
PR0L0G/EX1 , AN INFERENCE ENGINE

WHICH EXPLAINS BOTH YES AND NO ANSWERS

Adr ian Walker

IBM Research Laboratory
San Jose, Cal i forn ia, USA

ABSTRACT

The language Prolog owes much of its increasing
popular i ty to the fact that one can use it to wr i te
knowledge based systems in a declarat ive s ty le ,
w r i t i ng a specification which is also executable.
When a system wr i t ten in Prolog produces a yes
answer to a quest ion, it can be made to produce an
explanation of its reasoning

However, some reasonable specifications wr i t ten in
Prolog do not produce any answer when executed.
Also, when a knowledge base answers no to a
quest ion, it does not explain why .

This paper describes a new inference engine,
called P ro log /Ex l . Many programs which do not
produce any answer in Prolog do produce answers
in P ro log /Ex l . Pro log/Exl provides explanations of
both yes and no answers.

I INTRODUCTION

It has been pointed out that advice from an exper t
system may only be useful if the system can explain
the reasons for the advice. For example, given the
advice "your car cannot be repaired for less than
the cost of a new one" , most people would want to
know why . Several ex is t ing exper t systems can
explain the i r act ivi t ies to some degree (e . g . 10,
11), and Michie (5) has argued persuasively that
exper t systems should be understood by the i r
users.

In many expert systems, the knowledge requi red
fo r expert ise is held in the form of assertions and
i f - then rules (7, 10). Most such systems answer a
question by chaining th rough rules to reach
assert ions. In (13) it is proposed that it is useful
to th ink of an explanation as an edited proof , and
to t h i nk of a proof as an edited t race. (11) takes a
similar point of view.

The assertions and rules in a system can be used
to represent a port ion of the real wor ld in two
d i f fe ren t ways. Under the "closed wor ld
assumption" (8) only posit ive facts*are s tored, and
it is assumed that all facts which cannot be
deduced are false. The representation is the one
used in relational data bases (3) . Under the "open
wor ld assumption", both posit ive and negative facts

are present , and a fact which is not l isted is
considered to be unknown. For example, the
Emycin (10) confidence factors +1 and -1 can be
considered as denoting True and False,
respect ively, in an open wor ld knowledge base.

In the language Prolog (2) , the closed wor ld
assumption prevails (unless the language is used to
simulate a system such as Emycin), and the
proper ty that a fact is false if it cannot be deduced
is normally provided via a l ib rary def in i t ion of a
"not" symbol. (1 , 8) have shown that this leads to
reasonable logical behavior under some assumptions
which are acceptable in pract ice. Proof extract ion
can be used to cause any knowledge base wr i t ten in
Prolog to provide explanations of yes answers (13) .
However, when such a knowledge base answers no
to a quest ion, it does so by fa i l ing to f ind a proof.
Hence proof extract ion cannot be used d i rect ly to
explain why something is not so.

This paper describes how a modified in te rp re te r ,
called P ro log /Ex l , assigns a procedural meaning to
some programs which lack this in present Prologs,
and how explanations of both fa i lure and success
are generated.

II DECLARATIVE AND PROCEDURAL MEANINGS

This section assumes some acquaintance wi th the
Prolog language (2) . Our notation for a Prolog
clause follows (9) in using '< - ' and '&' for ' i f and
'and ' , respect ively. Variables star t wi th a capital
le t ter , whereas constants do not. (14) describes
the declarat ive and procedural ways of viewing a
Prolog program.

The majority of Prolog programs which are
declarat ively reasonable also behave as expected
procedura l ly . However, under standard
in terpre ters (6 , 9) , some re tu rn no answer. By
way of example, consider

A. Wa lke r 527

Declarat ively, this program states that , in addit ion
to the assert ions, f l y (j f k , sfo) also holds.
Procedural ly, t r y i n g to show this yields an
unbounded recursion on the f i r s t clause, so no
answer is computed.

With present in terpre ters , such a program must
normally be rewr i t ten e .g . by interchanging the
f i r s t two clauses, or as

The change is easy enough, and it f ixes one
problem. However, suppose we add the assertion
f l i gh t (s fo , j f k) and ask for all of the possible pairs
of endpoints of journeys. In standard Prolog no
answer is found at al l , because the in terpreter
keeps t r y i ng longer and longer proofs of the same
journeys. Prolog/Exl f inds the correct answer.

While it is possible to now rewri te this program so
that it terminates in standard Prolog, there are
other more complicated programs which do not
re turn answers. So it seems better to t r y to change
the Prolog in terpreter to deal wi th the problem (4) .
It t u rns out that this change is also needed for
explaining 'no' answers, as described below.

As has been pointed out in (6) , a Prolog
in terpre ter in Prolog can be wr i t ten as four
clauses, one of which has the form

Prolog/Exl keeps a record of the rules which it has
used to ar r ive at its cu r ren t point in the
computation. The clause above is replaced by
clauses which test a rule before it is appl ied. A
rule is only used if it has not already been used,
or if it is a special case of a rule which has been
used. Experimental ly, th is appears to assign the
same procedural meaning to exist ing programs as
does a standard in te rp re te r , but it also assigns the
expected meaning to a large number of programs
(such as Example 1) which do not normally
terminate.

I l l E X P L A I N I N G YES A N D NO ANSWERS

To e x p l a i n a yes a n s w e r , a P ro l og i n t e r p r e t e r in
P ro l og can be a d a p t e d to a c c u m u l a t e a p r o o f t r e e
d u r i n g e x e c u t i o n , b y a d d i n g one a r g u m e n t t o t h e
'demo ' p r e d i c a t e . T h e p r o o f t r e e (o r p a r t o f i t)
can t h e n be used as an e x p l a n a t i o n (1 4) .

Now c o n s i d e r t h e q u e s t i o n 'can one f l y f r o m I h r t o
lax ? ' . Based on Examp le 2 , t h e a n s w e r i s n o , as
t h e r e a r e n o f l i g h t s o u t o f I h r a t a l l .
U n f o r t u n a t e l y , a n i n t e r p r e t e r w h i c h g a t h e r s
e x p l a n a t i o n s i n t h e m a n n e r j u s t o u t l i n e d y i e l d s n o
e x p l a n a t i o n o f t h i s . T h e c o m p u t a t i o n s i m p l y f a i l s ,
so some o t h e r a p p r o a c h i s n e e d e d .

To explain both yes and no answers, Prolog/Ex1
proceeds as fol lows. F i rs t , it checks to see if the
answer is yes, using the approach jus t out l ined. If
there is no proof, t hen , instead of fa i l i ng , it
proceeds to explore possible part ia l proofs in which
certain steps are assumed to succeed (even though
in fact they f a i l) . These steps are marked as
condit ional, and are pr in ted wi th a question mark
in an explanation t ree, to indicate where the
fai lures occur. Assuming that a fa i l ing goal has
succeeded potential ly opens up an unbounded
computation. Hence the technique described in
Section II is used to limit the computation.

In f ind ing explanations, Pro log/Exl follows several
guidelines about what kind of explanation is l ikely
to be a help. For a yes answer, it f inds a shortest
explanat ion. For a no answer, it f inds a
conditional explanation in which the f i r s t
assumption is as deep as possible. Also, for a no
answer, if there is a constant in the quest ion, it
makes sure that the constant is in the knowledge
base and is reachable from the quest ion; otherwise
it generalizes the question by changing all other
constants to d is t inct var iables.

To see how this works , consider the behavior of
Example 2 when interpreted by P ro log /Ex l .

If we ask to f l y from j f k to lax, we get

This can be read as explaining that we can f ly from
j f k to lax because: there is a f l i gh t from j f k to bos
and we can f l y from bos to lax, and so on . Note
that this is the shorter of two possible proofs .
The tree can be used to synthesize an explanation
in English as in the work of Weiner (15) , or can be
d i rect ly mapped into quasi-Engl ish as in the
SYLLOG system (12).

If we ask to f l y from sfo to Ihr , we get

which says that th is would be possible, via lax,
except that there are no f l igh ts out of lax, and
there is no sequence of f l igh ts into Ihr . If we ask
to f l y from Ihr to lax, we get

indicat ing that there are no f l ights out of Ihr .
(14) gives the behavior of Prolog/Exl on a
knowledge base which is more realistic than
Example 2.

528 A.Walker

The combined techniques of section II and of th is
section lead to behavior that is reasonably he lp fu l .
This behavior is bu i l t in to the Pro log/Exl
in te rp re te r , so it is available to all knowledge
bases without extra ef for t on the par t of the people
who wr i te the rules.

IV CONCLUSIONS

When a knowledge base answers a quest ion, its
rules are combined by pat tern matching, in ways
that the wr i ters of the rules may not have foreseen
in deta i l . So, both for the people who provide the
rules and for other users, i t is important that the
knowledge base be able to explain the reasoning
that leads to its resul ts , i .e . that it be able to
provide some information about what instances of
what rules have been used.

If a knowledge base answers yes to a question
under a standard in te rp re te r , then an explanation
can be produced ei ther by a compiled method (13) ,
or by an in terpre ter modified to accumulate a proof
t ree. However, there are declarat ively reasonable
programs which have no procedural meaning in
standard Prolog, that is , certain questions do not
yield answers.

I f , in standard Prolog, the answer to a question is
no, then the answer is the result of a fa i lure to
f ind a proof of a yes answer. Al l of the rule
matches made du r i ng the attempted proof are
discarded, and no explanatory information remains.

This paper has described Pro log/Ex1, an inference
engine which assigns a procedural meaning to many
programs which do not produce an answer in
standard Prolog. Pro log/Ex l provides explanations
of both yes and no answers. A 'no' explanation
either indicates that some object is missing from the
knowledge base, or that while the necessary
objects are present , some relat ionship between
them is missing.

Prolog/Exl allows one to wr i te pure ly declarat ively
in many cases in which standard Prolog does not,
and it provides explanations of both yes and no
answers. When there are several explanations for
an answer, one which is l ikely to be useful is
chosen.

V ACKNOWLEDGEMENTS

It is a pleasure to acknowledge that this work has
benefi ted from conversations wi th Chin Chang, Se
June Hong, Antonio Porto, David H. D. Warren,
and Walter Wilson.

REFERENCES

(1) C lark , K. L. Negation as fa i lu re . In Logic and
Data Bases , (H . Gallaire and J. Minker, Eds),
Plenum Press, 1978, 55-76.

(2) Clocksin, W. F. and C. S. Mell ish,
Programming in Prolog. Spr inger -Ver lag , 1982.

(3) Codd, E. F. Relational completeness of data
base sublanguages. In Data Base Systems , (R.
Rust in , Ed) , Prentice Hall , 1972, 65-98.

(4) Kowalski, R. A. Logic programming. Report,
Department of Comput ing, Imperial College,
London, 1982.

(5) Michie, D. Game playing programs and the
conceptual interface. ACM Sigart Newsletter No
80, 1982, 64-70.

(6) Peirera, L. M. , F. C. M. Pereira and D. H. D.
Warren, User's guide to Decsystem-10 Prolog.
Occasional Paper No. 15, Department of Ar t i f i c ia l
Intel l igence, Univers i ty of Ed inburgh , 1978.

(7) Pereira, L . , P. Sabatier and E. Ol ivei ra.
ORBI - an expert system for environmental
resource evaluation th rough natural language,
Proceedings of the First Internat ional Logic
Programming Conference , Faculte des Sciences de
Luminy, Marseil les, France, 1982, 200-209.

(8) Reiter, R. On closed world data bases. In
Logic and Data Bases , (H . Gallaire and J. Minker,
Eds) , Plenum Press, 1978, 55-76.

(9) Roberts, G. M. An implementation of Prolog.
M.S. thesis , Department of Computer Science,
Un ivers i ty of Waterloo, 1977.

(10) van Melle, W. et . a l . The Emycin reference
manual. Report STAN-CS-81-885, Department of
Computer Science, Stanford Un ivers i t y , 1981.

(11) Wallis, J. and Shor t l i f fe , E. H. Explanatory
power fo r medical exper t systems: studies in the
representat ion of causal relationships for cl inical
consultat ions. Report STAN-CS-82-923,
Department of Computer Science, Stanford
Un ive rs i t y , 1982.

(12) Walker, A. D. SYLLOG: A knowledge based
data management system. Report No. 034,
Computer Science Department, New York
Un ivers i t y , 1981.

(13) Walker, A. D. Automatic generation of
explanations of results from knowledge bases.
Report RJ3481, IBM Research Laboratory, San
Jose, Cal i fornia, 1982.

(14) Walker, A. D. P ro log /Ex l , an inference
engine which explains both yes and no answers.
Report RJ3771, IBM Research Laboratory, San
Jose, Cal i fornia, 1983.

(15) Weiner, J. L. BLAH, a system which explains
its reasoning. Ar t i f i c ia l Intel l igence 15, 1980,
19-48.

