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Abst ract 
This paper presents LOGISIM, a CAD tool 
to simulate the temporal behaviour of hybrid 
circuits containing electro-mechanical, electro-
hydraulic, hydro-mechanic, and digital control 
devices. LOGISIM combines the advantages 
of both qualitative and quantitative reasoning 
by producing a high-level description (discrete 
states) of the circuit behaviour while reason­
ing at the quantitative level (physical values). 
In addition, device models in LOGISIM follow 
a particular description methodology proposed 
to avoid introducing an artificial computational 
complexity in the simulation. LOGISIM is fully 
implemented in the constraint logic program­
ming language CHIP. The constraint-solving 
techniques of CHIP used in LOGISIM, i.e. 
an incremental decision procedure for linear 
constraints over rational numbers, consistency 
techniques on domain-variables and conditional 
propagation, are all necessary to solve the prob­
lem efficiently. LOGISIM has been applied 
successfully to real-life industrial circuits from 
aerospace industry in the ELSA project and 
clearly demonstrates the potential of this kind 
of tool to support the design process for these 
circuits. 

1 In t roduc t ion 
Many circuits in aerospace industry combine hybrid 
components such as electro-mechanical (e.g., relays), 
electro-hydraulic (e.g., electro-distributors), and hydro-
mechanic (e.g., jacks) devices, together with control digi­
tal components (e.g., numeric commands). The circuit of 
landing gear and trap of a fighter aircraft is an example 
of such circuit combining these elements. 

There is presently a lack of tools supporting the design 
and analysis of such circuits. To perform usual tasks such 
as simulation or troubleshooting, engineers often resort 
to empirical methods or try to adapt tools developed for 
other kinds of circuits (e.g., SPICE [8]). Unfortunately 
the information produced by these quantitative simula­
tors is of very low level and engineers have to extract 
information relevant for their own purposes. It follows 
that designing and analysing hybrid circuits are costly 
and time-consuming activities, which deserve better sup­
port. 

The ELSA project [9] has been initiated for this very 
reason and aims at providing engineers with an inte­
grated environment for hybrid circuits. Inside this en­
vironment, engineers should be able to describe circuits 
and perform numerous activities such as simulation, di­
agnostic, test generation, and fault analysis. 

This paper presents LOGISIM, the simulator of ELSA. 
It aims at presenting the simulation results at a suffi­
ciently abstract level to deduce the functional behaviour 
of the circuit while reasoning with a sufficient accuracy 
to capture the physical behaviour of the circuit. Devices 
are modelled in terms of states representing significant 
abstractions of their behaviour (e.g., a light bulb ' 'on", 
"off" or "blown out"). Accuracy is achieved by defining 
each state in terms of both quantitative and qualitative 
constraints. For instance, the light bulb model contains a 
constraint stating that its state is ''on" if there is enough 
current. LOGISIM receives as input a description of the 
circuit and a set of actions (e.g., the pushing of a button 
or the closing of a switch). It produces the successive 
states reached by the circuit and reports anomalies such 
the blowing of components, oscillations and ambiguities 
in the circuit description. 

LOGISIM is implemented in the constraint logic pro­
gramming language CHIP[4]. CHIP provides both an ad­
equate formalism for describing hybrid circuits and the 
constraint-solving techniques necessary to simulate them 
efficiently, i.e., 

• an incremental decision procedure for linear con­
straints over rational numbers [4]; 

• consistency techniques on domains-variables [14; 12; 
13]; 

• conditional propagation techniques. 

Implementing LOGISIM in a conventional language 
would have required a programming effort orders of mag­
nitude greater. 

LOGISIM has been applied to real-life circuits includ­
ing hundreds of components like the landing gear and 
trap of a fighter aircraft. 

The rest of the paper is organised as follows. Section 
2 gives an overview of LOGISIM. Section 3 discusses the 
implementation of the device models. Section 4 illus­
trates LOGISIM on a particular example and gives ex­
ecution results on real-life circuits. Section 5 discusses 
related research and the last section draws the conclu­
sions of the paper. 
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2 Overview of LOGISIM 
LOGISIM consists of (1) a library of device models and 
(2) a scheduler responsible for directing the simulation. 
The circuit description is expressed in terms of the device 
models and used by the scheduler to simulate the circuit 
behaviour. 

2.1 Device Models 
Any device model consists of 

• a static pari defining the possible states of the de­
vice. 

• a dynamic part defining the temporal aspects of the 
device behaviour. 

The behaviour of the device is described in terms of a 
finite set of states, each of which is defined through linear 
constraints on the physical values of the device. Device 
states include not only working states (e.g. a light bulb 
is "on") but also faulty states (e.g. a light bulb is "blown 
out"). The faulty states1 are of primary importance to 
report anomalies which might occur in the circuit. The 
constraints defining a device state can be classified into 
constraints defining 

• physical laws applying to the state (e.g. Ohm's 
laws); 

• conditions on the device physical values proper to 
the state (e.g. the current in one port is higher than 
a threshold value). 

In general, constraints of the first type are equations 
while constraints of the second type are inequalities. 

The dynamic part defines temporal aspects of the de­
vice behaviour by defining 

• the possible transitions between the device states; 
• the events implied by the transitions; an event is a 

demand to fix up, or to restrict the possible values 
of, the state of a device. 

LOGISIM distinguishes between two types of transitions. 
• internal transitions: transitions which occur because 

of component values, e.g. the current present at the 
ports of a device. A typical example is the transition 
from "on" to "off" for a light bulb. 

• external transitions: transitions which occur be­
cause of events. 

Note that the device models in LOGISIM has to be 
context-free since they will be used for all other activities 
of the ELSA project. This requirement is satisfied by 
meeting criterias put forward by Qualitative Physics [2] 
such as no function in structure and locality. 

We now illustrate these principles on two examples: a 
light bulb and a relay. We make use of state diagrams 
where states are represented by circles, internal transi­
tions by thin arrows and external transitions by thick 
arrows. It is assumed that a state can be its own succes­
sor. 

1 The notion of faulty states is conceptual. These states are 
perfectly valid for LOGISIM and are not handled differently 
from working states. 

Figure 1: Transition graph and state definitions for a 
light bulb 

Figure 2: Transition graph of a relay 

The behaviour of the light bulb is approximated 
through three different states: on, o f f and blowing_f. 
The transition graph and the state definitions are shown 
in figure 1. The states shares two constraints express­
ing Kirchhoff's current law and Ohm's law. They dif­
fer by their respective constraints on the current flowing 
through ports 1 and 2. 

A relay with six ports and one anchor is modelled by 
8 states. The working states are 

• up: there is no current at ports 1 and 2 and the 
anchor connects ports 5 and 6; 

• down: there is a current flowing in ports 1 and 2 
and the anchor connects ports 3 and 4; 

• dw (downward): there is a current flowing in ports 
1 and 2 and the anchor does not connect anything. 
This is a transition state between up and down; 

• uw (upward) : there is no current flowing in ports 
1 and 2 and the anchor does not connect anything. 
This is a transition state between down and up; 

The faulty states up_f, down-f, uw_f and dw_f han­
dle erroneous behaviours of the relay (e.g. blowings of 
components, oscillations). 

The transition graph (see figure 2) has both internal 
and external transitions. The two internal transitions 
generate events that will result in external transitions. 

The constraints defining these states are very similar 
to those of the light bulb and the reader should have no 
difficulty to define them. 
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2.2 T h e S c h e d u l e r 

The scheduler makes use of an agenda which contains the 
current set of events to carry out. Events are the small­
est relevant units of the s imulat ion. Each event in the 
agenda is characterised by a device ident i f icat ion, a set 
of possible states and the t ime at which the action takes 
place. In i t ia l ly the agenda contains the set of external 
events. Dur ing the s imulat ion, state changes of some de­
vices can introduce new internal events to be executed 
at a later step. 

The scheduler behaviour is defined by the successive 
appl icat ion of the fol lowing steps: 

• impose the constraints impl ied by the transi t ion 
graph; 

• remove the first event f rom the agenda and apply i t ; 

• compute the new circui t state; 

• update the agenda; 

• report possible anomalies; 

unt i l the agenda is empty. 
The scheduler is a meta-program whose definit ion is 

shown in figure 3. The first clause defines the hal t ing 
condit ion. The second clause is the core of the scheduler. 

The predicate i m p o s e _ t r a n s . c o n s t r a i n t s constructs 
the new state skeleton and imposes the t ransi t ion con­
straints. The state skeleton is a list of domain variables, 
one for each device. Each variable has in its domain the 
set of possible states of the device. The transi t ion con­
straints prevent the device f rom receiving a state that 
cannot be reached f rom the current state using the t ran­
sit ion graph. 

The predicate a p p l y _ f i r s t _ e v e n t removes the f i rst 
event in chronological order f rom the agenda and applies 
i t to the state skeleton. 

The predicate compute_newstate is the core of the 
simulator. It computes a new consistent circuit state. 
I t constructs the call to the circuit and executes i t . Th is 
sets up the constraints impl ied by the devices and the 
connections. The l a b e l i n g procedure is then used to 

assign a state to each device. The way this computat ion 
is achieved is the topic of the next section. 

The predicate update_agenda adds to the agenda new 
events that might have been generated by some transi­
t ions. 

The last goal in the body is a recursive call to the 
scheduler w i th the new agenda and the new state. 

3 Device Models 
3.1 P r i n c i p l e s 

Given a circui t state, a simulat ion step consists in com­
put ing the next state in t ime. This can be seen as a 
constrained search problem. The constraints are defined 
by the device models and the transit ions and a solution 
is the assignment of states to the devices which satisfies 
the constraints. Three principles for the device models 
have been defined to solve this problem efficiently. 

First , constraints have to be taken into account as soon 
as possible. Consider the l ight bulb example. Since the 
first two constraints are shared by all states, they can 
be stated once for all w i thout knowing the state of the 
device. Th is argument can be generalized. As soon as 
a device can only be assigned a subset of the possible 
states, the constraints common to all these states can be 
taken in to account immediately. 

Second, the search space is not made up by the device 
states but by the topologies of the devices. A l l physical 
values throughout the circuit can be computed as soon 
as the circuit topology is fixed. This idea can be used 
to classify the devices and to identi fy those which really 
need choices. 

D e f i n i t i o n 3.1 A transition is weak if it does not 
change the device topology. Otherwise it is s t r o n g . 

D e f i n i t i o n 3.2 A model is an S-model if it does not 
contain strong internal transitions. Otherwise it is a 
G-model. 

For instance, the l ight bulb was modelled by an S-
model while the relay was modelled by a G-model. When 
comput ing the new state, only the G-models have to be 
considered for the choices. 

Final ly device models should include value-to-state 
constraints to ensure that all informat ion is deduced as 
soon as possible. Value-to-state constraints restrict the 
possible states of the device as soon as some conditions on 
the component values are satisfied. For instance, when 
| l l | < I t , the state o f the l ight bulb must be o f f . 

A l l three techniques allow to avoid redundant work 
and to reduce the search space significantly. 

3.2 E x a m p l e 

Figures 4 depicts the implementat ion of the l ight 
bulb. The first two constraints are constraints express­
ing Kirchhoff 's current law and Ohm's law. The remain­
ing goal defines the value-to-state constraint. It makes 
use of condit ional propagat ion, an impor tan t constraint-
solving technique of CHIP . Declaratively, it is a simple 
if_then-else construct. 
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i f CONDITION t h e n GOAL-1 else GOAL-2 e n d i f 

Procedurally, it provides an efficient demon-driven mech­
anism. It is handled in the fol lowing way. For any al­
lowed condit ion, CHIP has at his disposal a procedure 
able to decide 

• if the condit ion is always true or always false for all 
instances of the condit ion. 

• if the condit ion is true for some instances and false 
for some others. 

Therefore facing such a constraint, CHIP uses a pro-
cedure to evaluate the condit ion. If the condition is true, 
GOAL-1 is executed. If it is false, GOAL-2 is executed. 
Otherwise the i f_ j then_else construct delays wait ing for 
more informat ion. Any constraint on domain-variables 
and rat ional terms can make up an allowed condit ion. 
Condit ional propagation enables to deduce the state of 
the device f rom the current flowing through ports 1 and 
2. Note also the place where the constraint 

S t a t e o f f 

is set up. It i l lustrates the first principle, i.e., state the 
constraints as soon as possible. In this particular exam­
ple, the constraint is set up even if the particular state 
is not yet fu l ly defined. Its effect is to remove the state 
o f f as soon as either I I > I t or I I < - I t - Finally i t 
is interesting to note that the state definitions contain 
both quant i tat ive and qual i tat ive constraints. 

3.3 R e f i n i n g D e v i c e M o d e l s 

In L O G I S I M , the search space is defined by the the cir­
cuit topologies accessible from the current circuit state. 
Since real circuits are purely deterministic, the combi­
natorial aspect of the problem must be artif icial and de­
pends only on the way device models are designed. The 
question is then 

Figure 5: New transit ion graph for a relay 

How to keep an appropriate level of abstraction 
without introducing an artificial complexity ? 
The answer to this question falls back once again to 

the importance of the topology. At some point of the 
simulation, G-models sti l l have several possible states; 
many of them correspond to different device topologies 
and can be reached from the current state by internal 
transitions. It follows that cut t ing down the number of 
possible strong internal transitions for a particular de­
vice directly reduces the size of the search space. This 
amounts to transform G-models into S-models by adding 
new intermediary states. This transformation is by no 
way artif icial; it really captures some states of the de­
vices which were not covered by the previous models and 
which represent important transit ion steps. 

In implementation terms, transforming a G-model 
into an S-model means that strong transitions are only 
achieved through external transitions. Hence the simu­
lator is sequentialized by transforming backtracking dur­
ing the search of a new state into iteration through the 
scheduler. 

Apply ing this idea to the relay leads to the transition 
graph depicted in figure 5. Two new states are intro­
duced: 

• s-uw: this state is reached from the state down when 
not sufficient current is available in port 1. 

• s-dw: this state is reached from the state up when 
sufficient current is available in port 1. 

The state s-uw (resp. s-dw) has the same topology 
as down (resp. up). Moving from down (resp. up) to 
s-uw (resp. s-dw) generates a new event in the agenda 
specifying that the device wi l l reach the state uw (resp. 
dw) after a certain delay. 

As it can be seen f rom the above diagram, topological 
changes can only occur due to an event in the agenda. 
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Figure 6: A simple electromechanical circuit 

As a consequence, the topology of the relay is known at 
any simulat ion step. 

Some device types might be diff icult to model by an 
S-model. In that case, a G-model can be defined and 
used inside L O G I S I M . 

4 Resu l t s 

L O G I S I M has been tested on a variety of examples rang­
ing f rom small to real-life hybr id circuits. Real-life cir-
cuits L O G I S I M has been applied to include a controller 
for the landing gear and t rap of a fighter aircraft and 
the command of a machine tool . The first circuit is 
fu l ly hybr id since it contains electro-mechanical, electro-
hydraul ic and hydro-mechanic devices. It contains 57 
components f rom 15 different device types and 112 con­
nections. The second circuit is a machine tool containing 
more than hundred components. Exper imental results 
show that the t ime for a simulat ion step is constant for 
a given ci rcui t and linear in the number of components. 
For the above real-life circuits, it takes around 1.3 sec­
onds for a s imulat ion step on a SUN-3 using the C H I P 
interpreter. 

To i l lustrate the overall approach of L O G I S I M , a sim­
ple example is presented. Figure 6 describes the circuit 
under study. Assume now that in i t ia l ly all the relays are 
in the up posit ion and that the switch is o f f . If the set 
of events to carry out contains the closing and the open­
ing of the swi tch, L O G I S I M wi l l successively produce the 
states for the circuit shown in figure 7. L O G I S I M also 
produces any quant i tat ive informat ion required by the 

user but they are not shown here. 
As mentioned previously, L O G I S I M is able to detect 

ambiguities in a design. Ambigui t ies arise when LO­
G I S I M yields several solutions producing different circuit 
states. This happens when several events in the agenda 
occur at the same t ime. For instance in the above cir­
cuit , if the delay parameters in the circuit relays are given 
equal, L O G I S I M yields two different solutions; the first 
solution is the one shown above and the second one have 
l ight bulb 1 on and l ight bulb 2 o f f . Therefore it is not 
possible to predict the behaviour of the real circuit. 

5 Re la ted w o r k 

Much work has been done for the software simulation 
of circuits especially for digi tal circuits and quanti tat ive 
simulators bu t , to our knowledge, the problem as defined 
in this paper has not been addressed in the l i terature. 
The most relevant work has to be found in study of the 
static behaviour of analog circuits. 

de Kleer and Brown apply qual i tat ive reasoning to the 
analysis of analog circuits [2]. They use the notion of 
qual i tat ive states which divide the behaviour of a com­
ponent into different regions, each of which is described 
by a different set of confluences. Unfortunately, the loss 
of informat ion induced by the use of confluences is very 
impor tant . At each step of the simulat ion, qualitative 
reasoning returns a large set of possible states for the 
circuit , many of them being inconsistent. Moreover qual­
i tat ive reasoning is not able to detect anomalies such as 
blowings of components. Therefore it turns out that an 
approach based on qual i tat ive reasoning is not practical 
for s imulat ing hybr id circuits. 

In ARS and EL [10; 11], Stal lman and Sussman use 
piecewise linear models [3; 5] to analyse analog circuits. 
Piecewise linear models capture much more information 
than qual i tat ive states. However their constraint-solver 
based on expression inference [1] is too weak. Its in­
abi l i ty to solve systems of inequalities induces several 
drawbacks. On the one hand, they may generate incon­
sistent circuit states even for simple circuits [10]. On the 
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other hand, inequalities cannot be used for pruning the 
search space in an a priory way but simply as tests (when 
all variables are instantiated). This leads to a patho­
logical behaviour known as trashing [7] where failures 
are detected very late in the computation implying deep 
backtracking. Stallman and Sussman propose the use of 
dependency-directed backtracking to overcome this diffi­
culty but this remedies only partly to the problem. 

Heintze et al also used piecewise linear models to anal­
yse analog circuits [6]. Their constraint-solver, CLP(R), 
aims at propagating inequalities. This overcomes the 
first drawback of ARS and EL. However inequalities are 
not used to prune the search space in an a priori way 
in their approach either. Their system is then based on 
brute-force search; it assigns sequentially a state to each 
device and tests if it is compatible with already assigned 
devices. If not, the program backtracks to the last choice 
point. 

6 Conclusion 
This paper has presented LOGISIM, a CAD tool to simu­
late the temporal behaviour of hybrid circuits containing 
electro-mechanical, electro-hydraulic, hydro-mechanic, 
and digital control devices. LOGISIM combines the ad­
vantages of both qualitative and quantitative reasoning 
by producing a high-level description (discrete states) of 
the circuit behaviour while reasoning at the quantitative 
level (physical values). Apart from supporting engineers 
at an appropriate level of abstraction, efficiency was the 
key issue addressed by LOGISIM. To achieve that goal, 
LOGISIM makes use of sophisticated constraint-handling 
techniques available in CHIP. The decision procedure 
for linear constraints over rational numbers, consistency 
techniques on domain-variables and conditional propa­
gation make possible to deduce all the implications of 
the choices as soon as possible. Hence they prune the 
search space by reducing the possible values of the de­
vice states. However, different ways of modelling a device 
can result in very different efficiency. Therefore, in LO­
GISIM, a particular methodology, the use of S-models, 
was adopted which avoids introducing an artificial com­
plexity inside the simulation. LOGISIM has been applied 
successfully to real-life industrial circuits from aerospace 
industry in the ELSA project and clearly demonstrates 
the potential of this kind of tool to support the design 
process for these circuits. 
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