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Abstract maintenance (ATMS) [Reiter and de Kleer,

In a recent paper, Konolige has introduced a
new version of autoepistemic logic (AEL),
which is based on a strong notion of
groundedness. We show that it is well-suited
for formalizing the concept of justified belief in
a non-monotonic truth maintenance system
(TMS). If we consider the justifications of a
TMS as formulae of the form lL.a/A—LbDe¢, it
computes the set of non-modal atoms of a
strongly grounded AEL-extension. It is shown
that a variant of Dressler's encoding of non-
monotonic justifications in an assumption-

1987]. Recent work on non-monotonic

justifications for the ATMS, (de Kleer, 1986Db]

and [Dressier, 19881, underlines the need for
non-monotonicity in truth maintenance,

they are based on new, specialized non-
monotonic logics whose sole purpose is to
characterize a TMS, as for example Brown's
logic ofjustified belief [Brown, 1988]. This is an
interesting path to pursue, but it yields no
insights into the relation between truth
maintenance and the existing families of non-
monotonic logics.

based TMS is correct, and thus also inherits The problem addressed Iin the present paper is to

the AEL semantics We argue that more work establish a link between non-monotonic truth

IS needed to come to a better understanding of maintenance and autoepistemic logic, that is, a

backtracking routines and so-called nogood "standard"” non monotonic logic.

inferences, which are identified as sources of

ungrounded conclusions. These results L2 Analysis of the Problem

contribute to bridging the gap between theory

and implementation in the field of non- An analysis of the problem shows that a logical

monotonic reasoning theory of non-monotonic truth maintenance is hard
to design because of the following characteristics of
a TMS:

1 Introduction
1.1 The Problem

Despite their importance in Al problem solving,
non-monotonic truth maintenance systems still lack
sufficiently well-understood logical foundations
Existing logical characterizations of truth
maintenance suffer from one or several of the
following problems:

they do not correspond exactly to what a TMS
actually does, as for example NML-I

it is finite and logically incomplete

it is "brave" in the sense that it may adopt one of
multiple, mutually incompatible belief states,

it has a very strong and, in particular,
inherently global notion of a belief state being
grounded

nonmonotonic justifications are asymmetric:
disbelief in the nonmonotonic antecedents can
justify belief in the consequent, but disbelief in
the consequent cannot justify belief in the non-
monotonic antecedents.

[McDermott, 1980]. 1.3 The Approach

they only consider the "easy" monotonic case, as

for example Reiter and de Kleer's prime We pursue a two-step bottom-up approach. First, we
implicant theory for assumption-based truth specify non-monotonic truth maintenance in a
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direct, non-logical theory. Then, the specification,
together with the corresponding formal framework,
IS used to draw a connection to autoepistemic logic
The theory is a derivative of Jon Doyle's reasoned
assumptions LDoyle, 19831, and is discussed in
[Reinfrank and Freitag, 1988]. It is built on the
concept of a non-circular proof being valid relative to
a current coherent belief state. To this end, a
justification is considered as a rule of the form
<alb—¢>, where a is a monotonic antecedent and b
a nonmonotonic antecedent for the conclusion ¢ (In
general, we consider sets of antecedents). A
justification is valid in a given set S if a€S and beS
A set of such justifications is called a non-monotonic
formal system (NMFS). An extension ofan NMFS is
a set S such that everv element of S has a non-
circular proof using only valid justifications, and
where the conclusion of every valid justification
belongs to S.

One can easily verify that extensions correspond
exactly to the IN/OUT labellings of a non-monotonic
justification-based TMS [Doyle, 1979, Goodwin,
19871. With some minor extensions, NMFS-theorv is
also sufficient to describe an assumption-based TMS
(deKleer, 1986a).

14 The Solution

The key to a logical theory of truth maintenance
now is to relate a justification <<alb—c> to a self-
referential formula in autoepistemic logic (AEL),
LaA—LbDe¢, where L is an introspective modal
operator, and La reads as "a is believed". This
formula is essentially in AEL normal form
[Konolige, 1988a), and therefore the AEL-transform
of a set of justifications can be used as a basis for so-
called strongly grounded AEL-extensions. Notice
that the scope of modal operators and the right-hand
side of the implication are restricted to non-modal
atoms. Given an NMFS J, the strongly grounded
AEL-extensions of its transform JAEL correspond to
the extensions of J, and hence to TMS-labellings, in
the sense that a TMS labels exactly the non-modal
atoms ofa strongly grounded AEL-extension IN.

We show that a variant of Dressler's encoding of
non-monotonic justifications in an ATMS [Dressier,
19881 is correct. Therefore it also inherits the AEL
semantics. Dependency-directed backtracking and
so-called nogood inferences are identified as a source
of ungrounded conclusions.

2 A Direct Truth

Maintenance

Theory of

We consider a countable set V of propositional
atoms. A TMS works with finite subsets of V. A

justification is a rule p

<A|B—c¢>, where A and B
are finite sets of atoms, and c is a single atom. (We
usually omit the set parentheses when enumerating
the members of A and B.) p is valid in a set SCV (or
S-valid) iff ACS and BNS=. Note that a

justification of the form <@|J-—c> is valid in

every set S. It is called a premise justification, and c
a premise. A non-monotonic formal system (NMFS)
Is a finite set of justifications.

Def. 2.1: Let J be an NMFS, SCV, and q€V. A J-

prooffor q valid in S is a sequence (q1,92,- qn) vvith
the following properties:

(1) gn=q
(2) VYqg;: q;€S
(3) Vq;: 3<A|B—=q,>€J: AC{qy...q.1} N

BNS=

In other words, a J-proofis a non-circular sequence
of applications of S-valid justifications to
intermediate conclusions.

Def. 2.2;: Let J be an NMFS, SCV. SisJ-closed iff
V<AIB—¢>€J: ACSABNS=J = c€S.

Def. 2.3: Let J be an NMFS, SCV. S is J-grounded
iff every q€S has aJ proofvalid in S.

Sometimes we need to consider sets that are only
grounded in a substantially weaker sense.

Def 24 Let J be an NMFS, SCV S is locally J-
grounded iffevery q€S has an S-valid justification.

Def. 2.5: LetJ be an NMFS, SCV. S is a J-extension
iff

(1) S is J-grounded and

(2) S is J-closed

An extension thus has the property that it contains
an atom if and only if a proof - valid in that
extension - can be found for the atom. As we have
shown in IReinfrank, 19871, a justification-based
TMS computes exactly the extensions of its
justifications. We can easily verify that NMFS have
the following properties:

finiteness : given that J is finite, so are its
extensions.
logical incompleteness: <consider a

propositional language L rather than a set V of
constants as the domain from which
justifications are formulated.
{<plpvg—or>,<QB|D—p>} has the extension
{p,r}, since a TMS fails to make the logically
valid inference pVq from p.
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braveness: {<J|p—>q>,<B|q—=p>} has two
extensions: {p}, {q}.

strong, global notion of groundedness:
{<p|@—-p>, <O@|p—=+q>} has exactly one
extension {gq} Notice that {p} is closed, locally
grounded, that is, p is the consequence of a {p}-
valid justification, and it is minimal in that
respect. But it is not grounded.

asymmetry of justifications: the only
admissible extension of {<|q—=p>} is {p}. It
does not yield an extension {q}, where p is
disbelieved and q believed, "backward" justified
by disbeliefin p.

The usual approach to achieving a higher degree of
logical completeness, unless full responsibility for
logical inferences is left to the problem solver, is to
use sets of justifications to partially encode the
meaning of connectives, as, e.g., in [McAllester
1980, de Kleer 1986b, Dressier 1988]. We do not
consider such techniques in the present paper.

NMF'S theory provides a direct yet implementation
independent specification of justification-based
truth-maintenance. It can be easily extended to non-
monotonic rules with variables [Reinfrank and
Freitag, 1988]. The following results on NMFS are
needed in order to formally prove their equivalence
to the particular subclass of autoepistemic theories
to be introduced later.

Lemma 2.6: LetJ be an NMFS, E be a .J-extension,
J*CJ be the set of all E-valid justifications. Then
E={c: <A|B—c>€J*}.

Lemma 2.7: Let J be an NMFS, E a J-extension.
There is no proper subset E'CE such that E' is a J-
extension.

3 Autoepistemic Logic and Truth
Maintenance

3.1 Strongly Grounded AEL-Extensions

AEL IMoore, 1985] is a cleaned-up version of
McDermott and Doyle's first shot at a modal non-
monotonic logic [McDermott and Doyle, 1980] In
this section, we consider an AEL language based on
a propositional logic. In [1988a], Konolige develops
the concept of a strongly grounded AEL-extension of
a given base set. It is meant to formalize AEL-
extensions in which a formula p always has a
derivation independent of Lp. That is, Lp itself can
only be derived from p, and hence strongly grounded
AEL-extensions are a candidate for a logic of
justified as opposed to simple belief. The definition
of strong groundedness is partly syntactical, since
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the base set is assumed to be in a particular normal
form.

Def. 3.1 (Konolige): An AEL formula p is in normal
form iffp= - LayLB)Vv.. VvVLBhVY, where all of a,B;
and y are non-modal formulae. Any of the disjuncts,
except for y, rnay be absent.

For a set S of formulae, let LS = {Lp: p€S},
~LS'={—Lp: p¢S}, and So be the set of non-modal
formulae contained in S.

Def. 3.2 (Konolige): T is an AEL-extension of A iff

T={p: AULTU ~LT'E=p}

Def. 3.3 (Konolige): Let A be in normal form, T an
AEL-extension of A. Let A* be those formulae in A
for which BI€T, for all Lpj. T is strongly grounded iff

T={p: A¥ULA*U ~LTy'Fgs p}

The sign [ss here means that the modal index of
autoepistemic valuations, which consist of an
ordinary propositional interpretation and a set of
beliefs, is restricted to stable sets. For details, see
[Konolige, 1988al. We use a slightly different
definition of strong groundedness as the one given
there. This modification is necessary both for
Konolige's results on the relation between strongly
grounded AEL-extensions and default logic, and for
our purposes here. It is due to Konolige [1988Db).

A weaker notion of groundedness only requires
minimalitv w.r.t. non-modal formulae. It is
equivalent to

Def. 3.4 (Konolige): Let T be an AEL-extension of A,
which is not necessarily in normal form T s
moderately grounded in A iff

T={p: AULAU ~LTy'Fsg p}

Simple AEL-extensions are called weakly grounded.
AEL-extensions, and hence also strongly grounded
extensions, are uniquely determined by the set of
non-modal formulae contained in them, their so-
called kernel.

Lemma 3.5 (Konolige): If two AEL-extensions
agree on their non-modal formulae, they are the
same.

3.2 The Translation from NMFS to AEL

We transform justifications into AEL-formulae as
follows.



Def. 3.6: Let <aj,...,am|bt,...,bp—>¢c> be a
justification. Its AEL-transform 1S
—L(ayA\.. Nay)\vLbyv..\/Lby\/c.

Since, in AEL, LajA\...ALa, is equivalent to
L(aj/\...Aap), and using the definition of D, the
AEL-transform ofajustification can be rewritten as

LayA\..ALap,/A—~Lbi/A.. A~ Lb,Dec,

where all of ai, bj, and ¢ are non-modal atoms from
V. For a premise <®|®—>c>,, we get the atom c. Let
JAEL be the set of transformed justifications of an
NMFS J. Given this particular form of a base set,
and by view of Lemma 3.5, the corresponding
strongly grounded AEL-extensions are uniquely
determined by the set of non-modal atoms contained
in them. It is exactly this atomic kernel that is
computed by a TMS.

For a set S of formulae, let At(S) be the set of
propositional atoms in S, and Th(S) be the set of
propositional logic consequences of S.

Theorem 3.7: Let J be an NMFS with AEL--
transform JAEL
(1) Suppose T is a strongly grounded AEL-
extension of JAEL Then At(To) is a J-
extension.
(2) Conversely, let E be a J-extension. Then
Th(E) is the kernel of a strongly grounded
AEL-extension T of JAEL

3.3 Discussion

It is important to note that the theorem no longer
holds if the justifications are formed from a full-
fledged propositional language rather than from a
set of propositional atoms. The AEL base set {p,
LpA\—~L(pvvq)Dr} has obviously no extension that
contains r, since from p we get pvq, and hence
— L(pvq) cannot be assumed. But {p,r} is a
{<pl(pvq)—r>,<F|D—p>}mextension.

Also, the condition of strong groundedness is
necessary, since {LpDp, " LpDq} has a moderately
grounded AEL-extension containing p, which is not
strongly grounded. The corresponding NMFS has
only {g} as an extension.

This poses the question as to NMFS-counterparts
to weakly or moderately grounded AEL-extensions.
In some independent piece of work and cast in a
quite different formalism, Fujiwara and Honiden
[1989] show that weakly grounded AEL-extensions
correspond to closed and Jocally grounded J
extensions, in the same sense as in theorem 3.7 |In
NMFS-theory, it is easy to show that in the

justification

monotonic case minimality ofclosed sets is sufficient
to guarantee global groundedness. For a non-
monotonic NMFS, however, even minimality of
locally grounded sets is insufficient, as the example
above shows. Similarlv, the minimization involved
in the definition of moderately grounded AEL-
extensions is too weak to capture the notion of
grounded beliefused in the TMS-world.

An additional filter is required for moderately
grounded extensions. The definition of strong
groundedness provides exactly that filter. (Note that
it is related to a property of NMFS extensions given
in Lemma 2.6.) As we elaborate in the long paper,
this extra condition is similar in spirit to stability
conditions in model-preference theories for default
logic [Etherington, 1988] and logic programming
[Elkan, 1989].

To our opinion, all of this may eventually shed
some new light on the relation between proof theory
and model theory in non-monotonic reasoning. The
concept of a finite, non-circular proof which is valid
relative to an overall coherent state of belief simply
has some proof theoretic flavor which is hard to
represent independently in the model theory.

3.4 Semantical Considerations

Suppose we are given two justifications <alb—c¢ >
and <@@|@—sa>. The corresponding AEL-base set
is {a, LaA—-LbDc¢ }. Figure 1 shows the usual
graphical representation of justifications. A TMS-
labelling procedure proceeds as follows: a is a
premise, so it is necessarily believed and labelled
IN. In AEL, this corresponds to the K45 [Konolige,
1988al inference step a/La. Since there is no valid

justification for b, b is labelled OUT, which reflects

the AEL-assumption Lb. Now the justification for
¢ has become valid, so it must be the case that c
holds, and hence it is also labelled IN That iIs, a

IN a |—p{ La
(D \

;4)__,@ LaA—=LbDc
~ OUT |
&

Figure 1. TMS-labeling and AEL-inferences

c""ch

gets the following semantic
interpretation, ifa is believed (IN the database) and

b is not believed (OUT of the database) then it must
be the case that c is true and, consequently, must
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also be believed (IN). Note that this interpretation is
different from the usual reading for a justification,
where the direct and only conclusion is the self-
belief that ¢ must be IN the database, without
referring to the world in consideration.

A proper distinction between ~-lLa and —a is
crucial to an understanding of truth maintenance.
While there is no a priori preference for either of a
and —a, and hence it might be the case than none of
them is believed, —La is always preferred to La. l.e.,
a TMS only adopts the self-belief La if it is forced to
do so because it follows from a itself. Otherwise it
jumps to the assumption -—-La. As we will see in
chapter 5, a confusion of a proposition being OUT
and its negation being IN may lead to peculiar
consequences.

3.5 Default Logic

AEL and default logic IReiter, 1980] are essentially
equivalent [Konolige, 1988a], in that the kernels of
strongly grounded AEL-extensions correspond to
extensions of default theories, where an AEL
formula La/A —LbDc is translated to a default
a:M —b/c. (Since default logic does not preview an
empty M-part, dummy conditions are introduced if
needed). Theorem 3.7 thus yields a relationship
between NMFS and default logic as a corollary.

Corollary 3.8: Let J be an NMFS and A, be the
default theory constructed from JAEL
(1) Suppose T is a default logic extension of Aj.
Then At(T) is a J-extension.
(2) Conversely, let E be a J-extension. Then
Th(E) is a default logic extension of Aj.

This relationship is of some interest in its own right,
because default logic has been given a semantics
[Etherington, 1988] in terms of stable, maximally
preferred sets of models. We show in the long paper
[Reinfrank and Dressier, 1988] that the
computations performed by a TMS can be regarded
as operations on a condensed representation of such
model sets.

4 Assumption-Based Systems

Theorem 3 7 begs the question as to a related
theorem for a non-monotonic ATMS [Dressier,
1988]. A minor extension to NMFS-theory is
sufficient to model an ATMS. We must allow for
assumptions from a given set aCV to be used in J-
proofs.
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justification.

Def. 4.1: Same conditions as in Def. 2.1, and aCV. A
J-proof relative to a is a J-proof as in Def 2.1.,
condition (3) replaced by:
(3') Vq;: qi€a\y 3<A|B—>q;>€d:
- AC{qy,...qii} ANBNS=C

The definitions of J-grounded relative to a and J-
extension of a then are straightforward
generalizations of Def. 2.3 and 2.5. An ATMS works
with monotonic justifications of the
form < A|@—>c¢>. Jextensions for a monotonic

NMFS always exist and are unique.

Lemma 4.2: Let J be a monotonic NMFS, aCV
There is one and only one J-extension of a. We write

Jext(a).

Given a distinguished set AssCV, an ATMS
simultaneously computes all Joxt(@), a€2As8s. To
integrate non-monotonic justifications into the

essentially monotonic ATMS-world, explicit Out-
atoms are introduced. For a given V, let OutV = {Out
x: x€V}. Out-atoms may not occur as the consequent
of ajustification.

Def. 4.3: Let <alb—c> be a non-monotonic
Its (monotonic) ATMS-transform is
<a, Out b|{D—c>.

Obviously, there is a one-to-one correspondence
between non-monotonic formal svstems over V and
those monotonic formal systems over VuOutV that
do not permit Out-atoms as consequents. Non-
monotonicity in an ATMS then is achieved by
manipulating assumption sets. A J-n-extension E of
an assumption set a is an ordinary extension of a
maximal augmentation of a with a set (3 of Out-
atoms. Out x is added to the basis aU{f} if and only if
X€E.

Def. 4.4: LetJ be a monotonic NMFS over VUQutV,

aCV. E 1s a J-p-extension of a iff IPCOutV.
E=Ju(aUP) A\ (Vx€V: OQut x€[} & x¢E).

It is important to note that, unlike in [Dressier,
1988], J-p-extensions do not involve any so-called
nogood inferences. It is exactly these nogood
iInferences that lead to problems of ungroundedness
in an NMATMS, cf next section.

Lemma 4.5: Let J be a non-monotonic NMFS over
V, JATMS its ATMS-transform over VUOutV. Let
aCV be an assumption set.

(1) Suppose E is a J-extension of a and let
B={0Out x: x¢E} Then EUB is a yaATMsP"
extension ofa, with basis aU}.



(2) Conversely, let S be a’ ATMS-extension of
a. Then SNV is a J-extension of a.

It is easy to see that every J-proof relative to a can
be simulated with a JATMS-Peoof relative to alu{QOut
x. x¢E}. Conversely, we can construct a J-proof for
every ordinary atom in a JATMS-H-extension. Since
the transform is bidirectional, Lemma 4.2 also
works in the opposite direction (i.e. starting from a
monotonic NMFS over VuOutV) and yields a one-
to-one correspondence between u-extensions for the
NMATMS and strongly grounded AEL-extensions
In the sense of Theorem 3.7 as a corollary.

5 Backtracking and Nogood Inferences

Consider an extended language including
justifications of the form <alb—1 >, where L
stands for falsity. Let a be a premise. Since there is
no viay to derive b in the basic TMS-machinery, we
get an inconsistent extension {a,l}. A dependency-
directed backtracking routine, which is triggered
whenever 1 becomes IN, would in this case
introduce an additional justification <a|@—b>
Similarly, a nogood inference rule in the NMATMS
would i n <a|/@—-b> o m <a, Out b|j@—- L >
This yields {a,b} as the atomic kernel of an AEL-
extension. It is strongly grounded in the extended
base set. However, from the original base set {a,
LaA—LbDLl}, we can onlv infer La and —lLayLb,
and hence get the ungrounded assumption Lb,
iIndependently of b.

In general, dependency-directed backtracking in
a TMS and nogood inference rules in an ATMS can
be considered as justification-generating rules of
the form

pAN"LqgqD1l/pDq,

with approriate control restrictions. This leads to
modified base sets with new conclusions that are
possibly not strongly grounded w.r.t. the original
base set. A peculiar problem arises in an NMATMS
due tojustifications of the form <x, Out x|{J— 1 >,
which are used to prevent x and Out x from being
assumed simultaneously. This technique appears to
be reasonable for de Kleer's negated assumptions
fde Kleer, 1988]. However, in the case of genuinely
non-monotonic Out-assumptions, together with
nogood inferences, it leads to a confusion of
inconsistency and incoherence, that is, non-
existence of any extension. This difference also
suggests to use negated assumptions rather than
Out-assumptions to encode logical connectives with
sets of justifications.

Applied to the incoherent set {<Out p|@—p>},
for example, a simple nogood inference step yields
{p} as an extension. The corresponding AEL-base set
has no extension at all, neither consistent nor
iInconsistent. More work is needed to come to a
better understanding of the properties of
backtracking and nogood inferences. [Morris, 19881
seems to be a first step in the right direction.

6 Related Work

Using the same translation as we do, but described
iIn a quite different formalism, Fujiwara and
Honiden 11989] prove a relation, similar to the one
presented in theorem 3.7, between weakly grounded
AEL-extensions and what we call closed and locally
grounded NMFS-extensions.

Elkan 11989] has recently proposed a different
translation, a/A—~LbDc (a instead of La). For the
simple form of an AEL-language in consideration, it
turns out that the weakly grounded extensions of
the resulting AEL base sets correspond to the
strongly grounded extensions using our translation.

l.e., three groups of researchers have come up
iIndependently of each other with related ideas and
results, though formulated in superficially quite
different formalisms. We consider this as evidence
that we are on the right track, and that it was
getting to be time to put non-monotonic truth
maintenance on a sound logical basis. What is
unique to our approach, compared to (Fujiwara and
Honiden, 1989] and [Elkan, 19891, is the
development of NMFS as a direct theory of truth
maintenance, as well as the treatment of ATMSs.

Our research is similar in spirit to the work by
Horty, Thomason, and Touretzky on logical theories
of inheritance, cf. [Thomason and Horty, 1988].
They also pursue a bottom-up approach using
iIntermediate direct formalizations. The situation in
iInheritance theory is comparable to the one in truth
maintenance in that, in both fields, procedural
realizations and network-based concepts were the
starting point. We are currently working on a
characterization of truth maintenance in a four-
valued logic, which is related to Thomason's
approach.

/ Conclusions

We have established a relationship between non-
monotonic truth maintenance and non-monotonic
logics. This provides the technical fundament for an
alternative view of truth maintenance as inference
In a non-monotonic calculus, in addition to the
traditional view as an efficient mechanism for
search and caching. We also have developed a direct
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theory of truth maintenance and presented a correct
encoding of non-monotonic justifications in an
assumption-based TMS. Our results contribute to
closing an important theory-implementation gap,
after TMSs and non-monotonic logics have been
coexisting for more than a decade. They open the
way for further research into the foundations of
truth maintenance.

8 Proofs

Complete proofs, including an independent proof for
Corollary 3.8, for the claims made in this paper are
contained in [Reinfrank and Dressier, 1988].
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Abstract

Circumscription on the one hand and autoepis-
temic and default logics on the other seem to
have quite different characteristics as formal
systems, which makes it difficult to compare
them as formalizations of defeasible connmon-
sense reasoning. In this paper we accomplish
two tasks: (1) we extend the original semantics
of autoepistemic logic to a language which in-
cludes variables quantified into the context of
the autoepistemic operator, and (2) we show
that a certain class of autoepistemic theories in
the extended language has a minimal-model se-
mantics corresponding to circumscription. We
conclude that all of the first-order consequences
of parallel predicate circumscription can be ob-
tained from this class of autoepistemic theories.
The correspondence we construct also sheds
light on the problematic treatment of equality
In circumscription.

1 Introduction

The relations between the major nonmonotonic logic for-
malisms of Al — default logic, autoepistemic logic, and
circumscription — is of some importance, since all of

these logics have been proposed as formalisms for vari-
ous types of commonsense reasoning. The basic formal
equivalence of default and autoepistemic logic has al-
ready been shown (see [Konolige, 1987]), but the relation
between circumscription and default or autoepistemic
logic remains obscure. Mostly this is a consequence of
the different foundations of these logics: circumscription
Is based on a minimal-model semantics (see [Lifschitz,
1985]), while the others use more proof-theoretic tech-
nigues (default logic [Reiter, 1980]) or an epistemic op-
erator (autoepistemic logic [Moore, 1985]).

In trying to express autoepistemic or default, logic in
circumscription, researchers have found the basic prob-
lem to be that a minimal-model or even prefered-model
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semantics simply does not have the capability of rep-
resenting the requisite proof-theoretic or epistemic con-
cepts (see [Shoham, 1987]). We agree with this assess-
ment, and say nothing further about it here.

On the other hand, there have been several results on
expressing circumscription in default logic. These results
are summarized in [Etherington, 1986]; they apply to the
restricted case of predicate circumscription with no fixed
predicates and with a finite, fixed domain.

From a model-theoretic point of view, the predicate
circumscription Circum(,4; P; Z) of a first-order sentence
A picks out those models of A in which the extension of
the predicate P is minimal. The comparison is across
models with the same domain and denotation function,
but which might differ in the extensions of the predicates
Z. All predicates other than P and Z are fixed, that is,
cannot vary in a comparison of models. It was recently
shown (see [de Kleer and Konolige, 1989]) that fixed
predicates are inessential in predicate circumscription,
that is, there is a simple translation from any circum-
scription with fixed predicates to one without. Hence
fixed predicates no longer present an obstacle to rep-
resenting circumscriptions in default or autoepistemic
ogic.

The problem of finite domains remains, however. In
this paper we provide a solution to this problem, by first
extending autoepistemic logic to a language which al-
lows quantifying into the epistemic operator, and then
showing that a certain class of autoepistemic theories,
the MIN= theories, express all of the first-order conse-
quences of predicate circumscription.

2 Semantics of Quantifying-in

Autoepistemic (AE) logic was defined by [Moore, 19835]
as a formal account of an agent reasoning about her
own beliefs. The agent's beliefs are assumed to be a
set of sentences in some logical language augmented by
a modal operator L. As originally defined, and extended
iIn [Konolige, 1987], its language does not permit vari-
ables quantified outside of a modal operator to appear
inside. In this section we further extend AE logic to deal
with quantifying-in.

2.1 Logical preliminaries

We begin with a language C for expressing self-belief,
and introduce valuations of C. The treatment generally
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