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Abstract 

A framework for the construction of new features for 
hard classification tasks is discussed. The approach 
brings together ideas from the fields of machine learn­
ing, computational geometry, and pattern recognition. 
Two heuristics for evaluation of newly-constructed 
features are proposed, and their statistical significance 
verified. Finally, it is shown how the proposed frame-
work can be used to combine techniques for selection of 
representative examples with techniques for construction 
of new features, in order to solve difficult problems in 
learning from examples. 

1. Introduction. 
The problem of new terms, also known as the constructive 
induction problem, has long been considered a source of 
difficulty in machine learning (Dietterich, 1982). Simple 
classifiers using only the primitive features of description 
have limited learning capabilities. For example: 

(i) Single-layered neural networks can realize only those 
class dichotomies, where the classes are linearly separ­
able in the feature space (Minsky, 1969). 
(i i) Selective induction can be used to learn only those 
concepts whose concept-membership function is smooth 
(Rendell, 1986). 

Researchers in different areas have recently addressed 
these fundamental limitations of simple classifiers. Algo­
rithms such as back-propagation (Rumelhart, 1986) can 
implement learning in multi-layered networks. They impl i­
citly create weighted combinations of primitive features in 
the internal (hidden) units of such networks. Constructive 
induction, on the other hand, explicitly constructs and tests 
new terms from the primitive features (Dictterich et al, 
1982) by applying feature-construction operators. Both of 
these approaches transform the primitive feature space of 
the problem into another in which the classes to be discrim­
inated are separable using simple discrimination surfaces. 

Wi th a few exceptions (Muggleton, 1988), these tech­
niques provide no justification for the heuristics used, they 
do not integrate theories of selection and evaluation of 
features, and they have no obvious trade-offs between 
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performance and accuracy. In this paper, we examine the 
problem from a geometric perspective in hope of develop­
ing heuristic techniques that are amenable to analyses of 
performance and accuracy. Our focus is on a study of con­
structive induction in two-class discrimination learning 
problems. 

1.1. Simple Versus Hard Classification Problems. 

Given a set of d-dimensional training samples, 
E=E+KUE~, a simple classification problem is to discover a 
primitive surface (such as a hyperplane in d - \ dimensions) 
that separates the positive examples E+ from the negative 
examples £-, when the sample points and the hyperplane 
are represented in the d-dimensional feature space. In a 
hard classification problem, such a primitive surface does 
not exist. 

1.2. Constructive Induct ion. 

Constructive induction discovers new features of the 
training sample. It transforms feature spaces to permit 
primitive separating surfaces which, in turn, enable the use 
of simple classification techniques for solving hard 
classification problems. 
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where a is the angle between the feature vector and the 
equiparameter line in the E+-inverted space, and B is the 
corresponding angle in the E"-inverted space. Other heuris­
tic tests for inclusion/exclusion are discussed in §5.2. 

4 .1 . Par i ty (XOR) Revisited. 

Figure 3 shows the two inverted spaces for the 2-bit 
parity problem. The equiparameter lines in each of the 
inverted spaces are dashed; the boundaries of a (1,1)-
hypercube are dotted. Notice that the primitive features 
score low evaluation on both the proposed heuristics. First, 
both the features, in both inverted spaces, are oriented per­
pendicular to the equiparameter line, indicating a maximum 
deviation of 1. Second, there is no 0 such that the 
corresponding 9-hypercube includes a feature in one 
inverted space, and excludes the same feature in the other. 
Thus, the framework captures both the high variance of the 
sample within a class, and the linear inseparability between 
classes. In §6.3, we show that the heuristic measures sug­
gested above are helpful in discovering good features for 
this problem. 

Having introduced the basic notion of inverted 
spaces, we now consider some pragmatic issues about the 
framework, such as the amount of information that needs to 
be retained. 

5. Realizing the Inverted Space Framework. 
Applying this framework naively can yield complex compu­
tations on large matrices. The complexity results from 
simultaneous consideration of a large number of examples. 
To counter this problem, the heuristic approximation 
methods of §5.1 consider only a subset of training samples 
that still retains the separability traits of the entire set. To 
address another problem, the techniques suggested in §5.2 
are amenable to incremental learning so that heuristic infor­
mation is accumulated by examining a few examples at a 
time. 

5.1. Using Low-Dimensionality Inverted Spaces. 

Michalski has suggested several approaches to selec­
tion of representative samples for a two-class discrimination 
problem (Michalski, 1975). His ESEL system uses three cri­
teria (as shown in Figure 4): 

The Cluster Centroid (CC) method. Each class is 
represented by its centroid and centroids of clusters within 
the class. In addition, one keeps additional points that are 
more than twice the cluster standard deviation away from 
the centroid of every cluster within the class. Sklansky et al. 
use a similar approach (Faroutan, 1987). Rendell's 
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The second heuristic, dissimilarity between the 
feature values for the two classes, can be applied by testing 
a feature for inclusion in a 9-hypercube in one of the two 
inverted spaces, and for exclusion in the other, as already 
discussed in §3. Alternatively, one can use the sine of the 
angle in order to ensure that the feature vector lies in a posi­
tive octant in one of the spaces, and in a negative octant in 
the other. Thus, distinctness can be guaranteed by requiring 
that the following two conditions hold: 



Probabilistic Learning System (Rendell, 1986) also con­
structs such representations. 

The Near Miss (NM) method. Choose from a class 
those points that are nearest to the opposite class. Similar 
techniques have been explored by Winston (1975) and 
MacGregor (1988). The idea is that any separating surface 
for the two subsets consisting only of near-misses would 
still separate the two classes. 

The Outstanding Representative (OR) method. 
Choose the subset of examples from each class whose con­
vex hull is the same as that for the entire class. This means 
choosing the extremal points of each class. Any surface that 
separates the extremal points must, of necessity, separate 
the two classes. Lambert (Lambert, 1969) has proposed 
similar techniques. 

Several researchers have recently noticed improved 
performance in learning systems that pay special attention 
to boundary cases (Ahmad, 1988,Kohonen, 1988). On the 
theoretical side, Cover (1965) has suggested that for two-
class discrimination problems using surfaces with d degrees 
of freedom, on the average, 2d samples can capture the 
information of a possibly infinite training set. The implica­
tion of Cover's result, and the existence of mechanisms for 
finding boundary patterns, make the inverted-space frame-
work a viable technique. 

5.2. Using Approximate Tests of Separability 
In our proof of the theorem, we showed a relationship 

between the sine of the angle between the feature vector and 
the equiparameter line, and the standard deviation of the 
value distribution for a feature. Considering that the only 
information needed to calculate the latter is the sum of sam­
ple values, the sum of their squares, and the number of 
values seen, suggests incrementally maintaining the infor­
mation required to calculate the sine of the angle. 

The following tests implement a cheaper heuristic 
approach to testing feature points for inclusion/exclusion in 
a 0-hypercubes: 

denote the length of the feature vector for / 
in the inverted space for E+, 

These tests do not cover all the cases. However, the advan­
tage over exact tests for inclusion/exclusion is that only two 
items of information per feature need to be maintained, and 
those can be computed incrementally. The heuristic pro­
vides a positive answer to a query about inclusion if the 
feature vector lies within the largest hypersphere that can be 
inscribed in the hypercube in question, and a negative 
answer if it lies outside the smallest hypersphere that can 
circumscribe the hypercube. We do not detail these methods 
here, primarily because there are several ways of approxi­
mating the real measures of goodness, and these are only 
two of them. 

6. Constructive Induct ion Using Inverted 
Spaces. 
A constructive induction problem is defined by a set of 
feature-construction operators to be applied to the primitive 
features, or to combinations thereof. Table 1 shows the 
geometric interpretation of some commonly used construc­
tive induction operators in terms of the inverted space 
framework. Given a difficult discrimination learning prob-
lem, and the description of features in the form of inverted 
spaces for both the classes, the goal of constructive induc­
tion is to create features that (i) lie close to the equiparame­
ter line in both the inverted spaces, and (ii) satisfy the 
exclusion/inclusion test for some 9-hypercube. In the fol­
lowing, we first examine how one might apply the 
inverted-space framework to construct new features. 

Knowing which transformations the various construc­
tion operators achieve lets one select the particular operator 
to apply. Additional heuristics, such as using Boolean 
operators on Boolean features, can provide additional bias 
for selection. The constructive induction algorithm 
employed is a search in the space of constructed attributes. 
The inverted space framework is useful in both the genera­
tion and the testing phases of this algorithm. 

6.1. Feature Generation 
This employs several heuristics based on the meas­

ures of feature goodness discussed in §4. One heuristic uses 
a linear combinations of d=max(/,m) features, where 
l - \ E + \ , and m=\E~\ . A (d-l)-dimensional surface pass­
ing through these features is made to intersect the 
equiparameter line in one of the spaces. The intersection 
yields the exact values of weights to be applied in the linear 
combination. The new feature is evaluated according to the 
measures of goodness. 

Yet another heuristic limits the application of thres­
holding only to features close to the equiparameter line. 
Constructors such as AND and NOT are applied only to 
Boolean features. Sometimes, several features map into the 
same point in one of the inverted spaces, but to different 
points in the other. In such cases, one can apply operators 
such as AND, OR, difference, and equality, in order to con­
struct new features. 

In general, this phase employs substantial domain-
knowledge. Operators specific to an application domain can 
still be interpreted in the inverted spaces, and this 
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knowledge of transformations can be used (abductively) for 
feature generation. 

6.2. Feature Evaluation 
Features are evaluated on the basis of the goodness 

criteria introduced in §4. Different constructive induction 
algorithms employ different search mechanisms, but all can 
use this measure of goodness to serve as a heuristic esti­
mate. Usually, the cheaper version of the 
inclusion/exclusion test wil l suffice. The more expensive 
test involving all the dimensions of the inverted space may 
be limited only to promising features (those that lie close to 
the equiparamcter line). Other techniques, such as dynamic 
bias management, may be employed to focus the search. 

In the following, we illustrate the effect of such con­
structions on the XOR problem. Recall from §4.1 that this 
problem requires constructive induction. 

6.3. Parity Revisited 
Figure 5 shows the inverted spaces for the parity 

problem. It also shows the map of a new feature, f1Af2. 
This new feature is recommended by the feature-generation 
heuristic for the AND operator. The linear combination of 
fx and f2 yields ( upon intersection with the 
equiparamcter line in the inverted space. Still, no single 
feature scores highly on the evaluation criteria. Further con­
struction suggests taking the difference of the two con­
structed features, thus yielding the final constructed feature 

which separates the two classes. 

6.4. Constructive Induction as Merging Peaks 
It has been suggested that hard problems in concept-

learning require the formation of disjuncts. This is sup­
ported by recent results in computational learning theory 
(Kearns, 1987). Rendell (1988) has suggested that member­
ship functions of hard concepts have multiple peaks in the 
primitive feature space. Simple surfaces cannot be used to 
discriminate between classes whose membership functions 
have multiple peaks. Rendell (1988) advocates transforming 
the feature spaces so that the various peaks merge. In the 
transformed space, the membership function is smooth, and 
simple surfaces can discriminate. 

Representative examples from the concept function in feature 
space (left) are used to construct a low-dimensionality inverted 
space (right). Features that l ie on the equiparameter line (shown 
dashed) in the inverted space can be seen as merging peaks, 
provided these features are constructed by applying continuous, 
compact transformations to the original features. 

Let F be the set of primitive features of a disjunctive 
problem, and let be the centroids of the 
peaks of the membership function. (See Figure 6) Using the 
reduced-dimension inverted spaces discussed in §5.1, one 
can construct the P-inverted space, and map into it the 
features of F. If a feature receives a high evaluation in the 
P-inverted space, it must lie close to the equiparameter line. 
In other words, it takes on nearly identical values for the 
examples corresponding to peaks in the membership func­
tion. Now, if such a feature is constructed using a nonlinear, 
continuous mapping, it can be shown to merge the peaks of 
the membership function in the feature space. Similarly, 
simultaneous construction in the inverted space for negative 
examples, and the application of the hypercube-inclusion 
test, can result in the construction of features that transform 
complex learning problems into simple ones. 

6.5. Feature Construction in Inverted Spaces. 
The inverted space framework is particularly suitable 

for constructive induction because the inverted spaces 
remain fixed during construction. This is in sharp contrast to 
the traditional feature space representation used to study 
pattern recognition operations, where new features contri­
bute new dimensions. The two major ideas that distinguish 
our work from that of Watanabe (1969) are the concept of 
the equiparameter line, and the angle that a feature vector 
makes with this line. In our recent research, we have started 
exploring the inverted space representation of value-coded 
features (aka. overlapping localized receptive fields, 
coarse-coded distributed representations). The concepts of 
angle and distance in the feature space relate, respectively, 
to generalization and discrimination — two conflicting 
goals in the design of classifiers. 

Besides the obvious application of constructed 
features in classification, one of the authors has also 
explored the application of constructed variables in numeric 
optimization problems (Lowne and Wah, 1988). There is no 
reason to believe that inverted space analysis should be res­
tricted to classification problems. In the future, we plan to 
explore inverted space representations of variables in optim­
ization problems. 
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7. Conclusions and Future Work. 
We have presented a new framework for representing 
classes, examples, and features. It is applied to the construc­
tive induction problem. Principles for evaluating newly-
constructed features are developed, and are shown to guide 
the construction process. The exact measure for compact-
ness is shown to have a direct relationship with a statistical 
measure of the spread of a distribution. Several inexpensive 
heuristics for feature evaluation arise from relaxation of 
measurement accuracy. 

Our analysis covers a variety of algorithms and 
heuristics for construction and evaluation of features. In 
particular, it synthesizes techniques for selection of exam­
ples with those for selection and construction of features. 
By posing the dual of the classification learning problem, it 
suggests new techniques similar to the primal-dual algo­
rithm (Papadimitriou, 1982) for linear programming. For 
example, one might use geometric techniques such as hull-
finding and proximity analysis (Preparata, 1985) in order to 
discover representative examples in the feature space, while 
constructing good features in the inverted space of these 
examples, repeating the process on the reduced feature 
space. The inverted-space representation, therefore, pro­
vides a rich basis for such integration of geometric and sta­
tistical techniques. 

The framework is important as an analytical tool. It 
allows complex nonlinear operations on features. We have 
demonstrated its ability to represent a variety of construc­
tion and classification operations. In future, we would like 
to extend the analysis to include other problems in 
classification. One such problem is redundancy-elimination. 
Inverted space permits the use of geometric tests, such as 
collinearity, and coplanarity, for detection of dependencies 
between features. We plan to study the statistical properties 
of geometric operations, and the geometric interpretation of 
statistical operations, in order to arrive at a synthesis of 
techniques for problems like dimensionality reduction, clus­
tering, and multi-class discrimination (Duda, 1973). 
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