 9, errors did increase when a REVERSE was
involved. Thus, adding an extra piece of information to working
memory increased the error rate. This is an example of working
memory spill over -- extra memory load in one aspect of the
problem impacts on performance in a logically independent
aspect. The effect on function recognition is particularly relevant
here. We see that whether we credit a student with knowing the
difference between LIST and CONS may depend on the working
memory demands of the test context.

Many situations contain working memory demands that pose
needless difficulty for novices. Novices become overburdened in
extracting needless detail and fail to extract the critical
information for learning. One of the most frustrating instances of
this in LISP is parenthesis counting. Novices will be on the verge
of an insight, go off to check whether the parentheses are
balanced for some expression, and lose any chance of getting the
insight after they are finished with the balancing. The implication
is that tutorial techniques that reduce working memory load
should facilitate learning.

References

Anderson, J. R. Tuning of search of the problem space for
geometry proofs. Proceeding of IJCAI 81.

Anderson., J. R. Acquisition of cognitive skill. Psychological
Review, 1982, 89, 369-106.

Anderson, J. R. The Architecture of Cognition. Cambridge, MA:
Harvard University Press, 1933.

Anderson, J. R., Farrell, R , and Sauers, R. Learning to plan in
LISP. ONR Technical Report ONR-C2 2, 1982.

Andersen, J. R. and Kline, P.J. A learning system and its
psychological implications. Proceedings of IJCAI 79.

Chase, W.G. and Ericsson, K. A. Skilled memory. In J. R.
Anderson (Ed.) Cognitive Skills and Their Acquisition.
Hillsdale, NJ: Erlbaum, 1981.

Jett ies, R., Turner, A. A., Poison, P. G and Atwood, M. E. The
processes involved in designing software. In J. R.
Anderson (Fd) Cognitive Skills and their Acquisition.
Hillsdale, NJ: Erlbaum, 1981.

Larkin, J. Enriching formal knowledge: A model for learning to
solve textbook physics problems. In J. R. Anderson (Ed)
Cognitive Skills and Their Acquisition. Hillsdale, NJ:
Erlbaum, 1981.

Sikloosy, L. Let's Talk LISP. Englewood Cliffs,N.J.: Prentice-Hall,
I976.

Soloway, E. M. From problems to programs via plans: The
context and structure of knowledge for introductory LISP
programming. Coins Technical Report 80 19. University of
Massachusetts Amherst, 1980.

Weissman, C. / ISP 7.5 Primer. Belmont, Ca.: Dickenson, 1907.

This research was supported by the Personnel and
Train ing Research Programs, Psychological Services
D i v i s i o n , Of f ice of Naval Research, under Contract
No.: N00014-81-C-0335, Contract Author i ty Number,
NR 157-465 to John Anderson.

