PROLOG/EX1, AN

INFERENCE ENGINE

WHICH EXPLAINS BOTH YES AND NO ANSWERS

Adrian Walker

IBM Research Laboratory
San Jose, California, USA

ABSTRACT

The language Prolog owes much of its increasing
popularity to the fact that one can use it to write
knowledge based systems in a declarative style,
writing a specification which is also executable.
When a system written in Prolog produces a yes
answer to a question, it can be made to produce an
explanation of its reasoning

However, some reasonable specifications written in
Prolog do not produce any answer when executed.
Also, when a knowledge base answers no to a
question, it does not explain why.

This paper describes a new inference engine,
called Prolog/Exl. Many programs which do not
produce any answer in Prolog do produce answers
in Prolog/Exl. Prolog/Exl provides explanations of
both yes and no answers.

| INTRODUCTION

It has been pointed out that advice from an expert
system may only be useful if the system can explain
the reasons for the advice. For example, given the
advice "your car cannot be repaired for less than
the cost of a new one", most people would want to
know why. Several existing expert systems can
explain their activities to some degree (e.g. 10,
11), and Michie (5) has argued persuasively that
expert systems should be wunderstood by their
users.

In many expert systems, the knowledge required
for expertise is held in the form of assertions and
if-then rules (7, 10). Most such systems answer a
question by chaining through rules to reach
assertions. In (13) it is proposed that it is useful
to think of an explanation as an edited proof, and
to think of a proof as an edited trace. (11) takes a
similar point of view.

The assertions and rules in a system can be used
to represent a portion of the real world in two
different ways. Under the "closed world
assumption” (8) only positive facts*are stored, and
it is assumed that all facts which cannot be
deduced are false. The representation is the one
used in relational data bases (3). Under the "open
world assumption”, both positive and negative facts

are present, and a fact which is not listed is
considered to be wunknown. For example, the
Emycin (10) confidence factors +1 and -1 can be
considered as denoting True and False,
respectively, in an open world knowledge base.

In the language Prolog (2), the closed world
assumption prevails (unless the language is used to
simulate a system such as Emycin), and the
property that a fact is false if it cannot be deduced
is normally provided via a library definition of a
"not" symbol. (1, 8) have shown that this leads to
reasonable logical behavior under some assumptions
which are acceptable in practice. Proof extraction
can be used to cause any knowledge base written in
Prolog to provide explanations of yes answers (13).
However, when such a knowledge base answers no
to a question, it does so by failing to find a proof.
Hence proof extraction cannot be used directly to
explain why something is not so.

This paper describes how a modified interpreter,
called Prolog/Exl, assigns a procedural meaning to
some programs which lack this in present Prologs,
and how explanations of both failure and success
are generated.

I DECLARATIVE AND PROCEDURAL MEANINGS

This section assumes some acquaintance with the
Prolog language (2). Our notation for a Prolog
clause follows (9) in using '<-' and '&" for 'if and
‘and', respectively. Variables start with a capital
letter, whereas constants do not. (14) describes
the declarative and procedural ways of viewing a
Prolog program.

The majority of Prolog programs which are
declaratively reasonable also behave as expected
procedurally. However, under standard
interpreters (6, 9), some return no answer. By
way of example, consider

Example 1
fly(Jfk, Chi) <-
fly(Jfk, Bos) & fiy[Bos, Chi).
fly (Jfk,Bos) <- flight{Jfk, Bos).
flight(jfk, bos). flight(bos, chi).
flight(bos, sfo). flight(chi, sfo).
flight(sfo, lax).

Declaratively, this program states that, in addition
to the assertions, fly(jfk, sfo) also holds.
Procedurally, trying to show this vyields an
unbounded recursion on the first clause, so no
answer is computed.

With present interpreters, such a program must
normally be rewritten e.g. by interchanging the
first two clauses, or as

Example 2
fty (Jfk, Bos) <- flight(Jfk,Bos).
fly(Jfk, Chi). <-
flight{Jfk, Bos) & fly(Bos, Chi).
flight(jfk, bos). flight(bos, chi)
flight{bos, sfo). flight(chi, sfo)
flight(sfo, lax).

The change is easy enough, and it fixes one
problem. However, suppose we add the assertion
flight(sfo, jfk) and ask for all of the possible pairs
of endpoints of journeys. In standard Prolog no
answer is found at all, because the interpreter
keeps trying longer and longer proofs of the same
journeys. Prolog/Exl finds the correct answer.

While it is possible to now rewrite this program so
that it terminates in standard Prolog, there are
other more complicated programs which do not
return answers. So it seems better to try to change
the Prolog interpreter to deal with the problem (4).
It turns out that this change is also needed for
explaining 'no' answers, as described below.

As has been pointed out in (6), a Prolog
interpreter in Prolog can be written as four
clauses, one of which has the form

demo(G) <- rule(G<-B) & demo(B}.

Prolog/Exl keeps a record of the rules which it has
used to arrive at its current point in the
computation. The clause above is replaced by
clauses which test a rule before it is applied. A
rule is only used if it has not already been used,
or if it is a special case of a rule which has been
used. Experimentally, this appears to assign the
same procedural meaning to existing programs as
does a standard interpreter, but it also assigns the
expected meaning to a large number of programs
(such as Example 1) which do not normally
terminate.

Il _EXPLAINING YES AND NO ANSWERS

To explain a yes answer, a Prolog interpreter in
Prolog can be adapted to accumulate a proof tree
during execution, by adding one argument to the
'‘demo' predicate. The proof tree (or part of it)
can then be used as an explanation (14).

Now consider the question 'can one fly from Ihr to

lax ?°'. Based on Example 2, the answer is no, as
there are no flights out of lhr at all.
Unfortunately, an interpreter which gathers

explanations in the manner just outlined yields no
explanation of this. The computation simply fails,
so some other approach is needed.

A. Walker 527

To explain both yes and no answers, Prolog/Ex1
proceeds as follows. First, it checks to see if the
answer is yes, using the approach just outlined. If
there is no proof, then, instead of failing, it
proceeds to explore possible partial proofs in which
certain steps are assumed to succeed (even though
in fact they fail). These steps are marked as
conditional, and are printed with a question mark
in an explanation tree, to indicate where the
failures occur. Assuming that a failing goal has
succeeded potentially opens up an unbounded
computation. Hence the technique described in
Section |l is used to limit the computation.

In finding explanations, Prolog/Exl follows several
guidelines about what kind of explanation is likely
to be a help. For a yes answer, it finds a shortest
explanation. For a no answer, it finds a
conditional explanation in which the first
assumption is as deep as possible. Also, for a no
answer, if there is a constant in the question, it
makes sure that the constant is in the knowledge
base and is reachable from the question; otherwise
it generalizes the question by changing all other
constants to distinct variables.

To see how this works, consider the behavior of
Example 2 when interpreted by Prolog/Exl.

If we ask to fly from jfk to lax, we get

fly (jfk.lax)
flight(jfk,bos)
fly(bos,lax)
flight({bos, sfo)
fly(sfo,lax)
flight(sfo,lax)

This can be read as explaining that we can fly from
jfk to lax because: there is a flight from jfk to bos
and we can fly from bos to lax, and so on. Note
that this is the shorter of two possible proofs.
The tree can be used to synthesize an explanation
in English as in the work of Weiner (15), or can be
directly mapped into quasi-English as in the
SYLLOG system (12).

If we ask to fly from sfo to lhr, we get

fly (sfo,lhr}
flight{sfo,lax)
fly(lax,lhr)
flight(lax,)} 7
fly(,ihr) 7

which says that this would be possible, via lax,
except that there are no flights out of lax, and
there is no sequence of flights into lhr. If we ask
to fly from lhr to lax, we get

fly{lhr, lax)
flight(lhr,) 7
fiy(sfo,lax)
flight(sfo, lax)

indicating that there are no flights out of Ihr.
(14) gives the behavior of Prolog/Exl on a
knowledge base which is more realistic than
Example 2.

528 A.Walker

The combined techniques of section Il and of this
section lead to behavior that is reasonably helpful.
This behavior is built in to the Prolog/Exl
interpreter, so it is available to all knowledge
bases without extra effort on the part of the people
who write the rules.

IV_CONCLUSIONS

When a knowledge base answers a question, its
rules are combined by pattern matching, in ways
that the writers of the rules may not have foreseen
in detail. So, both for the people who provide the
rules and for other users, it is important that the
knowledge base be able to explain the reasoning
that leads to its results, i.e. that it be able to
provide some information about what instances of
what rules have been used.

If a knowledge base answers yes to a question
under a standard interpreter, then an explanation
can be produced either by a compiled method (13),
or by an interpreter modified to accumulate a proof
tree. However, there are declaratively reasonable
programs which have no procedural meaning in
standard Prolog, that is, certain questions do not
yield answers.

If, in standard Prolog, the answer to a question is
no, then the answer is the result of a failure to
find a proof of a yes answer. All of the rule
matches made during the attempted proof are
discarded, and no explanatory information remains.

This paper has described Prolog/Ex1, an inference
engine which assigns a procedural meaning to many
programs which do not produce an answer in
standard Prolog. Prolog/Exl provides explanations
of both yes and no answers. A 'no' explanation
either indicates that some object is missing from the
knowledge base, or that while the necessary
objects are present, some relationship between
them is missing.

Prolog/Ex| allows one to write purely declaratively
in many cases in which standard Prolog does not,
and it provides explanations of both yes and no
answers. When there are several explanations for
an answer, one which is likely to be useful is
chosen.

V_ACKNOWLEDGEMENTS

It is a pleasure to acknowledge that this work has
benefited from conversations with Chin Chang, Se
June Hong, Antonio Porto, David H. D. Warren,
and Walter Wilson.

REFERENCES

(1) Clark, K. L. Negation as failure. In Logic and
Data Bases , (H. Gallaire and J. Minker, Eds),
Plenum Press, 1978, 55-76.

(2) Clocksin, W. F. and C. S. Mellish,
Programming in Prolog. Springer-Verlag, 1982.

(3) Codd, E. F. Relational completeness of data
base sublanguages. In Data Base Systems , (R.
Rustin, Ed), Prentice Hall, 1972, 65-98.

(4) Kowalski, R. A. Logic programming. Report,
Department of Computing, Imperial College,
London, 1982.

(5) Michie, D. Game playing programs and the
conceptual interface. ACM Sigart Newsletter No
80, 1982, 64-70.

(6) Peirera, L. M., F. C. M. Pereira and D. H. D.
Warren, User's guide to Decsystem-10 Prolog.
Occasional Paper No. 15, Department of Artificial
Intelligence, University of Edinburgh, 1978.

(7) Pereira, L., P. Sabatier and E. Oliveira.
ORBI - an expert system for environmental
resource evaluation through natural Ilanguage,
Proceedings of the First International Logic
Programming Conference , Faculte des Sciences de
Luminy, Marseilles, France, 1982, 200-209.

(8) Reiter, R. On closed world data bases. In
Logic and Data Bases , (H. Gallaire and J. Minker,
Eds), Plenum Press, 1978, 55-76.

(9) Roberts, G. M. An implementation of Prolog.
M.S. thesis, Department of Computer Science,
University of Waterloo, 1977.

(10) van Melle, W. et. al. The Emycin reference
manual. Report STAN-CS-81-885, Department of
Computer Science, Stanford University, 1981.

(11) Wallis, J. and Shortliffe, E. H. Explanatory
power for medical expert systems: studies in the
representation of causal relationships for clinical
consultations. Report STAN-CS-82-923,
Department of Computer Science, Stanford
University, 1982.

(12) Walker, A. D. SYLLOG: A knowledge based
data management system. Report No. 034,
Computer Science Department, New York
University, 1981.

(13) Walker, A. D. Automatic generation of
explanations of results from knowledge bases.
Report RJ3481, IBM Research Laboratory, San
Jose, California, 1982.

(14) Walker, A. D. Prolog/Exl, an inference
engine which explains both yes and no answers.
Report RJ3771, IBM Research Laboratory, San
Jose, California, 1983.

(15) Weiner, J. L. BLAH, a system which explains
its reasoning. Artificial Intelligence 15, 1980,
19-48.

