"Physical Negation”
- Integrating Fault Models into the General Diagnostic Engine

Peter Struss1)2)and Oskar Dressier

1) Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, Ca 94394
USA

struss.pa@xerox.com

Abstract

The General Diagnostic Engine (GDE)
provides an elegant and general framework for
model-based diagnosis. However, like many
other diagnostic systems, GDE's device models
capture only the correct, or intended, behavior
of its components. It is lacking an important
part of diagnostic reasoning: knowledge about
how components may behave when they are
faulty. This fact can limit the performance of
GDE considerably. We present a solution for
integrating the use offault models into GDE in
a very homogeneous way, a system called
GDE + . Unlike the basic GDE, it can not only
exploit contradictions between the assumed
correct behavior of components and the
observations, but also analyze whether the
faultiness of components would really explain
the observations. Based on an extended
version of the ATMS, GDE + is able to prove
the correctness of components and to rule out
iImplausible diagnostic hypotheses.

1 Introduction

In many systems for model-based diagnosis, the
model of the device under consideration captures
only the normal, or Iintended behavior of its
components. In exploiting the Assumption-Based
Truth-Maintenance System (ATMS), the General
Diagnostic Engine (GDE) of [de Kleer-Williams 87]
provides an elegant and general framework for this
type of diagnostic reasoning. The system assumes
the correctness of each component and identifies
conjunctions of such correctness assumptions that
contradict the observations (measurements). The
diagnostic process is then organized as a cycle of
gathering more information that helps to decide
which correctness assumption(s) should be retracted
In order to remove the existing contradictions.

The advantages of GDE, besides being model-based,
are that it can handle multiple faults, and it does
not require fault models.

On the other hand, GDE does not exploit knowledge
about the faulty behavior of components. The

1318 Knowledge Representation

2) SIEMENS Corp.
Otto-Hahn-Ring 6
D-8000 Muenchen83
West Germany
dressler@ztivax.siemens.com

Figure 1

simple example shown in Fig. 1 demonstrates that
this can be a drawback: a battery, S, is connected to
three bulbs, B1, B2, B3, ofthe same type. (In order to
reduce the number of components involved, we
assume that the connections, W1,...,W6 are directly
attached to the bulbs.) Suppose we observe that only
B3 is lit. Without requiring further measurements,
we will come up with the plausible diagnosis {B;, B},
meaning that By and B2 are broken. This is because
the light of B3 indicates the battery supplies
sufficient voltage, and a bulb that is not lit despite
this fact is considered to be broken (or to have no
contact).

What will GDE derive from this situation? It
suggests a variety of diagnoses (as we will show in
detail in section 2). Among them is our preferred
diagnosis, {B4, By}, but also candidates like

{S, B3}, {W W5}, and others.

The diagnosis {S, B3} explains the observations by a
fault in the battery and in the light bulb Bs: "The
battery does not supply voltage (that is why B; and B,
are not lit), and Bz is faulted: it is Iit although there is
no voltage” And {W1, W5} says "B1 and B2 are not it
because the wire W1 is broken, and B3 is Iit because
the wire W5 is behaving improperly: it produces
voltage”!

We do not accept these explanations as possible
diagnoses because, unlike GDE, we use not only
knowledge about the correct behavior of the involved
components but also knowledge about their possible
behavior when they are faulted. E.g. being it

without voltage supply is not a potential fault of a
light bulb.

The example demonstrates that knowledge about the

faulty behavior can be very important. In many

cases, the diagnostic process involves both

* generating candidates, or diagnostic hypotheses,
by identifying sets of components whose correct
functioning contradicts the observations, and

« generating explanations, or confirming
diagnoses, by analyzing whether the
malfunctioning of a (set of) component(s) is
consistent with the observations.

GDE carries out the first task, but not the second.
The ultimate reason for this lies in what one might
call the difference between Ilogical negation
and "physical negation”: |If the retraction of a
correctness assumption for a component removes the
existing contradictions, this means that the logical
negation of the component's correctness is consistent
with the observations. It states that the component
does not behave according to the normal model, but
except for this, it may behave in an arbitrary way.

However, if a component really breaks, i.e. after
the "physical negation” of its correctness, it does not
operate in a completely unconstrained manner. In
many cases, it will still behave in a deterministic,
describable way. There may be a number of such
modes known, which are called fault models.

Hence, extending GDE in order to capture and
exploit fault models appears to be promising. In this
paper, we show that this is possible In a very
coherent way. Since fault models are applied under
the assumption that the respective component is not
correct, and since a component is either correct or
not, we have to use an extended version ofthe ATMS
that is capable of handling negation and disjunction.
Based on this, we are able to make inferences like "/f
none of the fault models of a component is consistent
with the observations then it is correct”, or "If each of
the fault models of a component s Inconsistent with
the observations and the correctness of some other

component then it is not a candidate for a single
fault”.

The following section Dbriefly summarizes the
structure of GDE and the use of the ATMS in this
framework. In section 3, we will state the goal for the
integration of fault models and present an extended
version of the ATMS. This is shown to establish the
required basis for the exploitation of fault models: It
iIs possible to infer the correctness of components
(section 4), and the use of fault models improves the
basis for controlling the diagnostic process (section
5). Perspectives are briefly discussed at the end.

2 GDE and ATMS

In this section, we will sketch the basic principles of
GDE, using the example introduced above. GDE is
supplied with a model of the device in terms of
correctly working components. The component
models are encoded by constraints which deduce

values of system parameters from other known
values. This inference process is based on
observations, l.e. input/output data and
iIntermediate measurements. GDE iteratively

performs the following steps:

. Prediction: Based on the assumption that each
component works correctly, compute values for
system parameters.

« Conflict detection: identify those correctness
assumptions that are involved in the computation of
contradictory values for parameters.

« Candidate generation: construct sets of
correctness assumptions that account for the known
conflicts (i.e. their conjunctive retraction would
remove the contradictions).

. Measurement suggestion: propose
measurements that are likely to help discriminating
among the candidates.

When new observations are entered, new predictions
are made. The process stops when some candidate is
an acceptable diagnosis according to some (e.qg.
probabilistic) criterion.

The measurement suggestion in |de Kleer-Williams
87] is based on probabilistic methods. However, since
it is a module quite independent of the others, it
could be supplemented or replaced by other
knowledge sources and will not be discussed in this
paper (Ways for integrating fault models and
probabilities are presented in fllamscher 831 and [de
Kleer-Williams 89)).

Conflict Detection

If two contradictory values are computed for the
same parameter, the correctness assumptions
underlying these computations establish a conflict.
At least one of these assumptions must be wrong. (In
reality, it might be a problem to decide whether or
not two values are contradictory as opposed to
merely reflecting Iimprecise measurements, see
[Dague-Deves Raiman 87], [Struss 88al).

For describing conflicts, the system has to identify
the correctness assumptions a derived value depends
on, and, hence, to record the dependencies among the
single predictive inference steps. This is done by
using the ATMS ([de Kleer 86al). In the prediction
process, each application of a constraint is based on
both the parameter values and the assumption that
the component works In accordance with its
description. This information is transferred to the

ATMS.

In principle, the ATMS works as follows: It creates a
node for each problem solver datum given to it

Struss and Dressier 1319

(Nodes will be written in capital letters in the
following). If the problem solver infers a datum from
a conjunction of other data, the ATMS records this
dependency as a justification which relates the

respective nodes. In our example, we have
justifications like
CORRECT(S) - VOLTAGES)=+ .,

or VOLTAGE;(W;)=+ AN CORRECT(W;)
— VOLTAGE(B;)=+.

For brevity, each correctness node will be denoted

simply by the name ofthe respective component: e.q.
CORRECT(S) = S.

Distinct from the ATMS nodes, there are
assumptions (written in small letters), representing
the decision of the problem solver to believe or
hypothesize that a certain datum is true, e.g.
s=scorrect(S) denotes the assumption of the
correctness of S. The task ofthe ATMS is to compute
the environments for each node, i.e. those sets of
assumptions that allow the derivation of this node.
Obviously, S has the environment { s} . Ifa derived
node becomes an antecedent for anotherjustification,
its environments are combined with those of the
other antecedents and propagated to the newly
derived node. Thus, via the first justification shown
above, VOLTAGE 1(S)- + also receives the
environment { s }, The node LIGHT(B1)=ON gets
{s, w1, w2, b1, because it is justified by Bj's
correctness and the necessary voltage drop which in
turn depends on the wires, W1, W2, and the battery
working correctly. The ATMS computes minimal
environments (w.r.t. set inclusion). If a node holds in
the empty environment, it is universally true; it is a
fact.

There is a distinct node, FALSE, that represents
iInconsistency. FALSE may have justifications, in
our case the existence of conflicting values:

LIGHT(B;) =ON ANLIGHT(B;) =OFF — FALSE

Sets of assumptions that allow to derive FALSE (i.e.
inconsistent conjunctions) are called nogoods.
Because each superset of a nogood is also in-
consistent, the ATMS computes the set of minimal
nogoods as an efficient representation of the existing
contradictions. Since we observed that B1 is not lit,
l.e. LIGHT(B,)=0OFF is a fact, we obtain

nogood {s, wyWwyb, }.

This exemplifies how the ATMS performs the task of
conflict detection, and it shows that automatically
minimal conflicts are generated. In our example, the
following minimal conflicts are identified:
{s,wy,wz, b },{s,w;,ws, w3, wy, bs},
{b3,lU5,U)6,bQ},and {b3'w3rw4rw5rw6rb1 }

Candidate Generation

A candidate i1s a set of components, or rather, their
respective correctness assumptions, that accounts for

1320 Knowledge Representation

all known conflicts. The underlying idea is that
retracting all correctness assumptions ofa candidate
(which means considering the components as faulty)
removes all contradictions with the observations so
far. In this sense, a candidate is a diagnostic
hypothesis.

Each candidate has to contain at least one element
out of each minimal conflict. For the sake of a
compact description of all candidates, again it
suffices to construct the candidates that are minimal
w.r.t. set inclusion. From the conflicts described
above, GDE derives not less than 22 minimal
candidates, including the following with 2 elements:

{s,b3},{s, w5}, {s, we},{wy, b3}, {wy, ws}
{wy,wg}, {we, b3}, {wz, ws}, {wg, wet, {61, b2}

This confirms our claim in the introduction. We see
that all but the last one of the 2-element candidates
are not acceptable diagnoses, since they contain
either a wire that produces voltage out of nothing or
a bulb lit without voltage. Only further measure
ments would enable GDE to rule out implausible
diagnostic hypotheses. As we stated iIn the
introduction, the reason for this deficiency lies in the
purely logical nature of negating correctness: it
allows arbitrary faulty behaviors, excluding only the
correct one. Something is missing that is very
essential for real diagnostic reasoning: knowledge
about what specifically might happen under a fault
occurring.

3 Integrating Fault Models
3.1 The Problem

We extend the components’ models by descriptions of

the behavior they exhibit when they fail. Since
different failures may lead to different faulty
behaviors, the component models can contain a

number of fault views capturing the various fault
models of the component. Like the normal models,
these fault models are represented by constraints.
But they can be activated (and deactivated)
independently. A general framework for structured
models and their controlled application is described
In (Struss 88a, bj.

What do we need in order to exploit the fault models?

. Ifa component, C, has nc distinguishable ways of
failing, which are described by fault models,
then, if C is generally correct, it is correct
w.r.t each of these fault views:

Visng CORRECT(C) => CORRECTI(C)
(This statement assumes that each fault can be
detected and not be compensated by others).

. If we want to express that there are no other
ways for C to fail, i.e. the fault models are
considered complete, we add

CORRECT((C)N ... N CORRECT, (C)
=» CORRECT(C).

There are no problems In expressing these
statements as justifications in the basic ATMS (see
Fig. 2 where C; stands for CORRECT{(C) and the
dashed circles and arrows indicate the supporting
assumptions).

Figure 2

However, when applying fault models, we assume
that CORRECT{C) iIs not true, and we have to
express the disjunction that a component is either
correct or faulty. Extended versions of the ATMS
that allow us to encode negation and disjunctions
have been described by [Dressier 871 and [de Kleer
88] . Here, we will briefly summarize the essential
features of the extensions required to solve our
problem. (For a detailed discussion of their
properties in particular in relation to nonmonotonic
logic, see [Reinfrank et al. 891).

3.2 An Extended ATMS

The basic ATMS as described in section 2 allows a
problem solver to hypothesize or believe the truth of
a node, No, by creating an assumption, no, for it
(Remember the convention ofusing capital letters for
nodes and small letters for assumptions). The
extended ATMS provides a way to explore the
consequences of the assumption that No does not
hold. This assumption, denoted ~—no, supports the
corresponding node, ~NO.

Two rules in the extended ATMS establish the

desired relation between the nodes No and —“No (and

their respective assumptions):

. The consistent beliefrule states that No and
"No cannot both be true at the same time. It
createsjustifications such as:

FALSE .

The nogood inference rule expresses that one
of No and "No must hold. It enables the problem
solver to exploit knowledge about inconsistent
environments. If E is an environment, and E U
{7no } is inconsistent, then it must be the case
that Ny holds in E. Therefore, for any detected
nogood that contains a negated assumption,

No A Ny —

nogood {n1 ,ny, ..., nx, 7Ng} ,

this rule creates the justification

Ny N No A A Ny - No

possible

In particular, from nogood{ ->no }, Ny is inferred
to hold in the empty environment, i.e. No is
established to be a fact.

In [Dressier 88], it is shown that the two rules suffice
to achieve the desired effect. Ny holds in a
consistent context if and only if Ng does not. Our
solution for wusing fault models in the GDE
framework exploits the nogood inference rule
extensively, as is shown in the next section.

4 Fault Assumptions - Inferring
Correctness of Components

We use the facilities provided by the extended ATMS
in the following way: For each fault model of a
component, C, two nodes are —created, C;
= CORRECT{(C) representing "C is correct w.r.t. the
I-th potential fault mode" and ~C;. Each conclusion
drawn from the use of the i-th fault model receives
“C; as a supporting node which is based on the
respective fault assumption, ~c;. As usual, the
application ofthe normal model of C is supported by
the node C, i.e. CORRECT(C), which receives the
assumption c.

One motivation for the introduction of fault models is
to support an inference step like “lIfeach ofthe known
failures of a component contradicts the
observations, then it is not faulty”. We now
demonstrate how the extended GDE (Let us call it
GDE +) performs this step. The i-th fault model of a
component, C, contradicts the observations, if
there is a (possibly empty) set of other components,
say { A, B }, such that the i-th fault model of C cannot
consistently be joined with any combination of the
correct models and fault models of A and B. In terms
ofassumptions, this means:

(41) VasmA € { “m'a] , A2, ..., W1aI]A ’ a}
VasmB € { ""‘b} , ""bg s ey ““'an . b}
nogood { —¢;,asmp ,asmpg }

Since we have, in particular,

V_] = ngy
Vesmpa € { a;, rag, .., May,, ,a}

nogood { 7¢;,asmy , b, },

the nogood inference rule of the extended ATMS
concludes that all B; are valid wunder all
environments { ‘ci, asm, }. Because the conjunction
of all B, justifies the general correctness of B
(consider Fig. 2), these environments are propagated
to B. But, since (4.1) also implies that all
environments { 7ciy, asm A, b } are nogoods, we get

Vasma € { "a;, "az, ..., 7ag, ,a}

nogood { —¢;, asma }.

In the same manner, { —c¢; } is detected to be a
nogood, and the nogood inference rule derives C; to
be a fact. If this is the case for all fault models of C

Struss and Dressier 1321

(i.e. they all contradict the observations) then, based
on the completeness of models (Fig. 2), C s
established to be true, i.e. C works correctly. The
remaining minimal conflicts no longer contain c.

As an illustration, we can now see that GDE+ solves
the problem of the introductory example. Let each
type of component have exactly one fault model,
informally stated as:

Battery empty: VOLTAGE,(S)=0

Bulb damaged: LIGHT(B)=0OFF

Wire broken: RESISTANCE(W) =o

The bulb's only fault model directly contradicts the
observation for B3. Hence, B3 is inferred to be correct,
and b; is removed from the minimal conflicts. So a
non-zero current at B3 is a fact, which rules out each
broken wire and the empty battery. At last, { by, by }
is the only minimal candidate, as desired. GDE +
really got rid ofthe implausible candidates.

Obviously, this technique for using fault models
increases the complexity of GDE and bears the
potential danger of creating a huge number of
combinations of correct models and fault models
some of which may be very unlikely. However, even
iIn such cases, the use of fault models may still be
efficient as well as advantageous if combined with
appropriate control strategies. This is demonstrated
in the following section.

5 Fault Models and Single Fault
Assumption

One useful criterion for controlling the diagnostic
process Is to concentrate on small candidate sets and,
in particular, on single faults. Fault models may
support such a control regime considerably. For

instance, if each fault model of a component, C,
under the given observations contradicts the
correctness assumption of at Il|east one other

component, then the faultiness of C alone cannot
explain the observations and, hence, C is not a
candidate for a single fault. Without affecting the
capability to handle multiple faults, GDE+
automatically performs this kind of inferences as the
following informally presented example illustrates.

Water is supposed to flow from an infinite water
supply, S, through a pipe, PIN, into a container, C,
and from there through pipe POUT to the outlet.
For security reasons, there is another container, C-S,
for capturing water from an overflow or broken pipes

(Fig. 3).

Assume, S really contains enough water, and the
only available information is

OUTPUT(P-OUT)-0
WATER LEVEL(C-S) = 0.

PIN, C, POUT
and, from the

The correct models of
OUTPUT(P-OUT)=+,

observation,

(5.1) {p-in , ¢, p-out}

imply
first

1322 Knowledge Representation

C-S

Figure 3

Is established as the only minimal conflict, which
merely indicates that something is wrong on the way
from the water supply to the outlet. Generating three
minimal candidates, {p-in}, {c}, {p-out}, is all the
basic GDK can do. We use GDE+ and supply it with
the following fault models (giving their respective
fault assumptions reasonable names):

containers may have holes:

hole(C) = —correct(C)

pipes may be perforated or clogged:
perforated(P) = —correct;(P)
clogged(P) = —corrects(P) .

If these fault models are activated, the following
nogoods will be detected:

(5.2) {hole(C), p-in, c-s }

(i.e. water running out of C through a hole would be
detected in a correct C-S in contrast to the second
observation). Similarly, the following nogoods are

found:

(5.3) {perforated)P-IN), c-s} ,

(5.4) {perforated(P-OUT),p-in, C, C-S } ,
and, finally,

(5.9) {clogged(P-OUT), p-in, ¢, c¢c-s }

(If P-IN works, C is also correct, and P-OUT s
clogged, then C-S would contain water from the
resulting overflow of C). Note that (5.2) through (5.5)

are not conflicts, because they include fault
assumptions.

From (5.2), the nogood inference rule creates
P.-IN AN C-S —» C

This has two results: due to (5.1), a second conflict,
(5.0) {p-in, c-s, p-out },

Is detected, and the nogoods (5.4) and
minimized to

(5.4") {perforated(P-OUT), p-in, c-s } and
(5.9") {clogged(P-OUT), p-in, c-s }.

(5.5) are

The nogood inference rule applied to (5.4') and (5.5")
establishes

PIN A C-S — P-OUT, i=1,2

and, via completeness of P-OUT's fault
reduces the conflict (5.6) to
(5.6 { pin, c-s }.

models,

The minimal candidates derived from the minimal
conflicts, (5.1) and (5.6'), are

{p-in}, {c, c-s}, and {p-out ,c-s],

and PIN is the only candidate for a single fault.
Moreover, under the single fault assumption, we
have information about what is wrong with P-IN
(5.3) excludes PERFORATED(P-IN) from being a
single fault and, hence, implies that CLOGGELHP-
IN) is the only possible failure of PIN.

In this case, the system could not prove the
correctness of a component. However, in using fault
models, it changed the set of the minimal candidates
and provided important information for control
decisions, e.g. focusing on PIN. The core of the
performed inferences is the following: If each fault
model of C is inconsistent with some set of correct
models of other components,

(5.7) Visnc 3{Cy, ..., C'x } nogood{—¢;, ciy, ..., cly },

(remember ~—¢; =-correctJC)) then the nogood
Inference rule createsjustifications

Visng Cyn. AN Cyp - C;,
and, via completeness of fault models, C
=CORRECT(C) receives an environment consisting

only of correctness assumptions:

U {Cil, cery C.‘ik1 } :

i:-;.n(j

This expresses the fact that, regardless of how C
fails, this can only be true ifsome other component is
also faulty.

Note that for establishing (5.7), it suffices to consider
only combinations of models that contain exactly
one fault model. This means the results are
derivable without the potential combinatorial
explosion that might occur in the correctness proof
presented in the previous section. The analysis can
be focused on contexts that contain not more than
one fault assumption. [Dressler-Farquhar 891
presents a control mechanism based on consumers
([de Kleer 86bl) which is able to perform this task.

6 Perspectives

The completeness of fault models is an essential
condition for the inference mechanism presented
here. If a faulty component exhibits a behavior that
iIs not captured by one of the fault views, wrong
conclusions may be drawn. A reasonable diagnostic
strategy is to first assume that only typical or known
faults occur, until there is evidence to the contrary.
This requires making the assumption about the
completeness of fault models explicit. An additional
antecedent for the correctness of a component is
introduced:

CORRECT{(C) A ... A CORRECT,(C) N
ELSE-CORRECT(C) — CORRECT(C).

It represents the remaining faults and is supported
by an assumption. [Struss 88b, 891, describe how
GDE+ can reason about such assumptions
underlying the diagnostic process (the correctness of
observations and the single fault hypothesis are
other examples). Again, this is possible without
leaving the basic concepts and mechanisms of GDE.

Acknowledgements

We benefited from discussions with Daniel Bobrow,
Johan de Kleer, Keith Downing, Hartmut Freitag,
Olivier Raiman, and Michael Reinfrank. Thanks to
Linda Pfefferl for her technical support. This work
was partly supported by the Bundesminister fuer
Forschung und Technologic (ITW 8506 E4).

References

[Dague-Deves-Raiman 87| Dagque, P, Deves, P,
Raiman, O., Troubleshooting: when Modeling is the
Trouble, Proceedings of AAAI-87

lde Kleer 86ad de Kleer, J., An Assumption Based
TMS, Artificial Intelligence 28(2)

[de Kleer 86bl de Kleer, J., Problem Solving with
the ATMS, Artificial Intelligence 28(2)

lde Kleer 88] de Kleer, J., A General
Algorithm for Assumption-Based Truth
tenance, Proceedings of A A Al 88

[de Kleer-Williams 87J de Kleer, J., Williams, B.C.,
Diagnosing Multiple Faults. Artificial Intelligence
32(1)

(de Kleer-Williams 891 de Kleer, J , Williams, B.C.,
Diagnosis with Behavioral Modes, Proceedings of
|IJCAI-89

[Dressier 871 Dressier,
ATMS, Siemens Technical Report
Munich, 1987

[Dressier 88J Dressier, O., An Fxtended Basic
ATMS, Proceedings of the 2nd Intl. Workshop on
Non-Monotonic Reasoning. Springer LNCS 346
[Dressler-Farquhar 89] Dressier, O., Farquhar, A.,
Problem Solver Control over the ATMS, Siemens
Technical Report INF 2 ARM 13 89, Munich 89
[Hamscher 881 Hamscher, W., Model Based
Troubleshooting of Digital Circuits, MIT-TR 1074
[Reinfrank et al. 89] Reinfrank, M., Dressier, O.,
On the Relation between Truth Maintenance and
Auto.pistemic Logic, Proceedings IJCAI 89

[Struss 88a] Struss, P., Extensions to ATMS-Based
Diagnosis, in: J.S. Gero (ed), Artificial Intelligence
In Engineering: Diagnosis and Learning,
Southampton, 1988

[Struss 88bJ Struss, P., A Framework for Model-
Based Diagnosis, Siemens Technical Report INF 2
ARM 10 88, Munich, 1988

[Struss 89] Struss, P., Diagnosis as a Process,
Working Paper, SIEMENS, Munich 1989

Labeling
Main

O., An Fxtended Basic
INF 2 ARM 3-87,

Struss and Dressier 1323

