
DYNAMIC STUDENT MODELLING IN
AN INTELLIGENT TUTOR

FOR LISP PROGRAMMING

Brian J. Reiser
John R. Anderson
Robert G. Farrell

Advanced Computer Tutoring Project
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

We describe an intelligent tutor for LISP programming.
This tutor achieves a set of pedagogical objectives derived
from Anderson's (1983) learning theory provide instruction
in the context of problem-solving, have the student generate
as much of each solution as possible, provide immediate
feedback on errors, and represent the goal structure of the
problem-solving The tutorial interface facilitates
communication and prevents distracting low-level errors
Field tests of the tutor in college classes demonstrate that it
is more effective than conventional classroom instruction

1. Introduction
Constructing an intelligent tutoring system to teach

complex cognitive skills is not only a practical application of
cognitive science theory and methodologies, but is also
arguably the strongest test of a learning theory. In this
paper, we report our work on an intelligent tutor that
effectively helps students learn to program in LISP. This
tutor was designed according to a set of pedagogical
principles derived from Anderson's (1983) ACT* learning
theory (Anderson, Boyle, Farrell, & Reiser, 1984, Anderson,
Boyle. & Reiser, 1985). We shall describe how the tutor
achieves a set of pedagogical objectives, and present the
results of recent field tests of the tutor in Carnegie-Mellon
University classrooms.

2. Tutorial Goals
Private tutoring is generally found to be the most

effective form of instruction. We have found students
working with private human tutors to learn material up to
four times as quickly as those in the typical classroom
situation (i.e., attending lectures, reading texts, and working
alone on homework problems). Similarly. Bloom (1984)
found students working with private tutors attained a better
grasp of the material than a comparable group of students
spending the same amount of time in the classroom. We
have developed a number of pedagogical principles that
explain the effectiveness of private tutoring (Anderson, et a!..
1984, 1985), and have guided the design of an intelligent
tutor for LISP on those principles.

Most of the learning in acquiring a cognitive skill occurs
while the student actually tries to solve problems in the
domain. The major role of a tutor is to make the problem-
solving episodes more effective learning experiences. Our
LISP tutor, called GREATERP (Goal-Restricted Environment
for Tutoring and Educational Research on Programming), is

a device for structuring students problem-solving and
providing appropriate feedback and guidance to enable the
student to effectively learn how to program Thus, the tutor
is an environment for writing LISP programs, and is able to
provide instruction in the most effective context -- while the
student is trying to solving problems using the target skills

A second pedagogical objective is that the student
should do as much of the work as possible Students learn
more by doing than by being told The tutor must be able
to adapt to the amount of assistance required for the
student to be able to solve the problems Thus the tutor
must be able to monitor the student's problem-solving to
determine if and when guidance is needed Enough
guidance must be provided to limit the student's floundering,
and therefore enable the student to successfully solve the
problem, without leading the student more than necessary.

A third objective is that the tutor should provide
immediate feedback. If the tutor is able to point out errors
while they are being made rather than after the entire
program is written, the student can then correct those errors
and avoid large amounts of time wasted in trying to isolate
program bugs. Students often spend much of their learning
time recovering from errors. These errors can interfere with
acquiring the target skills, as students often get lost while
trying to track down an error, perhaps misdiagnosing the
cause of an error and changing correct parts of the
program. Furthermore, students are more likely to correctly
debug their knowledge upon immediate feedback, because
the rules they used to commit the error are still active in
memory and thus more successfully modified than when
memory search is required to find the responsible rule. In
order for the tutor to provide effective immediate feedback,
it must constantly monitor and understand the student's
behavior.

B. Reiser et al . 9

A final constraint on the design of the tutor is that it
should represent the structure of the problem for the
student. Often instruction communicates the final form of
an answer (e.g., a program or a geometry proof) without
focusing on the types of goals and subgoals generated in
the problem-solving in order to produce such an answer
(Anderson et al., 1984, 1985). Thus students are left to
induce the procedures for obtaining such a solution with
insufficient constraints, and in the early stages of learning
often fall back upon generate and test strategies Thus, it
is important for the tutor to communicate the goal structure
of LISP programming.

We have tried to achieve these goals in a tutor that
serves as a helpful "programming environment" Students

can compose programs in this environment just as if they
were using a smart structured editor. However, whenever
the student makes a planning error, a coding error, or asks
for assistance, the tutor provides helpful information so that
the student can continue. The tutor will also interrupt if
necessary to curtail floundering and help the student get
back on a correct path to a solution. In addition, this
environment is designed to represent the conceptual
structure of programming problems more accurately than
typical environments (e.g . screen editors)

3. The Model-Tracing Methodology
The key to a tutor's success is the ability to fit each act

of the student into a model of correct and incorrect
methods for solving problems in the domain. A detailed
analysis of each portion of the student's solution is
necessary in order to diagnose errors and to provide
appropriate guidance. We call the process of understanding
the student's behavior as it is generated model-tracing. In
this methodology, the tutor solves the problem along with a
student, tracing the s tudents reasoning as he or she enters
each part of the solution. With each input typed, the tutor
tries to figure out what correct rule or misconception would
have led to that input being generated. If it is a correct
rule, then the tutor stays silent and waits for further input
If. on the other hand, the input is diagnosed as an error,
then the tutor interrupts with advice. Thus, to the extent
that the student is following a path that will lead to a
correct solution, the tutor stays in the background, acting as
an intelligent structured editor. Upon request, or when the
tutor diagnoses that the student is in trouble, the tutor
provides the next step in the solution, enabling the student
to continue. In addition, if the student has difficulty writing
code, the tutor will assist the student in planning out the
solution, and then return the student to writing code

In order to implement the model-tracing methodology, the
tutor draws on three components

1. Ideal student model The domain knowledge
necessary to solve problems

2. Bug Catalogue Knowledge about the common
mistakes and poor strategies of novice
programmers.

Ideal Student Model The tutor must be able to solve

problems in the domain so that it can understand the
student's behavior and assist in the problem-solving as
required. However, an expert system could not adequately
serve as the basis for the tutor. Experts will solve problems
using more advanced heuristics, macro-rules, and other
techniques not yet in the curriculum for the student.
Instead, the tutor must not only be able to solve problems,
but must be able to solve them as advanced students would
do. The rules for reasoning in the domain that we want
the student to acquire must be available to the tutor for the
purposes of explanation (Clancey. 1983) Thus the LISP
tutor contains an ideal student model a simulation of the
programming knowledge ideal students use in solving LISP
problems. This ideal model is based on a detailed theory
of how students learn to program (Anderson Farrell. &
Sauers. 1984). The ideal model for LISP programming is
implemented in GRAPES, a Goal-Restricted Production
system (Sauers & Farrell, 1982). The GRAPES architecture
is particularly well suited for modelling the type of goal
decomposition found in solving programming problems.
Each production in the ideal model contains a specification
of the goal the rule will achieve and a description of the
conditions under which the rule is applicable. Table 1
shows the production rule that applies to code the function
append in order to concatenate two lists.

Production Rule in Ideal Model.

IF the goal is to combine LIST1 and LIST2
into a single list

and LIST1 is a list
and LIST2 is a list

THEN use the function APPEND
and set subgoals to code LIST1 and LIST2

A Related Buggy Rule

IF the goal is to combine LIST1 and LIST2
into a single list

and LIST1 is a list
and LIST2 is a list

THEN use the function LIST
and set subgoals to code LIST1 and LIST2

Tutor's Response to the Bug:

You should combine the first list and the second list, but
LIST is not the right function. If you LIST together (a b c)
and (x y z), for example, you will get ((a b c) (x y z))
instead of (a b c x y z). LIST just wraps parens around its
arguments.

Table 1. A correct and buggy production rule in the
tutor's model.

3. Tutoring control module Pedagogical strategies
that structure the interaction with the student.

10 B. Reiser et al.

The ideal model contains both planning and coding
production rules. The planning rules design an algorithm to
achieve a particular program specification, and the coding
productions then write the code to achieve the algorithm.
In many cases, coding productions exist that map directly
from the program specification to the code, bypassing the
separate planning step. These more complex productions
are necessary to handle cases where a more competent or
advanced student does not require a separate planning
phase, but can go directly to the code. Thus, there must
be enough redundancy in the ideal model to follow the
many different paths through a problem that students of
different backgrounds and abilities will require

A problem is specified to the tutor by setting a goal to
code a function that computes a particular operation on one
or more objects, and by specifying a set of facts in working
memory that describe the relationships between the
conceptual objects in the problem When the ideal model
is given a problem to code a LISP function, it applies a
large sequence of production rules to plan and then write
the LISP code.

Bug catalogue. Associated with the rules in the ideal
model there is also a large set of buggy rules which
represent misconceptions novice programmers often develop
during learning. Buggy rules are incorrect variations of
correct rules in the ideal model (Brown & Burton
1978. Sleeman, 1982). A buggy rule may represent a poor
strategy, semantic confusions between the basic LISP
functions, misunderstandings about manipulating objects such
as variables, erroneous use of syntactic constructs (e g .
missing quotes, misgrouped parentheses), or other common
slips A buggy version of the append rule is shown in
Table 1

In order to diagnose errors, the tutor compares the
student input against the correct rules the ideal model is
considering and the associated buggy rules relevant to the
current state in the problem solution By dynamically
modelling the student's path through a problem, the tutor
always has a model of the student's intentions inferring
intentions is necessary for responding appropriately to
students misconceptions about programming (Johnson &
Soloway, 1984).

Tutorial rules A tutorial rule is associated with each
production rule in the ideal model and with each rule in the
bug catalogue. The tutorial rule is the bridge between the
internal representation of the tutor and what the student
inputs and sees on the screen First, each tutorial rule
contains one or more patterns that enable the tutor to
recognize if the student is executing the associated
production rule. For example, the patterns for the correct
rule and buggy rule In Table 1 would be "(append" and
"(list", respectively. In addition, the tutorial rule specifies
how to explain the associated production rule to the student.
Tutorial rules associated with correct productions describe
why the rule is applicable and what code should be written.
Those rules associated with buggy productions describe why
the students answer is wrong, and provide a hint toward
the correct solution. An explanation constructed by the tutor
is shown with the buggy rule in Table 1. The descriptions
are constructed by instantiating english templates with the
english descriptions for the various objects in the current
problem, and with examples associated with those objects.

Tutoring Control Structure This module contains the
pedagogical strategy of the tutor. It determines when to
curtail the students floundering and interrupt with the next
step in the solution, when to invoke a planning mode, and
selects remedial problems tailored to the particular students
weaknesses

4. Feedback and Guidance in the LISP Tutor
The tutor is designed to provide only as much guidance

as necessary while encouraging the student to generate as
much of the solution as possible Thus, the tutor generally
tries to provide hints rather than actual solutions. There are
several types of guidance provided by the tutor. These
involve responding to errors, providing hints and reminders
for clarification, and helping the student plan a solution
before coding.

The bug catalogue enables the tutor to respond
effectively to student errors. As soon as the student makes
a mistake, the tutor responds with an appropriate diagnostic
message Because students can write their code a small
piece at a time with the tutor, the feedback appears as
soon as one item of the code is wrong This is in contrast
to the standard learning situation where a student receives
feedback only after the entire function has been coded (or
perhaps even an entire set of functions), and then tries to
run the code The tutor also must respond to
"undiagnosed" errors. These are student answers that fail
to match either a correct rule or one of the buggy rules
Although the tutor can say nothing specific about why their
code will not work, the tutor responds that it "doesn t
understand that answer", and then describes the current
goal in the problem solution. Often this reminder clarifies
the problem for the student, who is then able to enter the
correct code. Because the tutor has all the knowledge the
student is expected to have at that point in the course, it is
very rare that the student enters code that would actually
work but is not recognized as correct by the tutor

The tutor also provides guidance by hinting toward the
correct solution if the student is having difficultly These
hints take the form of queries and reminders about the
current goals The student can also request a clarification
of the current goal via a special Clarity key if necessary
the tutor can provide the next small piece of the code so
that the student can continue. This is done at the
students request via a special Explain key. Such a request
causes the tutor to query the ideal model for the best
production rule it is currently considering. At that point the
tutorial rule associated with the production is' accessed to
provide an explanation, and the production is executed,
updating the code or the current plan

The tutor will also intervene and cut off the student's
attempts at coding when they are no longer fruitful, i.e..
when the student has made more than the maximum
number of allowed errors for that portion of code. Typically,
the student is allowed to continue making errors as long as
the errors are correctly diagnosed, on the theory that the
error diagnosis and feedback can provide useful
discriminations for the student. However the student is
limited to two errors that fail to match bugs in the
catalogue. Errors such as entering drastically inappropriate

B. Reiser et al. 11

functions or trying to code the wrong part of the problem
indicate the student is confused enough that further attempts
at coding that portion would not succeed. If the current
portion of code Is sufficiently complex, the tutor will Initiate
a "planning mode" to work out an algorithm to code the
problem. That Is, the tutor will work through the algorithm
with the student, step by step, using an example. Then,
after the algorithm is constructed, the student can return to
coding, presumably with a better idea of what he or she
should be doing in order to get their code to work properly.
If the current part of the problem is more straightforward,
the tutor provides the next step, setting the student back on
one of the correct solution paths. By providing the next
portion of code, the tutor enables the student to work
through the rest of the problem in cases where the student
might otherwise have had to give up. As a consequence,
students can tackle more and more difficult problems

One consequence of this immediate feedback is that
students receive less practice debugging their code In
fact, their only debugging is as they are writing the code --
i.e., in trying to generate another portion of code after the
tutor has diagnosed an error. However, we do not view this
as a limitation. In fact, in the normal learning situation,
learning to program necessarily confounds the skills of code
generation, code evaluation, and debugging. To the extent
possible, this tutor enables students to learn to generate
code without the complications of having to simultaneously
learn debugging skills. Instead, separate lessons on
debugging and evaluation can be included to train those
skills independently

5. The Tutorial Interface
The tutorial interface is designed to facilitate student s

learning by providing the environment with the intelligence to
structure the code being entered and prevent "low-level"
syntactic difficulties This is achieved by providing the
student with an intelligent structured editor with which to
enter code. The structured editor automatically balances
parentheses and provides placeholders for the arguments of
each function. The placeholders are provided by a template
associated with each coding rule. For example, consider
what happens when the student tries to define a new
function. To begin, the student types a left parenthesis and
the word defun. At that point the tutor recognizes the
correct application of the defun rule, and redisplays the
code as

The symbols in brackets indicate arguments that must be
coded, in this case referring to the name of the function, a
parameter list, and the function body. The tutor places the
cursor beneath the symbol "<NAME>" and illuminates it to
indicate that this symbol must be coded next.

This structured editor relieves students of the burden of
balancing parentheses. Furthermore, the editor traps illegal
characters and stops students from committing simple
syntactic errors, such as forgetting parentheses or quoting
function calls. For example, when a function call is
required, typing any character other than a left parenthesis
will produce a beep. Typing a single quote would produce

the message "Function calls should not be quoted", while
any other character would evoke the message "You should
be typing a function call", followed by "Function calls begin
with a left parenthesis" if the error is repeated. This type
of response is quickly understood by students with a minimal
amount of distraction from what the student was intending to
do. Thus, the editor enables students to focus on those

aspects of LISP that are conceptually more difficult. Our
results demonstrate that enabling students to pay more
attention to the central conceptual issues in programming
leads to faster learning of these major skills, yet with no
deficit in the student's knowledge of syntax.

The structured editor also facilitates communication
between the student and the tutor. The student types
directly into the code, replacing one of the placeholding
symbols, and thus it is always clear what part of the
problem is being coded. In the question/answer format of
most eductional software, the tutor and student can easily
get "out of synch" on complex problems, where the student
is not sure what part of the problem the tutor is discussing
or querying

A simple windowing system is used to keep information
current on the screen. The Code Window always displays
the code written at the current point in the problem. A
separate Tutor Message Window is used to display
messages from the tutor such as hints or diagnostic error
messages. Thus, the student can read these messages
while retaining access to the code, including the last
(possibly incorrect) student input. A third Goals window
reminds the student about the current goal in the problem-
solving.

Figure 1 demonstrates the tutor responding to a student
error. In this case, the student is writing a function to
create a list of numbers from 1 to n. Here the student has
forgotten to use the function return in order to return a
value from the iterative function prog. The error message
shown the in the Tutor Window (the top window) appears as
soon as the student finished typing the atom result Figure
2 demonstrates the planning capabilities of the tutor. Upon
having difficulty in coding a recursive function to compute
the factorial of a number, the tutor helps the student plan
the code with the use of concrete examples.

Figure 1. The tutor's response to a student error.

12 B. Reiser et al.

Figure 2. The tutor aiding the student
in algorithm design for a recursive function

6. The Goal Structure of LISP Programming
The tutor has been designed to communicate the

conceptual structure of programming problems This is
accomplished in part by using the placeholders to provide a
template for the rest of the problem solution For example,
when the student types the iterative construct prog, the tutor
displays the general pattern for iteration

(prog <LOCAL-VARIABLES>
< I N I T I A L I Z A T I O N
<BODY>
<REPEAT>
)

This template helps structure the iterative problem for the
student into a list of local variables, initializations of those
variables, the body of the loop (i.e . the repeated actions),
and the call to return to beginning of the loop. In
accordance with the top-down nature of the task, many
symbols are themselves expanded into more detailed
symbols. For example, the iterative <BODY> includes a
<TERMINATING-CASE> and <UPDATING-CODE>

The tutor also communicates the goal structure in its
guidance for planning LISP programs When requested or
when the student encounters sufficient difficulty the tutor
initiates a planning mode, where it leads the student through
the design of an algorithm to accomplish the current portion
of the problem. Thus, the student learns how a complex
problem can be broken down into simpler problems to be
solved. In both coding and planning modes, special Goals
windows remind the student about the current goal in the
problem solution.

7. Dynamic versus Post-Hoc Student Modelling
One of the central pedagogical objectives in the tutor s

design is the principle of immediate feedback. Because of
this principle, we have constructed the tutor so that each
symbol of the student's input is processed and interpreted
immediately, rather than waiting until the student completes
some portion of the code, such as a function call, or
perhaps the entire function definition The goal is to
respond to the smallest unit of input that can disambiguate
what the student is intending to do Typically, the grain
size for input in the tutor is a single LISP atom Except
for syntactic errors such as missing parentheses the tutor
will respond as soon as the student finishes typing an atom
such as the word append, list, side 1 etc If the tutor
responded upon individual keystrokes, perhaps diagnosing as
soon as the input did not fit with one of the correct rules,
there would typically not be enough of an answer to enable
the categorization of the error Furthermore, it would not
enable students to correct a typing mistake by deleting the
incorrect letters On the other hand, a larger unit of input
would inhibit the immediate feedback of the tutor, and
increase the chance that the student would become lost
Thus, the tutor greatly limits the consequences of the
student's errors Students can learn from their errors,
without the danger of spending an unproductive amount of
time trying to track them down, perhaps even changing
correct parts of the program, and finally loosing track of
what they were trying to accomplish

The grain size of student input also has important
ramifications for student modelling By trying to interpret
each part of the student's answer as it is typed, the tutor
has access to the current state of the ideal model Thus.
the tutor knows the exact state of the problem solution, and
the current goal, and is in a better position to diagnosis the
students error A limitation with the successful PROUST
debugging aid (Johnson & Soloway. 1984) that analyzes a
program after it has been fully written is that PROUST often
finds many alternative interpretations for a particular line of
code due to the many possible buggy transformations of the
various paths through a problem it is forced to consider
On the other hand, the LISP tutor tracks student s problem-
solving as it occurs, and thus can construct a more
accurate model of the student's reasoning, because the
ambiguous portion of code never is completed Instead, the
LISP tutor diagnoses an error at the first sign, so an entire
line of code could never be omitted or misplaced Many of
the complex bug interactions that present such a problem
for PROUST's analysis are thus avoided.

8. Generic and Individualized Student Models
The tutor is able to use its ideal model and bug

catalogue to respond to the student's behavior during the
problem-solving. The set of productions form a generic
student model, a model of the set of target knowledge and
possible misconceptions. Thus, the generic student model
contains rules which a particular student may know less well
than others, and rules which the student may not posses at
all. The generic student model is adequate for the type of
immediate feedback and minimal guidance desired in this
tutor The responses and explanations need only to be
tailored to the particular problem context and students
answer, but not to the strengths and weaknesses of a
particular student.

B. Reiser et al. 13

An individual student model is also kept by the tutor.
This is in the form of an overlay of the generic model
(Goldstein, 1982). Each production in the ideal model
contains a weighting, which is the tutor's measure of how
well the student knows that rule. Each time the student
performs that rule correctly, the weight is increased, and
each time the student exhibits an error concerning that rule,
it is decremented. Currently, these weights are used to
assign remedial problems to the student Each remedial
problem is considered to see whether it involves production
rules on which the student is weak. It may also be
possible to use these weights in constructing explanations
for errors For example, an error on a well-learned
production is likely to be a careless slip rather than
evidence for a serious misconception. It is a question for
future research as to how one might want to differentially
respond to such an error

9. Field Tests of the Tutor
The current version of the tutor consists of ten lessons,

beginning with the basic functions of LISP, and including the
topics Function Definitions. Predicates and Conditionals.
Structured Programming. Numeric and List Iteration, and
Numeric and List Recursion. The tutor contains 375
production rules in the ideal model and 475 buggy versions
of those rules. These rules enable the tutor to diagnose
and respond appropriately to between 45% and 80% of the
student's errors, depending on the complexity of the lesson
and the amount of testing of the lesson we have conducted
That is. our well-worked lessons correctly diagnose 80% of
the students' errors, while our newest implemented lessons
diagnose only about 45%.

We have completed two major evaluations of the tutor
A first evaluation compared students working with the tutor
to a group working with a private human tutor, and to a
group working essentially on their own (but with the help of
a teaching assistant when necessary). These students were
University of Pittsburgh and Carnegie-Mellon undergraduates
with no prior programming experience. The material
covered six lessons, from basic LISP to recursion. All three
groups scored approximately the same on final performance
tests, but both tutoring groups learned the material much
more quickly than the untutored group. Students learned
almost twice as quickly with the computer tutor (15 hours
for six lessons) as without a tutor (27 hours), and nearly as
quickly as those students with human tutors (12 hours)
Furthermore, a greater percentage of students tutored by
either human or computer successfully completed the
lessons in the time allotted.

In a second evaluation, we again compared students
working with the tutor to another group working on their
own. This evaluation was a six week mini-course offered to
Carnegie-Mellon University undergraduates during the fall
1984 semester. The no-tutor group corresponds to the
standard pedagogical situation where students attend
lectures, read a text, and do homework unassisted.
Students had one previous programming course in Pascal.
All students went to the same lectures and read the same
text. Here students working with the tutor performed 47%
better on the final exam, and learned the material 30%
faster than those working without the tutor.

These results demonstrate that the LISP tutor appears to
achieve its educational objectives. It is more effective than
the standard pedagogical situation Students learn more
quickly and perform better on achievement tests. The
benefits of the tutor are greater for the more difficult
lessons, and are somewhat greater for less experienced
students.

The tutor is currently used by many students learning
their first programming language at CMU and to fulfill the
university's programming course requirement. This self-
paced LISP course for humanities students consists of a 2
hours/week lecture and question and answer sessions, with
the majority of the coursework involving students interacting
with the LISP tutor to write programs.

10. Current Directions
Our current work is focused on extending the current

tutor to teach the skills of debugging and program
comprehension. In the evaluation lessons, students will go
through the code for a function, guided and monitored by
the tutor, specifying the flow of control and the results of
the function calls. In the debugging lessons, students will
be asked to run functions, determine whether a bug exists,
locate the bug, and then correct the code. In these skills,
as in code generation, the tutor monitors the student's
performance by comparing it with the ideal model, providing
feedback upon errors and guidance when necessary. The
principles used in the LISP tutor are also currently being
explored as the basis for tutoring systems for other problem-
solving domains such as algebra and geometry (Boyle &
Anderson. 1984)

References

Anderson, J. R. (1983). The architecture of cognition
Cambridge. MA: Harvard University Press.

Anderson, J. R.. Boyle, C. F., & Reiser, B. J. (1985).
Intelligent tutoring systems. Science, 228. 456-462.

Anderson, J. R., Boyle, C. F.(Farrell, R. G., & Reiser,
B. J. (1984). Cognitive principles in the design of
computer tutors. Proceedings of the Sixth Annual
Conference of the Cognitive Science Society, Boulder,
CO.

Anderson, J. R., Farrell, R., & Sauers. R. (1984). Learning
to program In LISP. Cognitive Science. 8. 87-129.

Bloom. B.S. (1984). The 2 Sigma Problem: The search for
methods of group instruction as effective as one-to-one
tutoring. Educational Researcher, 13. 3-16.

Boyle, C. F. & Anderson, J. R. (1984). Acquisition and
automated Instruction of geometry proof skills. Paper
presented at the Annual Meeting of the American
Educational Research Association, New Orleans.

14 B. Reiser et al.

Brown. J S. and Burton, R. R. (1978). Diagnostic models
for procedural bugs in basic mathematical skills
Cognitive Science, 2, 155-192

Clancey. W J (1983) The epistemology of a rule-based
expert system - A framework for explanation Artificial
Intelligence. 20, 215-251

Goldstein I P (1982) The genetic graph A
reprensentation for the evolution of procedural
knowledge In D Sleeman & J S Brown (Eds)
intelligent tutoring svstems New York Academic
Press

Johnson. W L & Soloway. E (1984) Intention-based
diagnosis of programming errors. Proceedings of the
National Conference on Artificial Intelligence. Austin. TX.

Sauers. R & Farrell. R (1982) GRAPES users manual
ONR Technical Report ONR-82-3. Carnegie-Mellon
University

Sleeman D (1982) Assessing aspects of competence in
basic algebra In D Sleeman and J S Brown (Eds).
Intelligent tutoring systems New York Academic
Press

Acknowledgements. This research is supported by
Office of Naval Research under Contract No
N00014-84-0064 We would like to acknowledge the
considerable contributions of Albert Corbett. Elliot Jaffe. Beth
Marvel. Peter Pirolli. and Ross Thompson to the LISP tutor
Brian Reiser is now at Department of Psychology. Princeton
University. Robert Farrell is now at the Department of
Computer Science. Yale University

