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A b s t r a c t 

Classifier systems are product ion rule systems 
that automatical ly generate populations of 
rules cooperating to accomplish desired tasks. 
The genetic algori thm is the systems' discov­
ery mechanism, and its effectiveness is depen­
dent in part on the accurate estimation of the 
relative meri t of each of the rules (classifiers) 
in the current populat ion. Mer i t is estimated 
conventionally by use of the bucket brigade for 
credit assignment. This paper addresses the 
adequacy of the bucket brigade and provides a 
prel iminary exploration of two variants in con­
junct ion w i th enumerated rules and w i th dis­
covery. In l imi ted experiments, a variant that 
combines the bucket brigade, ''classifier chunk­
ing," and "backwards averaging" has yielded 
improved performance on simple maze prob-
lems. Tentative similarit ies between this hy­
br id and Sutton's Adapt ive Heuristic Cri t ic 
(AHC) are suggested. 

Area B: Fundamental Problems, Meth­
ods, Approaches Subarea B2: Knowledge Ac­
quisi t ion, Learning, Analogy 

1 . I n t r o d u c t i o n 

Credit assignment is the problem of determining how 
to reinforce individual rules in a mult istep chain when 
the external reward is given only at the chain's con­
clusion. Some of the earliest work in credit assignment 
was Samuel's celebrated checker-playing program (1959 
and 1967) which used a heuristic version of temporal 
difference (TD) methods (Sut ton, 1988). These meth­
ods are similar in philosophy to the Adapt ive Heuristic 
Cr i t ic (AHC) developed by Sutton (1984) and Barto, 
Sutton and Anderson (1983), the bucket brigade de­
veloped by Holland (1985 and 1986), and the learn­
ing systems studied by Wi t ten (1977), Booker (1982), 
and Hampson (1983). Each of these provides a mecha­
nism whereby adjustments to rule strength are made in 
an incremental fashion, in contrast to supervised learn­
ing w i th various backwards averaging schemes (Grefen-
stette, 1988; Widrow and Stearns, 1985; Holland and 
Reitman, 1978; and Rumelhart, Hinton and Wi l l iams, 
1986). 
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This paper studies credit assignment in an environ­
ment wi th minimal prior knowledge. In i t ia l investiga­
t ion of three credit assignment methods has been under­
taken in terms of their speed and accuracy in learning 
abstract state-space maze problems. The three meth­
ods studied are the bucket brigade, backwards averag­
ing w i th classifier chunking, and a combination of the 
methods. The correspondence to TD and A H C meth­
ods is suggested. 

1.1 C lass i f ie r Sys tems 

Classifier systems to automatical ly discover rules to 
perform desired tasks were developed by Holland and 
Reitman (1978) and later refined by Holland (1986). 
In contrast to t radi t ional expert systems where rules 
are handcrafted by knowledge engineers, classifier sys­
tems use the genetic algor i thm as a discovery operator 
to generate rules. Each classifier is an " i f - then" rule, 
wi th a condit ion part and an action part . A message 
list is used to store the current environmental state and 
any internal messages. Associated to each classifier is 
a numerical value called its strength. Holland and Re­
i tman (1978) adjusted classifier strength through back­
wards averaging and other central methods. The cur­
rent credit assignment standard is the bucket brigade 
(Hol land, 1985). 

Should the condit ional part of a classifier match a 
message(s) on the message list, the classifier pays a por­
t ion of its strength (its bid) for the privilege of acting, 
whereupon the consequent action (which may be either 
an explicit action or the posting of an internal message) 
is taken. In the simplest classifier system implementa­
t ion, the bid payment made by the acting classifier(s) 
is paid in equal proport ions to classifiers acting in the 
previous cycle. Should competing classifiers specify in­
compatible actions, conflict resolution is based on the 
magnitude of the effective bids (determined as the sum 
of the bid plus a random variable chosen f rom a distr i ­
but ion determined by a noise schedule). If the action 
results in an evaluation state, an appropriate reward or 
punishment is assigned to the acting classifiers of the 
current cycle. The "bid-payment" cycle is repeated for 
a predetermined number of cycles, whereupon the in­
dividual classifiers contr ibute to a gene pool in direct 
proport ion to their strength and the genetic recombi­
nation operators are invoked. 
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Since Hol land and Reitman's work, several vari­
ants of classifier systems have been successfully demon­
strated including solution of a diff icult Boolean discov­
ery problem (Wi lson, 1987a), discovery of an opt imal 
pumping schedule and automatic leak detection for gas 
pipelines (Goldberg, 1983), and discovery of probabilis­
tic scheduling rules for job shop scheduling problems 
(Hi l l iard et. a l . , 1988). For addit ional descriptions of 
classifier system applications, the reader is referred to 
Davis, 1987; and Goldberg, 1989. 

1.2 P r o b l e m Se lec t i on 

The test bed of problems for this study were one, two, 
and three dimensional mazes w i th 64 possible states and 
w i th a specified start and goal. The chosen represen­
tation encoded the states as lattice points in Euclidean 
space. Allowable actions at any state were to make a 
single step move parallel to the coordinate axes (sub-
ject to the constraint that the move did not go outside 
the latt ice). Upon attainment of the goal, the system 
was given a reward R and was reset to the start. 

Certain of the problems incorporated "barriers" at 
selected non-goal states. In one formulat ion, barrier 
states were all equally resistant to entry; in another, 
the barriers had relative "holes," states less resistant 
to entry. Barriers were not expl ici t ly represented; in­
stead, classifiers responsible for system entry into bar­
rier states had their strength immediately decremented. 
This challenged the system to learn to associate cer­
tain states w i th punishment either through internally 
developed messages, mapping expected rewards onto 
states, or simply through the credit assignment mecha­
nism. The purpose of the barriers was to provide an ex­
perimental test to determine whether classifier systems 
could learn to pass through undesirable states (local 
rninirnums) to at tain a global goal state (global maxi­
mums), and whether the systems could learn to dist in­
guish between undesirable states of different intensities. 

2. Credi t Assignment 

Although even genetic algori thm and stimulus-response 
classifier system performance is affected by the reward 
structure (Wi lson, 1987a), reward and credit allocation 
issues become most apparent when rewards are delayed. 
Such a delay in reward causes difficulties for the ge­
netic algor i thm (discovery) stage of the classifier sys­
tem, since its success depends on accurate estimates of 
the relative merit of the classifiers. Proper assessment 
of merit requires that the system frequently attain eval­
uation states and that the rewards and punishments be 
properly distr ibuted to earlier stage setting classifiers. 
This must be accomplished rapidly wi thout improperly 
restricting system exploration. 

2.1 E a r l i e r S tud ies 

Credit assignment for "stage sett ing" classifiers has al­
ready been investigated by Wilson (1987b), Grefen-
stette (1988), and Riolo (1987,88). Wilson and Ri-
olo's studies have been l imi ted, effectively, to non­
competit ive chains of classifiers (Riolo had one pair of 

competing classifiers) and d id not study credit assign­
ment in conjunction w i th genetic discovery. Results 
suggest that the number of steps necessary to reinforce 
a classifier in a chain (i.e., the number of cycles un­
t i l classifier-strength had attained a fixed proport ion of 
steady state strength) is a linear function of the number 
of steps that the classifier is removed from the reward 
state. 

Sometimes, even a linear function of the number 
of steps removed from the goal may be too slow for 
useful classifier chain development—Riolo's results sug­
gested that some 2100 cycles were required for at ta in­
ment of 90% of steady state for a classifier 12 steps 
removed from the goal. This potential diff iculty has 
been recognized by Holland (1985) who conjectured 
that "bridging classifiers" would accelerate allocation 
of credit. Riolo (1987,88) has undertaken experiments 
that substantiate the potential usefulness of "bridging 
classifiers" once they have been discovered or manually 
injected. Unfortunately, the authors know of no case 
where "bridging classifiers" have been discovered by the 
system (our experiments have discovered rule sets in 
which certain classifiers act at more than one point in 
a rule chain and speed the distr ibut ion of credit, but 
they are not of the form Riolo suggests and their devel­
opment wi l l depend on the chosen representation). To 
address the apparent failure of the bridging classifiers 
to spontaneously develop, Wilson (1987b) has formu­
lated the concept of hierarchical credit al location, but 
that concept remains untested. 

In contrast to Wilson and Riolo, Grefenstette 
(1988) was interested in predictive accuracy of learning 
and not learning speed. He compared R U D I , a vari­
ant of LS-1 (Smith, 1980), against the classifier system 
with the bucket brigade. He also provided experimental 
evidence that the bucket brigade leads to learning the 
next classifier's strength, whereas PSP (the profit shar­
ing plan — backwards averaging w i th no attenuation) 
learns the expected system reward along the current 
subchain. 

This study differs from previous work insofar as it 
addresses speed of learning of opt imal solutions (short­
est paths start to goal; and in the case of barrier w i th 
hole, passing through the hole), both w i th ful ly enu­
merated conflicting rules and with discovery. 

2.2 D e s i d e r a t a a n d Techn iques 

Three heuristics motivate the credit assignment meth­
ods studied: 1. Reward the rules that have acted to 
form the chain from the start to the goal. 2. Draw 
the reward back from the goal to the start. 3. Break 
cycles. 

Classifier reward is accomplished w i th three dif­
ferent mechanisms in this study: First , the conven­
tional bucket brigade. Second, a geometrically atten­
uated backwards averaging of the reward wi th classi­
fier chunking. Th i rd , a combination of bucket brigade, 
backwards averaging, and classifier chunking. Back­
wards averaging is implemented through the mainte­
nance of a list of the classifiers that have fired since 
the last ini t ial izat ion of the task to the start. Once 
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the reward is attained each classifier in the chain is re-
warded by the factor λk, where the term A,0 < A < 1, 
is the attenuation factor and k represents the number 
of steps between the last f i r ing of the classifier and the 
attainment of the reward. 

Classifier chunking passes the fu l l reward (wi thout 
attenuation) to all classifiers that have achieved a given 
percentage of steady state and l ink to the goal through 

3. Experiments 

The environments chosen for the experiments reported 
here are 8 x 8 mazes. The mazes were used to verify the 
(sub) l inearity of the bucket brigade credit allocation 
scheme as reported previously by Wilson (1987b) and 
Riolo (1987) and to compare the three credit allocation 
schemes — unmodif ied bucket brigade, backwards av­
eraging w i th classifier chunking, and combination wi th 
classifier chunking. 

3.1 I m p l e m e n t a t i o n 

For every cycle of each maze, the classifier system is pro­
vided w i th the current state coordinates. The system 
matches these coordinates against the current popula­
t ion of rules and, through a stochastic conflict resolu­
t ion scheme based on rule strengths and noise schedule, 
determines the next action. The action is taken, and 
the system is moved to the new state. Since the state 
space is small (64 cells) in each of the mazes, all possible 
specific rules can be enumerated. If general rules (rules 
matching mult ip le states) are considered, then the size 
of the rule set becomes large under ful l enumeration 
and discovery becomes an important mechanism. In 
the discovery mode, the in i t ia l populations of classifiers 
were randomly chosen, and the genetic algori thm mod­
ified these populations as the search progressed. If at 

(min imum subpath) steady state classifiers. Any ad­
di t ional attenuation is begun from this point . Cycle 
breaking (preventing " inf ini te loops" which do not pro­
duce useful actions) is accomplished by the assessment 
of an action tax. (This action tax has one addit ional 
benefit; it encourages the development of short chains.) 
These concepts are i l lustrated in Figure 1, where 

some cycle, the current state matched the condit ional 
part of no classifier in the populat ion, the "cover de­
tector" mechanism (Robertson and Riolo, 1988) was 
invoked. The cover detector generates a classifier that 
matches the current state by copying the state into the 
classifier's condit ional side, randomly flipping some of 
the bits to "don' t cares" and randomly choosing the 
consequent action. 

3.2 P a r a m e t e r Se t t i ngs 

Each system was rewarded 500 units when it reached 
the goal, and was penalized -100 units if it suggested 
an action which would take it out of the maze (i.e. it 
bumped into the wall—a system that bumps into a wall 
does not change its environmental state, it is simply 
penalized). A penalty of -100 was associated to each 
cell of the barrier. The bucket brigade used a bid con­
stant of 0.1, that is, each rule that acts pays one tenth 
of its strength to the previously acting rule. An action 
tax of .01 was also assessed to discourage closed cycles 
and encourage shorter chains of rules. In contrast to 
the local payments of the bucket brigade, backwards 
averaging only occurs when the goal was reached. (The 
attenuation factor was 0.5. Moreover, each rule is re­
warded only once, according to its most recent f i r ing in 
the chain—the recency heuristic, but not the frequency 
heuristic.) Other parameter settings were t r ied; these 

758 Machine Learning 



seemed to provide the best compromise between speed 
and finding an opt imal solut ion. 

Classifier chunking "chunked" the reward back 
through the maze as classifiers achieved 70% of steady 
state strength and linked to (minimal path) steady state 
subchains to the goal. Finally, the combination method 
used both the bucket brigade and backwards averaging. 

4. Resu l t s 

For the experiments w i th the bucket brigade and enu­
merated rules, steady state strengths were analytically 
calculated. In all other cases, a rule was assumed to 
be at steady state when the net gain or loss in strength 
throughout the traversal of the path was less than 5% of 
the current strength. In all cases, credit allocation was 
observed to be faster than a linear funct ion of the dis­
tance to the goal as previously noted by Wilson( 1987b) 
and Riolo (1987) in simpler experiments. (Al though it 
might seem that according to the empirical definit ion 
of steady state a rule could achieve steady state at one 
cycle and lose it on another, that was never observed 
to happen.) It was also observed that 70% of steady 
state was a conservative measure of chain development; 
repeatable (sub) chains were observed to develop far 
earlier. 

The remaining results are highly tentative. Full 
experimental designs weren't run ; parameter settings 
weren't systematically studied, nor were all combina­
tions of methods investigated. A more systematic study 
wi l l be undertaken. 

4 .1 M a t r i x M a z e P r o b l e m s - E n u m e r a t e d Ru les 

Backwards averaging alone or in combination wi th the 
bucket brigade provides much faster feedback to the 
system than the bucket brigade alone. The barrier in­
variably slowed the learning for all the credit alloca­
t ion mechanisms studied. (See Figure 2.) A potential 
drawback to more rapid credit assignment is the loss of 
exploration. W i t h backwards averaging or the combi­
nation method, the system sometimes settled on a chain 
of rules longer than the minimal 14 steps. Also, in some 
l imited experiments wi th the barrier wi th hole, the 
bucket brigade found the hole while the backwards av­
eraging and combination runs tended to cross at higher 
penalties. 

4.2 M a t r i x M a z e P r o b l e m s - D i s c o v e r y 

In comparison to the system wi th enumerated (specific) 
rules, convergence was much more rapid for the system 
wi th discovery of general rules. Presumably, the speed 
up is at t r ibutable to generalization and not to discovery, 
although follow-up experiments to confirm this hypoth-
esis have not been carried out. The abil i ty to use a rule 
mult iple times w i th in a chain both shortens the effec­
tive length of the chain and provides earlier feedback to 
stage setting rules near the start. The bucket brigade 
can pass strength from a successor of a rule's instance 
late in the chain to the predecessor of the rule's instance 
early in the chain; therefore, the convergence curves are 
no longer monotonic. The pure backwards averaging 

method was not successful in finding minimal paths in 
the discovery environment, so that method is omit ted 
from the results. Moreover, none of the methods was 
highly successful wi th the barrier w i th hole problem. 

The bucket brigade credit assignment method en­
couraged sets of rules which navigated the maze effi­
ciently and avoided bumping into the walls, a serious 
problem for the combination method. Using the bucket 
brigade, a hierarchy developed in which rules specific 
to rows and columns adjacent to the walls dominated 
more general rules specifying movement down or to the 
right. 

5. Re la t i onsh ip to O t h e r P r o b l e m s and 
Approaches 

The credit assignment problem is of wide interest in 
all machine learning research that deals w i th delayed 
rewards, as for example, game playing. The approach 
developed here is closely related to Sutton's work lead­
ing to the Adapt ive Heuristic Cr i t ic and the Method 
of Temporal Differences. In fact, the A H C approach 
currently is being incorporated into the classifier sys­
tem framework as an extension of this work (Brumgard, 
1988). 
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5.1 A d a p t i v e H e u r i s t i c C r i t i c ( A H C ) 

The mechanism of the adaptive heuristic cr i t ic (AHC) 
can be directly incorporated into the classifier system 
and generates counterpart behavior to the heuristic 
credit allocation mechanisms explored in sections 3 and 
4 of this paper. Let x[t] be a (dimension 64) vector rep­
resentation of the system state at t ime t; Xi(t) = 1 if the 
system is in state t at t ime t, Xj(t) = 0 otherwise. Let 
c[t] be the indicator vector for classifier firing; c,(2) = 1 
if classifier i fires at t ime t, and Cj(t) = 0 otherwise. Let 
Sc[t] be the classifier strength vector at t ime t, and T a 
tax. R[t] represents the environmental reward (positive, 
negative, or zero) received at state t. The predicted 
reward ps[t] represents the prediction (made while in 
state s) of the reward at state t, the heuristic reward 
r[t + 1] estimates the net gain (after the tax T) of mov­
ing f rom state t to state t + 1. The vector v[t] is the 
reward association vector at the t ime t and provides the 
current estimate of the expected reward at each of the 
states. Equation (5) defines the generic trace operator; 
the discounted average of past state visitations or clas­
sifier firings. The appropriate equations for the A H C 
formulat ion of the maze problems studied earlier in this 
paper are those for tirne-until-success tasks. 

Commonalit ies w i th the previously described ap­
proach include the fol lowing: 1. The term "- T" in the 
heuristic reward plays the counterpart role to a tax in 
the classifier system. 2. The heuristic reward r[t + 1] 
estimates the net gain (after tax T) of moving f rom 
state t to t + 1. (The bucket brigade is the classifier 
counterpart to this, but for rules rather than states). 
3. The strength update equation (4) affects a geomet­
rically attenuated backwards averaging of reward, both 
from the goal state, and f rom the heuristic rewards. 
(The classifier formulat ion in sections 3 and 4 d id not 
use a ful l trace and did not incorporate an heuristic re­
ward into strength updates). 4. The reward association 
vector v[t] in effect "draws the reward back," somewhat 
analagously to classifier chunking. 

There are important differences between the com­
bination method and the A H C . The A H C estimates 
expected reward at a state independent of classifier 
strengths, allowing the tradeoff between exploration 
and exploitat ion to be better controlled. Small values 
for the learning parameter encourage explorat ion; large 
values encourage exploitat ion (Sutton, 1989). 

Another difference is that classifiers are loosely 
l inked by equation (4) of the A H C formulat ion and 
strongly l inked by the bucket brigade. Prel iminary con­
siderations suggest that an A H C - bucket brigade com­
binat ion could provide a "second differences" effect that 
could help traverse local min ima. 

5.2 A H C Success 

Brumgard (1988) reports success w i th l imi ted experi­
ments using A H C w i th the square maze. He reports 
performance comparable to the combination method in 
all ful ly enumerated cases and the discovery barr ier/no 
barrier cases. For the discovery barrier w i th hole case 
his A H C implementat ion was unable to f ind the hole. 
Sutton (1989) used A H C to solve a different (but sim­
i lar) planar maze problem w i th barrier and hole (w i th 
enumerated rules) wherein any suggested move into the 
barrier was reset to the previous state and the only ef­
fect on the A H C system ( l ) - (5 ) was the incurrence of 
the single-step tax " - T " and increment in t ime. 

6. Conc lus ions 

The incorporation of backwards averaging and classi­
fier chunking into the classifier system seems to speed 
convergence; however, in the case of general rules (wi th 
discovery), this speed up may sacrifice exploration and 
generate less than opt imal rule sets. Whether this is a 
property of general rule sets alone, or if discovery some­
how plays a role, is not known. Nor is it known if the 
various parameters could be tuned to overcome these 
difficulties. In contrast, the bucket brigade does demon­
strate the abil i ty to assign credit in (sub) linear t ime, 
and seems to be especially competi t ive in the discovery 
setting w i th generalized rules and a barrier. Theoret i­
cal considerations and l imi ted experiments suggest that 
adaptive heuristic cr i t ic holds promise for hybr id clas­
sifier systems. Finally, the acknowledgement is made 
that these represent a highly prel iminary set of exper­
iments and much remains to be learned about credit 
assignment. 

A C K N O W L E D G M E N T S 

The authors wish to thank Richard Sutton for many 
interesting and f ru i t fu l discussions. 

REFERENCES 

[Barto et al . , 1983] A. G. Barto, R. S. Sutton and C.W. 
Anderson. Neuronlike Elements That Can Solve Dif­
f i cu l t Learning Control Problems, I E E E T r a n s , on 
S y s t e m s , M a n , a n d C y b e r n e t i c s , SMC-13, 834-
846. 

[Booker, 1982] L. B. Booker. Intell igent Behavior as 
an Adaptat ion to the Task Environment, Ph.D. The­
sis, University of Michigan, Department of Computer 
and Communications Sciences, A n n Arbor , M I . 

[Brumgard, 1988] D. E. Brumgard. Temporal Differ­
ence Methods for Credi t Al locat ion in Classifier Sys-

760 Machine Learning 



terns, University of Tennessee, Computer Science De­
partment Class Project, Knoxvi l le, T N . 

[Davis, 1987] L. Davis, (ed) G e n e t i c A l g o r i t h m s a n d 
S i m u l a t e d A n n e a l i n g , P i t tman Press, London. 

[Goldberg, 1983] D. E. Goldberg. Computer-aided Gas 
Pipeline Operat ion Using Genetic Algor i thms and 
Machine Learning, Ph.D. Thesis, University of Michi­
gan, Department of C iv i l Engineering, Ann Arbor . 

[Goldberg, 1989] D. E. Goldberg. G e n e t i c A l g o ­
r i t h m s i n Sea rch , O p t i m i z a t i o n a n d M a c h i n e 
L e a r n i n g , Addison-Wesley. 

[Grefenstette, 1988] J. J. Grefenstette. C r e d i t A s -
s i g n m e n t i n R u l e D i s c o v e r y sys tems Based o n 
G e n e t i c A l g o r i t h m s , M a c h i n e L e a r n i n g (8)213, 
225 246. 

[Hampson, 1983] S. E. Hampson. A Neural Model of 
Adapt ive Behavior, Ph.D. Dissertation, Department 
of Informat ion and Computer Sciences, University of 
California, I rv ine. 

[Mill iard et al . , 1988] M. R. Hi l l iard, G. E. Liepins, M. 
Palmer and D. J. Kej i tan. Machine Learning Appl i ­
cations to Job Shop Scheduling, P roceed ings of t h e 
F i r s t I n t e r n a t i o n a l C o n f e r e n c e o n I n d u s t r i a l 
a n d E n g i n e e r i n g A p p l i c a t i o n s o f A r t i f i c i a l I n ­
t e l l i gence a n d E x p e r t Sys tems , A C M Press. 

[Holland, 1985] J. I I . Hol land. Properties of the Bucket 
Brigade, P r o c e e d i n g s o f t h e F i r s t I n t e r n a t i o n a l 
C o n f e r e n c e o n G e n e t i c A l g o r i t h m s a n d t h e i r 
A p p l i c a t i o n s , Lawrence Er lbaum, Hillsdale, New 
Jersey, 1-7. 

[Holland, 1986] J. H. Hol land. Escaping Brittleness: 
The Possibilities of General-Purpose Learning Algo­
r i thms Appl ied to Parallel Rule-Based Systems, in 
R. S. Michalski, J. G. Carbonell , and T. M. Mitchel l 
(eds.), M a c h i n e L e a r n i n g : A n A r t i f i c i a l I n t e l l i ­
gence A p p r o a c h , vol.2, Morgan Kaufman, Los A l ­
tos, CA. 

[Holland and Rei tman, 1978] J. H. Holland and J. S. Re-
i tman. Cognit ive Systems Based on Adaptive Algo­
r i thms, in D.A. Waterman and F. Hayes-Roth (eds), 
P a t t e r n - D i r e c t e d I n f e r e n c e Sys tems, Academic 
Press, New York, NY . 

[Riolo, 1987a] R. L. Riolo. Bucket Brigade Perfor­
mance: I. Long Sequences of Classifiers, in Genetic 
Algor i thms and Their Applications, P roceed ings of 
t h e Second I n t e r n a t i o n a l Con fe rence o n Ge­
n e t i c A l g o r i t h m s , J . J . Grefenstette, ed., Lawrence 

Erlbaum Associates, Hillsdale, New Jersey, 184-195. 
[Riolo, 1988] R. L. Riolo. Empirical Studies of Default 

Hierarchies and Sequences of Rules in Learning Clas­
sifier Systems, Ph.D Thesis, University of Michigan, 
Computer Science and Engineering Department, A n n 
Arbor, ML 

[Robertson and Riolo, 1988] G. G. Robertson and R. L. 
Riolo. A Ta le of T w o Class i f ie r Sys tems , Ma­
chine Learning (3) 213, 139-160. 

[Rumelhart et al, 1986] D. E. Rumelhart, G. E. Hinton, 
and R. J. Wil l iams). Learning Internal Representa­
tions by Error Population in Rumelhart, D. E., J. L. 
McClelland and the PDF Research Groups, P a r a l l e l 
D i s t r i b u t e d Process ing , M I T Press, 318-364. 

[Samuel, 1959] A. L. Samuel. Some Studies in Machine 
Learning Using the Game of Checkers, I B M J o u r ­
n a l on Research a n d D e v e l o p m e n t , 3 , 211-229. 

[Samuel, 1967] A. L. Samuel. Some Studies in Machine 
Learning Using the Game of Checkers II - Recent 
Progress, I B M J o u r n a l o f Research a n d D e v e l ­
o p m e n t . 11, 601-617. 

[Smith, 1980] S. F. Smith. A Learning system Based 
on Genetic Adaptive Algori thms, Ph.D. Thesis, Uni­
versity of Pit tsburgh, Computer Science Department, 
Pi t tsburgh, PA. 

[Sutton, 1984] R. S. Sutton. Temporal Credit Assign­
ment in Reinforcement Learning, Ph.D. dissertation, 
University of Massachusetts, Amherst, M A . 

[Sutton, 1988] R. S. Sutton. Learning to Predict by the 
Methods of Temporal Differences, Machine Learning 
(2) 1, 9-44. 

[Sutton, 1989] R. S. Sutton. Personal Communication. 

[Widrow and Stearns, 1985] B. Widrow and S. D. 
Stearns. A d a p t i v e S igna l P rocess ing . Prentice-
Hal l , Englewood Cliffs, New Jersey. 

[Wilson, 1987a] S. W. Wilson. Classifier Systems and 
the Anirnat Problem, M a c h i n e L e a r n i n g , 2, 199-
228. 

[Wilson, 1987b] S. W.Wi lson. Hierarchical Credit Al lo­
cation in a Classifier System in Davis, (ed), G e n e t i c 
A l g o r i t h m s a n d S i m u l a t e d A n n e a l i n g Pi t tman 
Publishing, pp. 14-115. 

[Wi t ten, 1977] I. H. Wi t ten . An Adapt ive Opt imal 
Controller for Discrete-Time Markov Environments, 
I n f o r m a t i o n a n d C o n t r o l , 34, 286-295. 

Liepins, Hilliard, Palmer and Rangarajan 761 


