Automatic Case Analysis in Proof by Induction

Adel Bouhoula and Michael Rusinowitch
CR1N & INRIA-Lorraine
BP 239, 54506 Vandoeuvre-les-Nancy, France
email: {bouhoula,rusi}@loria.fr

Abstract

We propose a new procedure for proof by induc-
tion in conditional theories where case analysis
is simulated by term rewriting. This technique
reduces considerably the number of variables
of a conjecture to be considered for applying
induction schemes (inductive positions). Our
procedure is presented as a set of inference rules
whose correctness has been formally proved.
Moreover, when the axioms are ground conver-
gent and the defined functions are completely
defined over free constructors, it is possible
to apply the system for refuting conjectures.
The procedure is even refutationally complete
for conditional equations with boolean precon-
ditions (under the same hypotheses). The
method is entirely implemented in the prover
SPIKE. This system has proved interesting ex-
amples in a completely automatic way, that is,
without interaction with the user and without
ad-hoc heuristics. It has also proved the chal-
lenging Gilbreath card trick, with only 5 easy
lemmas.

1 Introduction

Formal methods are more and more frequently adopted
by industry for hardware and software verification. They
require efficient automatic tools to relieve designers and
programmers of the related proof obligations. Mathe-
matical induction is essential as a technique for building
formal proofs in this context. lts power is expressed by
the successes of Ngqthm [Boyer and Moore, 1979] that
has been for many years the only significant automated
theorem proving system for induction. However Nqthm
requires a lot of interaction with the user. For instance
many lemmas need to be given to Ngthm as milestones
even for simple proof tasks.

Another direction for automating induction was pro-
posed in the early eighties, the inductionless indue-
Hon technique [Musser, 1980; Huet and Hullot, 1982]
whose principle is to simulate induction by term rewrit-
ing. This method is refutational and does not require
human interaction. While very limited at the begin-
ning, its domain of application has widened considerably,
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thanks to the contributions of [Jouannaud and Kounalis,
1986] who relaxed the conditions on constructor sym-
bols and of [Fribourg, 1986] who showed that only lin-
ear derivations were needed. More recently the method
has been completely freed from the completion frame-
work [Kounalis and Rusinowitch, 1990a; Reddy, 1990].
It has now become possible to apply it to conditional
equational theories [Kounalis and Rusinowitch, 1990b;
Bouhoula et al., 1992a]. Inductionless induction in our
new setting reduces to firstly instanciating conjectures
by induction schemes called fest sets and secondly sim-
plifying them by axioms, other conjectures or induc-
tion hypotheses. Every iteration generates new lemmas
that are processed in the same way as the initial con-
jectures. The method does not require any hierarchy
between the lemmas. They are all stored in a list and
using conjectures for mutual simplification simulates si-
multaneous induction. The system SPIKE has been de-
veloped [Bouhoula et al., 1992b] on this principle and
incorporates many optimizations such as powerful sim-
plification techniques. To our knowledge, this system is
the only one that can prove and disprove inductive the-
orems in conditional theories without any interaction.

However computer experiments have convinced us of
the necessity of introducing a proper rule to perform
case reasoning. Case analysis is a fundamental reason-
ing technique. A typical instance of it is the cut rule
that consists in splitting a goal formula A along an-
other formula C for generating two subgoals C = A and
(' = A. The main difficulty, already recognized by lo-
gicians a long time ago, relies in the choice of the cut for-
mula C. A natural solution when dealing with theories
axiomatized by Horn clauses (or conditional equations)
is to use the negative literals of the axioms as cut for-
mulas. This approach is frequently used in the context
of conditional rewrite system when a conditional rule
C = [ — r may reduce a goal A to subgoals C = A[r/]
(i.e. term / is replaced by r in A) and -C = A.

The problem is now that one of the subgoals is not
smaller than the initial goal and a lot of control is needed
to avoid divergence of the process since a similar case
analysis can be applied again to =(’ = A. This has
motivated us to introduce a new case analysis rule that
allows one to split a goal A into subgoals C; => A[l;/ri]
and V;Ci. Since in the context of conditional rewrite
system all subgoals are strictly smaller than the initial



goal the search space is much more controlled. Related
approaches were proposed independently by [Bronsard
and Reddy, 1990J and [Bevers, 1993]. However, since
their inference systems are unable to handle non Horn
clauses, they cannot prove the V;{; formulas otherwise
than by external means. On the contrary, our proof
technique applies to non Horn clauses as well. The dis-
junction V;C; is added to the other conjectures and does
not require particular treatment. Therefore our setting
is very homogeneous and permits one to extend our basic
inference rules by various optimizations without loosing
correctness and completeness. In particular we have a
notion of inductive positions defining the subset of vari-
ables of a conjecture that can be instanciated by induc-
tion schemes and we have proved that these positions
are the only ones needed for completeness. The restric-
tion of induction to these positions reduces drastically
the search space. The importance of such restrictions
was recognized a long time ago by [Boyer and Moore,
1979].

The paper is organized as follows. In Section 2 we
introduce the basic definitions about term rewriting. In
Section 3 we define the notions of inductive theory and
inductive rewriting, which is a fundamental tool for prov-
ing inductive theorems. We define in section 4 inductive
positions and test sets. Section 5 presents our technique
of simulating case reasoning by rewriting. This tech-
nique reduces considerably the number of inductive po-
sitions to be considered. The strategy can be embedded
in a correct set of inference rules described in Section
6. When the axioms are ground convergent and the de-
fined functions are completely defined then it is possible
to apply the system for refuting conjectures (subsection
6.3). In Section 7, the strategy is even proved refuta-
tionally complete for conditional equations with boolean
preconditions (under previous hypotheses). Computer
experiments with SPIKE are discussed in Section 8.

2 Basic concepts

We assume that the reader is familiar with the basic
notions of rewrite systems. We introduce the essential
terminology below and refer to [Dershowitz and Jouan-
naud, 1990J for more detailed presentations.

2.1 Terms and substitutions

A many sorted signature Z is a pair (5, F) where Sis a
set of sorts and F is a inite set of function symbols. We
assume that we have a partition of }' in two subsets, the
first one, €7, conlains the constructor symbols and the
second, 7, is the set of defined symbols,

Let X be a family of free sorted variables and let
T(F, X) be the set of well-sorted F-terms. Var(?) stands
for the set of all variables appearing in t and f(z,1) de-
notes the number of occurrences of the variable r in f. A
variable z in { is fincariff §{z, 1) = 1. If Var{t) 1s empty
then t is a ground term. By T(F') we denote the set of
all ground terms. From now on, we assume that Lhere
exists at least one ground term of each sort.

For any term ¢, acc{l) C N* denotes its set of positions
and the expression t/u denotes the sublerm of { at a
position 4. We wrile {[s], (resp. [s] ) to indicate that s

is a subterm of ¢ at position u (resp. at some position}.
The root position is writien ¢.

A ¥ — substitution assigns ¥ — terms of appropriate
sorts to variables. Composition of substitution o and
is written by on. The £ - term {5 obtained by applying
a aubstitution n to t is called an tnstance of t. If nis a
ground substitution (1.e. n(z) is ground for every =), we
say that {5 18 a ground imstance of ¢.

2.2 Conditional Equations and Clauses

Let £ = (5, F) be a signature. A L-equation is a pair
¢ = ¢’ where ¢, ¢ € T(F, X) are terms of the same sort.
A conditional T-equation is either a E-equation or an ex-
pression of one of the following forms: e A. . .Ae, = ¢, or
gL A.. Aes =, 0or = where €,¢1,...e, are L-equations.
(Given a conditional E-equation , ¢, ..., are the condi-
fions and ¢ is the conclusion. A T-clause is an expression
of the form —e, Vv —eg V ...V =g, V ey vV ...V
When ¥ is clear from the context we omit the prefix .
A clause is posstive if - does not oecur in it.

In this paper axicms are built from conditional equa-
tions and goals to be proved are clauses, i.e. disjunction
of equational literals, since = is the only predicate 1.
The symbol = is used for syntactic equality between two
objects,

2.3 Rewrite Relations

2.3.1 Preliminaries

Given a binary relalion —, —* denotes its reflexive
and transitive closure. Let a and & be two terms, we say
that a | b, if there exists ¢ such that a =" ¢ and § —" ¢.
A relation — is noetherian if there is no infinite sequence
1, — 1y — . In the following we suppose given a
reduction ordertng > on the set of terms, that is, a tran-
silive irreflexive relation that is noetherian, monotonic
(s > t implies w(s] ~ w[t]) and stable (s > ¢ implies
so > ta). We also assume that the ordering > can be
extended when adding new constants to the signature.
The multiset extension of an ordering > will be denoted
by 3.

A conditional equation a; = ) A ... ap =b, > s =1
will be written as ay = by A .. .a, = by = s — t if
{sa} » {te,a10,b10, ... ana,bpo} for all ground sub-
slitutions o; in that case we say that a; = b A .. .4, =
b, => s — t is a condilsonal rufe. The term s is the
ieft-hand side of the rule. A set of conditional rules is a
rewrite system.

2.3.2 Conditional Rewriting

The idea of rewriting is to impose a direction when
using equations in proofs. This direction 1s indicated by
an arrow when it is independent from the instantiation:
{ — r means that we can replace | by r in any context.
When an instance of a conditional equation is orientable
and has a valid conditional part it can be applied as a
rife. The conditions are checked recursively. Termina-
tion is ensured by requiring the conditions to be smaller
(w.r.t. the reduction ordering >) than the conclusion.

'we identify a conditional equation and its corresponding
representation as a Horn clause
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Definition 2.1 (Conditional Rewriting) et R be o
set of conditional equations. Let a be a term and v a
posilion in 2. We wrile: a[se), —p alte}, if there is a
subsittution @ and a conditional equation A, a; = b; =
s=1in R such thot:

1. sa > to.
2 Vie [17!] ,0 13 b,-cr,

3. {als¢].] > {ai0. bre, ... Jano, byol.

A term t is reducible w.rt. to — g if there is a term '
such that ¢ -«g ¢/. Otherwise we say t is R-irreductbic,
The system R will be qualified as ground convergent il
Ve,b € T(F) (Rl=a = bimplies a |gb).

Note that when R is a rewrite system the relation
—+p 1s similar to the notion of decreasing rewriting of
Dersilowitz, Okada and Sivakumar [Dershowitz ef al.,
1988).

2.3.3 Sufficient completeness

When for all possible arguments the result of a de-
fined operator can be expressed with constructors only
we say that this operator is completely defined w.r.t.
the constructors. This requirement is very natural when
building specifications in a structured way. Here is a
more formal definition:

Definition 2.2 Let C be a set of consiructors, let K be
a rewrile system and D be a sel of defined operator. The
operator f € D is complelely defined w.ri. C off for
allty,.. ., t, in T(C), there exists t in T(C) such tha!
f(t'l:-":tn} _"}\‘ t

Although this property is in general undecidable, SPIKE
offers facilities to check and complete definitions.

3 Induction

3.1 Inductive theory

Given a set of conditional equations Az, the theory of
Az, which i3 the one we are interested in, is the class of
sentences that are true in the minimal Herbrand model
of Az. Every element in the domain of a Herbrand model
is denoted by a ground term built on the signature of Az.
But since ground terms can be well-ordered, induction
18 available as a natural techmque to prove sentences in
thie model. We call mduclive consequence of Az any
sentence € that is valid in the minimal Herbrand model
of Az and we denote this by Az i C. In the following
we assume that Az can be oriented as a rewrite system
R(wrt >}

3.2 Inductive rewriting

To simplify goals we extend the conditional rewriting
relation 2.1, so that we can check the conditions of a rule
to be applied to a clause € with inductive hypothesis,
other conjectures and the premisses of C, considered as
an implication formula.

Let us first introduce a few notations. Let C = —(a; =
bl)V..AV_\(aﬂ = b“)V(Cl = d])V H.V(Cm = dm)
Then we denote by prem(C) the set {a, = b;};=1,n. The
expression (a = &) denotes the literala = bif ¢ = + and
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the literal ~{a = b) if ¢ = —. The skolemized clause C of
C is the clause obtained by substituting every variable
of C by a new constant.

Definition 3.1 (Inductive rewriting) Let R and W
be two sels of conditional equations. Consider a clause
C = (a = b)° Vr and its skolemized version C = (@ =
by vF. We write: a —giw), @’ tf a - o’ and:

either @ — . .m(m) a,

or there ezisis a position u in a, e substilution ¢ end a
conditional equation Al_, a; = b; = s =t in R such
that:

1. a = a[so)y and o’ = dfto},.

2. {a[so).} > {ajo, bio, ... ,ana, byo).

3. ¥ig[l.a] 3c,d! suci that a;co —;}ww [ ey and
b0 —how ilr d; and ¢ Zpeem(r) 4.
where =, 07y 18 the congruence generated by prem(r).

The set W in the definitton is intended o contain induc-
tion hypotheses in the proof system described below.

Inductive rewniting can be viewed as a powerful
generalization of both the rewriting relation defined
in [Kounalis and Rusinowitch, 1990b] and contextual
rewriting [Zhang, 1993].

4 Selection of Induction Schemes

To perform a proof by induction, it is necessary to pro-
vide some induction schemes. [n our framework these
schemes are defined first by a function which, given a
conjecture, selects the positions of variables where in-
duction will be applied and second by a special set of
terms called a test set. In general the selection of good
inductive positions leads to drastic improvements. We
shall not discuss test sets here but just recall their main
properties.

Let us consider first the problem of choosing the posi-
tions where variables need to be instanciated by induc-
tion schemes. In order to define the set of these variabies,
we introduce V L{s), the set of linear variables of a term
s and De f(f), the set of terms with root symbol f.

Definition 4.1 Given a rewrtte system R on T(F,X)
the sel of inductive posilions for a function symbol [
1s: Occdnd(R, f) = {u/ there exists p > g - d € R
such that ¢ € Def(f), u € Occlg) \ {¢} and g/u ¢
VL(g}}.

Given a term s, an induction variable of 5 is a vari-
able that occurs at a position u.v of 5 such that v is an
mnductive position of the root of {/u (if s is a variable
then it is considered as an induction variable}. Given a
term s and a set of terms T'S, o is a TS-substitution for
s, if it maps any induction variable of s to an element
of TS of the same sort. When no subterm of ¢ matches
a left-hand side of the rewrite systemn R we say that { is
strongly R-trreducible.

Proposition 4.1 If R is a rewrite system, then a test
set S(R) for R is a finste set of R-irreducible teyms that
has the followtng properties:



a. for any R-irreducible ground term s there exists a
term t in S(R) and a ground substitution a such
that to = s;

b. lets be a term and let a be a S(R)-substitution fors;
if sa is strongly R-irreducible then there is a ground
instance sap such that sap is strongly R-irreducible.

The first property allows us to prove theorems by in-
duction on the domain of irreducible terms rather than
on the whole set of terms. Sets of terms with the
property a. are usually called cover sets in the litera-
ture [Reddy, 1990; Zhang et a/., 1988]. However they
cannot be used to refute theorems. The second property
b. of test sets is fundamental for this purpose.

It is possible to compute test sets for equational theo-
ries (see [Kounalis, 1990; Huber, 1991]). Unfortunately
no algorithm exists for the general case of conditional
theories. However, in [Kounalis and Rusinowitch, 1990b]
a method is described for computing test sets in condi-
tional theories defined over & free set of constructors.

The role of test sets for refutation is shown by the fol-

lowing definition that gives a falsity criteria for positive
clauses:
Definition 4.2 Suppose that we are given a rewrile sys.
fem K and @ fest set S5{R). Then a rlewse C = gy =
di V... Vg, = d, 15 quast-inconsistent with respect to
R of there is a S(R)-substitution o of 7 such thal for
all 1 < j < n, g;0 # d;e and the marimal clements of
{g;0,d;0} w.r.t. > are strongly K-wreducibe,

We recall the next theorem from [Kounalis and Rusi-
nowitch, 1990a)]. In its proof, the condition b of propo-
sition 4.1 plays a crucial role.

Theorem 4.1 Let R be a ground convergent rewrite sys-
tem. If a positive clause C is quasi-inconsistent then C
is not an inductive consequence of R.

5 Automatic Case Analysis

We shall introduce now the Case rewriting relation that
allows one to reduce goals with conditional rules with-
out attempting to check their preconditions. The pre-
conditions are appended to the goal as a context. Case
rewriting can be viewed as an implementation of case
analysis that is well adapted to the given conditional
axioms. We have found this rule absolutely necessary
for proving non trivial conjectures with our automatic
system. Moreover it is the basis of a refutationally com-
plete system for boolean systems. In this section we first
discuss the problems with former case rewriting rules.
Then we propose a new rule that is easier to automate
and has given much better results on experiments. A
first version of case rewriting was proposed in [Kounalis
and Rusinowitch, 1990b]. Given a term t and a rule
p = g - d such that g matches a subterm of t with sub-
stitution a, this rewriting is expressed by the following
inference rule :

llgolu Vrildol, v -povr lgoluvpeVr

However an important control problem with this tech-
nique lies in the choice of the rule to apply during the
proof by induction. This can be illustrated by the next
example.

Example 5.1 The following rules define odd and
even for nomnegative inlegers. A lest sel here 1s

{0, 3(0), s(s(x)), T, F}.

even(0) — T (1)
even{af0]) — F (2)
even(s(a(x))) — evenir) (3)
even{r) =T = odd{r} — F {4)
even{ri= F o pdd(z}) -~ T {5)
T=¥F= (%)
Lel us prove:
evenis{r))=T veddlz) = F {(7)

by the case rewriting rule above. Clause 7 can be split
according to axiom 4 in the {wo following clauses:

even(r)=T = cven(#{z))=Tv F = F (8)
~{even{z) =TI = even(a{z)) = T V oddiz) = F (9}

8 is a taulology and 9 is equivalent to:
evenlr) = T v ecven(#{z))=T v oddizr) = F {10)
Now splitting clause 10 with axiom 5 yields:

even{r)i= F =3 ¢eveniz} = T v evenfa(z))=TVvT = F {11)
Steven(r] = Fl= even(z) = TV evenia{r)) =T v odd(x) = F(12)

11 simplifies to:
cven{r]= F = evenix) = T v cvenjfz)) =T {13)

thai can be proved an inductive consequence of R. 12 is
equivaleni to:

eveniri = Fvevenlzi=T v even{a(z)) =T veddir) = F (14)

Note that the same case analysis can be applied infinitely
often to 14. A possible way to avoid divergence is to
limit application of the case analysis rule. Case rewriting
in [Kounalis and Rusinowitch, 1990b] is controlled by
conditions for avoiding infinite applications of the same
rule. However, when adding these technical conditions
the proof of 14 diverges.

These problems have motivated us to introduce a new
case rewriting lechnique that rewrites a term ¢ simul-
taneously to several terms {y,.. ., ¢, each reduction be-
ing respectively valid in different contexts e;,...,¢n. In
other words, given a term I, we consider all the way to
rewrile it w.r.l. to axioms and positions. We must then
prove that the digjunction DP of the conditions of the
applied rules is inductively valid. Note that DP is usu-
ally a non Horn clause. Qur approach to inductive proofs
ts non hierarchical: we can prove DF* by simply adding
it to the set of conjectures to be further processed.

Definition 5.1 (Case rewriting) Lef R be a rewrite
system and C = (a = b)* Vr be a clause. We define
G as the set {< afdo),, Po >; there ezists P = g — d
in R, a position u in a such that a/u = go, go is R-
irreductble and docs not contamm an inductive variable}.
Then Case_rewrriing ((e = b)*,r) 15 the following set of
clanses:

{-Pv(@=bvr <a,P>eGlu{ \/ P}
<a' PHEG
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Example 5.2 {example 5.1 continued)
With our mcthod, the proof of 7 is as follows: we ap-
ply case rewriting to gel :
even{s)=T 2> eveni{r N =TV F=F {15}
rven{r)= F = even(elr}) = Tv T = F {16)

We nust prove:

even(zl =T v even|ri= F (17}
15 is a tautology, 16 is simplified by R into:

even{r}= F = cven{s(sN}= T (18)

The instances of 18 by elements 0 and s(0) from the test
set yield clauses that are simplified by R and subsumed
by an axiom. The instance of 18 by s(s{y)) gives a clause
that ts simplified by R and subsumed by 18 which has
become an induction hypothesis. In the same way 17
can eastly be proved.

Example 5.3 Consider the system R = {p(z,0,2)}=T,
Pz, s(¥),2) = plz,y.2), pnz.z) = T = flz.9.%) =
0}. To prove f(r,y, ) = 0 with the method of [Kounalis
and Rusinowiich, 1990a], we instanciate x,yy and z by U
and s(z) (from S5(R)) i all possible ways. We oblain 8
equations and the proof of some of them diverges. With
the method we present here, thanks fo case rewrsling, we
do not need fo consrder all these induclive posttions. We
have: QOcc.ind(p) = {2} and Qccind(f) = 8. To prove
J(x,y.z} = 0, we apply case rewriting 1o get p{y, 2,2} =
T =0 =19 and p(ly,z.z) = T. The first clause is @
tautology and the sccond one is proved by imsiencialing
r by 0 and s{x).

Other authors have applied case rewriting techniques for
inductive theorem proving. Among them [Bronsard and
Reddy, 1990] and [Bevers, 1993] propose an approach
related to ours but their methods cannot be considered
as automatic since they cannot check the applicability
of case rewriting rules due to the fact that their provers
are restricted to Horn clauses.

To conclude, we think that our new case rewriting rule
avoids many drawbacks of the previously defined ones.
It allows to prove a larger class of theorems. Last but
not least it does not require human interaction or call to
an external theorem prover.

6 A Proof Procedure for Conditional
Theories

6.1 Inferences rules

We present the procedure for proof by induction as a set
of inference rules to be applied fairly to the goals. Let R
be a rewrite system. The procedure modifies incremen-
tally two sets of clauses E and H, where E contains the
conjectures to be checked and H contains clauses, previ-
ously in E, that have been reduced and can therefore be
used as inductive hypotheses. This procedure is refuta-
tional in essence, and performs implicit induction w.r.t.
to =. Its correctness is obtained by very simple argu-
ments about the existence of a minimal counterexample.
We think that our correctness proofis much simpler than
the related ones [Reddy, 1990]. As a consequence it was
easy for us to add many optimizations to the procedure
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generate: (Eu{Cg} . H) by (EW{U, E. ) HU{Cx])

if Cg = {a = #)" ¥ r and for every S(R)-aubatitution ¢ of Cg:
either Cpo is a tautology and E, = ¢
o 80 — piyug]iee 8 Bd Ey = {(0” = bo)* v ro}
otherwine E, = coaerewriting{(a = 8)*r, reo)

case simplify: (Bu((a=t)* v r}.H) F; (BUE' H)

il E' = caserewriting({a = )", r)

simplify: (EU{(a=8)*vr) H) F; (BU{({a'=b)"vr},H)

if 8 = piyog);e @ or alsly — yop(a), o° = oft]y and u # €

complement: (BEu{-(ao=bowr] H) F; (EU{{so=b'o)vr] H)

Fab=bleR a=tva=bec EUH andbo = Vo

delete: (Eu{cg} M)+ (B

if ¢g 18 & tautclogy.

fail: (MY ;D

sl no other cule applies 1o (£ )

Figure 1: Inference System !

and show that they do not affect correctness. The infer-
ence system for induction [ contains the rules given in
figure 1. The generate rule allows to derive letnmas and
initiates induction steps. The case stmplify rule simpli-
fies a conjecture with conditional rules and adds to the
result the contexts where the respective reductions are
valid. The simplify rule reduces a clause (" with ax-
ioms from R, induction hypotheses from H and other
conjectures [therefore we can simulate simultaneous in-
duction). The premisses of O considered as a conditional
axiom can alsoc heip to check that the preconditions of a
rule being applied to €7 are valid. The complement rule
transforms negative clauses to positive clauses that are
easier to refute. The role of deletion is obvious. The fail
rule is applied to (E, H) if no other rule can be applied
to (E, H).

An [-derivation is a sequence of states:
(Eo, HoyFe {FE1, HD) by o b (B, Hod by oo
An I-derivation fails if it terminates with the rule fasl

6.2 Correctness of the procedure

The correctness of [ is obtained by defining a well-
founded ordering on clauses and a notion of fair derive-
tion. Fairness roughly means that every clause in the
set of conjectures will be eventually modified by some
inference. More formally, a derivation (Ep, Hg) F;
(E1, Hy) by ... 18 fair if either it fails or the set of per-
sisting clauses (U; Ny»; Ej) 1s empty. Then we reason
by contradiction: if a non valid clause is generated in
a non failed derivation then a minimal one is generated
too. We show that no inference step can apply to this
clause. In other words, this clause persists in the deriva-
tion. This ie a contradiction with the fairness hypothesis.
Hence we have;



Theorem 6.1 {correctness)} Lel R be a rewrile sys-
temm and let (Ep, @) by (E\,Hy) F; ... be a farr |-
dertvation. If i does not fail thern R |Eina Eo.

Since every I-derivation from (¥,8) to (@8, H), where H
is some sel of clauses, is fair then the conjectures of £ are
inductive consequences of R. This remark is important,
from a practical point of view.

6.3 Refutation of conjectures

In this subsection R is a ground convergent rewrite sys-
tem such that all its defined symbols arce cotnpletely de-
fined. From now on, we assume that every lefi-hand side
of a conditional rule has a defined symbol. Let us call
J the set of inference rules obtained by adding lo [ the
rule:

disproof: (Eu{cg} #)+, Disproof
if cg is pomtive and generate cannet be applied to (e}, H).

The inference system J allows to refute conjectures:
If disproof is applied at some step k then a quasi-
inconsistent clause is detected and thercfore, from the-
orem 4.1, we can conclude that some conjecture in E,
1s false. Then by induclion on the number of steps (&),
this imphes that some conjecture from Ey is false too,
Hence we have:

Theorem 6.2 Letf R be a ground convergent rewrtle sys-
tem such that every defined symbol 1s completely defined
and let (Ep, M by (&, W)y .. be a J-derivation. If
there rxasts j such that disproof applics to {I;, H;) then
RE Ey.

7 A refutationally complete procedure
for theories with boolean
preconditions

In this section we shall consider axioms that are con-
ditional rules with boolean preconditions. More pre-
cisely we assume there exists a sort ool with two nullary
free constructors {1, F}. Every rule in £ is of type:
Ay pio=pl = s — 1 where for all i i [1...n0], p} €
{T, F}. Such a system H is called a boelean rewrite
system. Yor o € {T, F} we denote by o~ the comple-
mentary bool symbol of a. Conjectures will be boolean
clauses, that 1s clauses whose negative literals are of type
=(p = p') where p' € {T, F'}.

We also assume that any function symbol p with
hoolean values is completely defined. In other words,
the following is inductively valid:

p(T) = True vV p{T) = False
We can then define a new inference system A from I by
reformulating the complement as follows:
complement: (Eu{-(azalvr}.H) Fx (Eu((a=a™ )vr} H)
fee T, F}
and replacing the fail rule by:
disproof: (E.N) ry IDnsproof
if no other rule applies to (E, H)

A K-derivation fails if it ends with disproof. Note first
that the only rule that permits to introduce negative

clauses is case-rewriting. Since the axioms have boolean
preconditions, all the clauses generated in a A' deriva-
tion (such that Eo only contains boolean clauses) are
boolean. So the new inference system K can be proved
refutationally complete for boolean clauses too.

Theorem 7.1 Let R dc a ground convergent boolean
rewrite system such that every defined symbol is com-
pletely defined and let (Fy, Q) bx (E), H1) Fx ... be
a farr K-derivation such that Ey only contains boolean
clauses. Then R ¥ing Eo iff the dervation fails.

8 Computer Experiments

Our prototype SPIKE (written in Caml Light) is de-
signed to prove the validity of a set of clauses in a con-
ditional theory. The first step in a proof session is to
check if all defined functions are completely defined. If
this step is successful then we can use a more efficient
version of the case rewriting rule. The second step is
to check the ground convergence of the set of axioms.
If the first two steps are successful then we can refute
false conjectures. The third step is to compute test sets
and inductive positions. After these preliminary tasks
(detailed in [Bouhoula et al., 1992a]), the proof starts.

Example B.1 Consider the spectfication of lists of nai-
ural numbers with an “insert”™ operation and a “sorted”
predicate on hsts that 15 true off a hist 15 ordered. SPIKE
can prove the conjecture sorled{insert{z, )} = sorted{!
w a completely automatic way. Nolc that RRL [Zhang et
al.. 1988] 1s unable to succeed with this example unless
the user suggests some well-chosen lemmas.

Example 8.2 An nteractive proof of Gilbreath Cards
Trick was first given by G. Huet [Huet, 199I] using the
COQ proof assistant. B. Boyer has used NQTHM to de-
rive another proof. A similar but much faster proof was
obtained by H. Zhang with RRL. These two "automatic"
proofs require many lemmas, some of them being non-
obvious. For instance, B. Boyer introduces a predicate
"silly" that is "only defined to force a certain weird in-
duction” (here we quote B. Boyer). The same predicate
appears in Zhang's experiment. On the other hand, our
proof is based on 5 lemmas easy to understand. These
lemmas have been suggested by a first unsuccessful proof
attempt with SPIKE. The source of failure was identi-
fied by the impossibility of reducing a family of patterns.
Hence we have introduced the adequate lemmas for sim-
plifying them. This was enough to derive a proof

The proof has taken more real time than Boyer's (and
Zhang's). However, it is difficult to compare these ap-
proaches from the efficiency point of view, since we have
spent much less time to get the right lemmas. On the

other hand, the differences between programming lan-
guages lead also to some discrepancy in the performance.
The following array compare users inputs in the proof
of Gilbreath Card Trick for NQTHM, RRL and SPIKE:
NQRHM RRL | SPIKE
! Explicit definitions 6 8 9
Implicit definitions 2 1 0
Induction scheme definition 1 1 0
Lemmas 17 23 5
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9 Conclusion

We have proposed a new procedure for proof by induc-
tion in conditional theories. Our procedure relies on
the implicit induction paradigm and puts the stress on
simplification and case analysis. As our previous pro-
cedure [Bouhoula et al, 1992a], it allows simplification
of conjectures by conjectures and has been extended to
handle non-orientable equations. It can also refute non
valid conjectures. A meaningful contribution of this pa-
per is that our strategy is refutationally complete for a
class of rewrite systems that can specify numerous inter-
esting examples. This class contains the boolean ground
convergent rewrite systems with completely defined func-
tions over free constructors. In other words with our pro-
cedure every false conjecture will be disproved in finite
time. However, our method remains valid even when
the functions are not completely defined. Note that our
correctness and completeness proofs do not require an
elaborated notion of fairness. It is compatible too with
many simplification rules that were not discussed here
for lack of space. An extension to theories that are pre-
sented by non Horn clauses is also easy.

The method is entirely implemented in the prover
SPIKE. This system has proved non trivial examples
in a completely automatic way, that is, without interac-
tion with the user and without ad-hoc heuristics. It has
also proved the challenging Gilbreath card trick, with
only 5 lemmas.

We plan to enhance the system with recent tech-
niques developed for interactive provers such as the ones
in [Bundy et ai, 1989; Chadha and Plaisted, 1992].

Acknowledgement: We thank Helene Kirchner for her
comments.
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