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Abst rac t 

We propose a new procedure for proof by induc­
tion in conditional theories where case analysis 
is simulated by term rewriting. This technique 
reduces considerably the number of variables 
of a conjecture to be considered for applying 
induction schemes (inductive positions). Our 
procedure is presented as a set of inference rules 
whose correctness has been formally proved. 
Moreover, when the axioms are ground conver­
gent and the defined functions are completely 
defined over free constructors, it is possible 
to apply the system for refuting conjectures. 
The procedure is even refutationally complete 
for conditional equations with boolean precon­
ditions (under the same hypotheses). The 
method is entirely implemented in the prover 
S P I K E . This system has proved interesting ex­
amples in a completely automatic way, that is, 
without interaction with the user and without 
ad-hoc heuristics. It has also proved the chal­
lenging Gilbreath card trick, with only 5 easy 
lemmas. 

1 In t roduc t i on 

Formal methods are more and more frequently adopted 
by industry for hardware and software verification. They 
require efficient automatic tools to relieve designers and 
programmers of the related proof obligations. Mathe­
matical induction is essential as a technique for building 
formal proofs in this context. Its power is expressed by 
the successes of Nqthm [Boyer and Moore, 1979] that 
has been for many years the only significant automated 
theorem proving system for induction. However Nqthm 
requires a lot of interaction with the user. For instance 
many lemmas need to be given to Nqthm as milestones 
even for simple proof tasks. 

Another direction for automating induction was pro­
posed in the early eighties, the inductionless indue-
Hon technique [Musser, 1980; Huet and Hullot, 1982] 
whose principle is to simulate induction by term rewrit­
ing. This method is refutational and does not require 
human interaction. While very limited at the begin­
ning, its domain of application has widened considerably, 

thanks to the contributions of [Jouannaud and Kounalis, 
1986] who relaxed the conditions on constructor sym-
bols and of [Fribourg, 1986] who showed that only lin­
ear derivations were needed. More recently the method 
has been completely freed from the completion frame-
work [Kounalis and Rusinowitch, 1990a; Reddy, 1990]. 
It has now become possible to apply it to conditional 
equational theories [Kounalis and Rusinowitch, 1990b; 
Bouhoula et al., 1992a]. Inductionless induction in our 
new setting reduces to firstly instanciating conjectures 
by induction schemes called test sets and secondly sim­
plifying them by axioms, other conjectures or induc­
tion hypotheses. Every iteration generates new lemmas 
that are processed in the same way as the init ial con­
jectures. The method does not require any hierarchy 
between the lemmas. They are all stored in a list and 
using conjectures for mutual simplification simulates si-
multaneous induction. The system SPIKE has been de­
veloped [Bouhoula et al., 1992b] on this principle and 
incorporates many optimizations such as powerful sim­
plification techniques. To our knowledge, this system is 
the only one that can prove and disprove inductive the­
orems in conditional theories without any interaction. 

However computer experiments have convinced us of 
the necessity of introducing a proper rule to perform 
case reasoning. Case analysis is a fundamental reason­
ing technique. A typical instance of it is the cut rule 
that consists in splitting a goal formula A along an­
other formula C for generating two subgoals C A and 

The main difficulty, already recognized by lo­
gicians a long time ago, relies in the choice of the cut for­
mula C. A natural solution when dealing with theories 
axiomatized by Horn clauses (or conditional equations) 
is to use the negative literals of the axioms as cut for­
mulas. This approach is frequently used in the context 
of conditional rewrite system when a conditional rule 

may reduce a goal A to subgoals 
(i.e. term / is replaced by r in A) and 

The problem is now that one of the subgoals is not 
smaller than the init ial goal and a lot of control is needed 
to avoid divergence of the process since a similar case 
analysis can be applied again to . This has 
motivated us to introduce a new case analysis rule that 
allows one to split a goal A into subgoals 
and Since in the context of conditional rewrite 
system all subgoals are strictly smaller than the init ial 
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goal the search space is much more controlled. Related 
approaches were proposed independently by [Bronsard 
and Reddy, 1990J and [Bevers, 1993]. However, since 
their inference systems are unable to handle non Horn 
clauses, they cannot prove the formulas otherwise 
than by external means. On the contrary, our proof 
technique applies to non Horn clauses as well. The dis­
junction is added to the other conjectures and does 
not require particular treatment. Therefore our setting 
is very homogeneous and permits one to extend our basic 
inference rules by various optimizations without loosing 
correctness and completeness. In particular we have a 
notion of inductive positions defining the subset of vari­
ables of a conjecture that can be instanciated by induc­
tion schemes and we have proved that these positions 
are the only ones needed for completeness. The restric­
tion of induction to these positions reduces drastically 
the search space. The importance of such restrictions 
was recognized a long time ago by [Boyer and Moore, 
1979]. 

The paper is organized as follows. In Section 2 we 
introduce the basic definitions about term rewriting. In 
Section 3 we define the notions of inductive theory and 
inductive rewriting, which is a fundamental tool for prov­
ing inductive theorems. We define in section 4 inductive 
positions and test sets. Section 5 presents our technique 
of simulating case reasoning by rewriting. This tech­
nique reduces considerably the number of inductive po­
sitions to be considered. The strategy can be embedded 
in a correct set of inference rules described in Section 
6. When the axioms are ground convergent and the de­
fined functions are completely defined then it is possible 
to apply the system for refuting conjectures (subsection 
6.3). In Section 7, the strategy is even proved refuta-
tionally complete for conditional equations with boolean 
preconditions (under previous hypotheses). Computer 
experiments with SPIKE are discussed in Section 8. 

2 Bas ic concep ts 

We assume that the reader is familiar with the basic 
notions of rewrite systems. We introduce the essential 
terminology below and refer to [Dershowitz and Jouan-
naud, 1990J for more detailed presentations. 

Bouhoula and Rusinowitch 89 



90 Automated Reasoning 



a. for any R-irreducible ground term s there exists a 
term t in S(R) and a ground substitution a such 
that 

b. let s be a term and let a be a S(R)-substitution for s; 
if sa is strongly R-irreducible then there is a ground 
instance sap such that sap is strongly R-irreducible. 

The first property allows us to prove theorems by in­
duction on the domain of irreducible terms rather than 
on the whole set of terms. Sets of terms with the 
property a. are usually called cover sets in the litera­
ture [Reddy, 1990; Zhang et a/., 1988]. However they 
cannot be used to refute theorems. The second property 
b. of test sets is fundamental for this purpose. 

It is possible to compute test sets for equational theo-
ries (see [Kounalis, 1990; Huber, 1991]). Unfortunately 
no algorithm exists for the general case of conditional 
theories. However, in [Kounalis and Rusinowitch, 1990b] 
a method is described for computing test sets in condi­
tional theories defined over & free set of constructors. 

The role of test sets for refutation is shown by the fol­
lowing definition that gives a falsity criteria for positive 
clauses: 

We recall the next theorem from [Kounalis and Rusi­
nowitch, 1990a]. In its proof, the condition b of propo­
sition 4.1 plays a crucial role. 
T h e o r e m 4.1 Let R be a ground convergent rewrite sys­
tem. If a positive clause C is quasi-inconsistent then C 
is not an inductive consequence of R. 

5 Au toma t i c Case Analysis 
We shall introduce now the Case rewriting relation that 
allows one to reduce goals with conditional rules with­
out attempting to check their preconditions. The pre­
conditions are appended to the goal as a context. Case 
rewriting can be viewed as an implementation of case 
analysis that is well adapted to the given conditional 
axioms. We have found this rule absolutely necessary 
for proving non tr ivial conjectures with our automatic 
system. Moreover it is the basis of a refutationally com­
plete system for boolean systems. In this section we first 
discuss the problems with former case rewriting rules. 
Then we propose a new rule that is easier to automate 
and has given much better results on experiments. A 
first version of case rewriting was proposed in [Kounalis 
and Rusinowitch, 1990b]. Given a term t and a rule 

such that g matches a subterm of t with sub­
stitution a, this rewriting is expressed by the following 
inference rule : 

However an important control problem with this tech­
nique lies in the choice of the rule to apply during the 
proof by induction. This can be illustrated by the next 
example. 
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Other authors have applied case rewriting techniques for 
inductive theorem proving. Among them [Bronsard and 
Reddy, 1990] and [Bevers, 1993] propose an approach 
related to ours but their methods cannot be considered 
as automatic since they cannot check the applicability 
of case rewriting rules due to the fact that their provers 
are restricted to Horn clauses. 

To conclude, we think that our new case rewriting rule 
avoids many drawbacks of the previously defined ones. 
It allows to prove a larger class of theorems. Last but 
not least it does not require human interaction or call to 
an external theorem prover. 

6 A Proo f Procedure for Condi t iona l 
Theories 

6.1 Inferences ru les 
We present the procedure for proof by induction as a set 
of inference rules to be applied fairly to the goals. Let R 
be a rewrite system. The procedure modifies incremen­
tally two sets of clauses E and H, where E contains the 
conjectures to be checked and H contains clauses, previ­
ously in E, that have been reduced and can therefore be 
used as inductive hypotheses. This procedure is refuta-
tional in essence, and performs implicit induction w.r.t. 
to Its correctness is obtained by very simple argu­
ments about the existence of a minimal counterexample. 
We think that our correctness proof is much simpler than 
the related ones [Reddy, 1990]. As a consequence it was 
easy for us to add many optimizations to the procedure 



clauses is case-rewriting. Since the ax ioms have boolean 
precondi t ions, all the clauses generated in a A' deriva­
t ion (such tha t Eo only contains boolean clauses) are 
boolean. So the new inference system K can be proved 
re fu ta t iona l ly complete for boolean clauses too . 

8 Computer Experiments 
Our pro to type S P I K E (wr i t t en in C a m l L igh t ) is de-
signed to prove the va l id i ty of a set of clauses in a con-
d i t iona l theory. The first step in a proof session is to 
check if all defined funct ions are completely defined. If 
th is step is successful then we can use a more efficient 
version of the case rewr i t i ng rule. The second step is 
to check the ground convergence of the set of ax ioms. 
If the first two steps are successful then we can refute 
false conjectures. The th i rd step is to compute test sets 
and induct ive posit ions. Af ter these p re l im inary tasks 
(detai led in [Bouhoula et al . , 1992a]), the proof starts. 

E x a m p l e 8.2 An interactive proof of Gilbreath Cards 
Trick was first given by G. Huet [Huet, 199l] using the 
COQ proof assistant. B. Boyer has used NQTHM to de­
rive another proof. A similar but much faster proof was 
obtained by H. Zhang with RRL. These two "automatic" 
proofs require many lemmas, some of them being non-
obvious. For instance, B. Boyer introduces a predicate 
"silly" that is "only defined to force a certain weird in­
duction" (here we quote B. Boyer). The same predicate 
appears in Zhang's experiment. On the other hand, our 
proof is based on 5 lemmas easy to understand. These 
lemmas have been suggested by a first unsuccessful proof 
attempt with SPIKE. The source of failure was identi­
fied by the impossibility of reducing a family of patterns. 
Hence we have introduced the adequate lemmas for sim­
plifying them. This was enough to derive a proof 

The proof has taken more real time than Boyer's (and 
Zhang's). However, it is difficult to compare these ap­
proaches from the efficiency point of view, since we have 
spent much less time to get the right lemmas. On the 
other hand, the differences between programming lan­
guages lead also to some discrepancy in the performance. 

The following array compare users inputs in the proof 
of Gilbreath Card Trick for NQTHM, RRL and SPIKE: 

! Explicit definitions 
Implicit definitions 
Induction scheme definition 
Lemmas 

NQRHM 
6 
2 
1 
17 

RRL 
8 
1 
1 
23 

SPIKE 
9 
0 
0 
5 
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9 C o n c l u s i o n 

We have proposed a new procedure for proof by induc­
t i on in cond i t iona l theories. Our procedure relies on 
the imp l i c i t i nduc t ion pa rad igm and puts the stress on 
s impl i f i ca t ion and case analysis. As our previous pro-
cedure [Bouhoula et al , 1992a], i t al lows s impl i f i ca t ion 
of conjectures by conjectures and has been extended to 
handle non-or ientable equat ions. I t can also refute non 
val id conjectures. A meaningfu l con t r ibu t ion of this pa-
per is tha t our strategy is re fu ta t iona l ly complete for a 
class of rewr i te systems tha t can specify numerous inter-
esting examples. Th i s class contains the boolean ground 
convergent rewr i te systems w i t h completely defined func­
t ions over free constructors. In other words w i t h our pro-
cedure every false conjecture w i l l be disproved in f in i te 
t ime. However, our me thod remains val id even when 
the funct ions are not complete ly defined. Note tha t our 
correctness and completeness proofs do not require an 
elaborated not ion of fairness. I t is compat ib le too w i t h 
many s imp l i f i ca t ion rules tha t were not discussed here 
for lack of space. An extension to theories tha t are pre­
sented by non Horn clauses is also easy. 

The me thod is ent i re ly implemented in the prover 
S P I K E . Th i s system has proved non t r i v i a l examples 
in a completely au tomat ic way, tha t is, w i thou t interac­
t ion w i t h the user and w i t h o u t ad-hoc heuristics. I t has 
also proved the chal lenging G i lb rea th card t r ick , w i th 
only 5 lemmas. 

We plan to enhance the system w i t h recent tech­
niques developed for in teract ive provers such as the ones 
in [Bundy et a i , 1989; Chadha and Plaisted, 1992]. 

A c k n o w l e d g e m e n t : We thank Helene Kirchner for her 
comments. 
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