
T a s k a l l o c a t i o n v i a c o a l i t i o n f o r m a t i o n a m o n g a u t o n o m o u s a g e n t s * 

Onn Shehory 
Dept. of Math and Computer Science 

Bar Ilan University 
Ramat Gan, 52900 Israel 

shechory@bimacs.cs.biu.ac.il 

Abs t rac t 

Autonomous agents working in multi-agent en­
vironments may need to cooperate in order to 
fulfill tasks. Given a set of agents and a set 
of tasks which they have to satisfy, we con­
sider situations where each task should be at­
tached to a group of agents which will perform 
the task. The allocation of tasks to groups of 
agents is necessary when tasks cannot be per­
formed by a single agent. It may also be useful 
to assign groups of agents to tasks when the 
group's performance is more efficient than the 
performance of single agents. In this paper we 
give an efficient solution to the problem of task 
allocation among autonomous agents, and sug­
gest that the agents will form coalitions in order 
to perform tasks or improve the efficiency. We 
present a distributed algorithm with a low ratio 
bound and with a low computational complex­
ity. Our algorithm is an any-time algorithm, it 
is simple, efficient and easy to implement. 

1 I n t roduc t i on 
Autonomous agents working in multi-agent environ­
ments may need to cooperate in order to fulfill tasks. 
Given a set of agents and a set of tasks which they have 
to satisfy, we consider situations where each task should 
be attached to a group of agents which will perform the 
task. The allocation of tasks to groups of agents is neces­
sary when tasks cannot be performed by a single agent. 
It may also be useful to assign groups of agents to tasks 
when the group's performance is more efficient than the 
performance of single agents. Groups of agents may have 
different efficiency in task performance due to differing 
capabilities of the members of different groups. The task 
allocation will be done with respect to these differences. 

The purpose of the allocation of tasks to groups of 
agents is to perform all of the tasks and to do so in an 
efficient way. We seek an algorithm that will enable such 
task allocation in a distributed manner, i.e., without any 
central authority. An important property of any given 

*This material is based upon work supported in part by 
the NSF under Grant No. IRI-9123460 and the Israeli Science 
Ministry grant No. 6288. 

Sarit Kraus 
Dept. of Math and Computer Science 

Bar Ilan University 
Ramat Gan, 52900 Israel 
sarit@bimacs.cs.biu.ac.il 

solution is a low computational complexity. Therefore, 
in this paper we present an algorithm that will enable the 
agents to form groups and assign a task to each group. 
We call these groups coalitions. 

Distributed artificial intelligence (DAI) is concerned 
with problem solving in which several agents interact 
in order to achieve goals. During the past few years, 
several solutions to the coalition formation problem have 
been suggested by researchers in the field of DAI. These 
solutions concentrate on the special case of autonomous 
agents in a super-additive environment ] [Shechory and 
Kraus, 1993; Ketchpel, 1994; Zlotkin and Rosenschein, 
1994]. The solutions are given for coalition formation in 
Multi-Agent Systems (MAS), where each agent tries to 
increase its own personal utility via cooperation. Most of 
these solutions are based on concepts from game theory. 
One of the main problems of coalition formation in the 
case of MAS is how to distribute the common outcome 
of a coalition among its members. We intend to present 
a coalition formation algorithm which is appropriate for 
Distributed Problem Solving (DPS) cases where agents 
cooperate in order to increase the outcome of the system. 
In such cases, the disbursements to the agents are not as 
important as they are in MAS. In addition, we do not 
restrict the solution to the super-additive environment. 
Rather, we suggest a solution which is most appropriate 
for the non-super-additive case. 

Distributed task allocation has been discussed in the 
context of DPS systems. A well-known example of such 
a task allocation mechanism is the Contract Net Pro-
tocol (CNP)[Smith, 1980]. This work discusses cases in 
which an agent that attempts to satisfy a task may di­
vide it into several sub-tasks and sub-contract each sub-
task to another agent via a bidding mechanism. In the 
CNP, tasks are allocated to single agents and a proce-
dure for task-partitioning is necessary. Contrary to these 
cases, we solve the problem of assigning tasks to groups 
of agents. Such a solution is necessary in cases where 
single agents cannot perform tasks by themselves and 
tasks cannot be partitioned, or the partition is compu­
tationally too complex. In the CNP the efficiency of the 
solution was evaluated through simulations. We provide 

1 In a super-additive environment any combination of two 
groups of agents into a new group is beneficial. For details 
see section 3. 

SHEHORY AND KRAUS 655 



a formal analysis of the complexity of our solution. 
Coalition formation is an important method of coop­

eration in multi-agent environments. Game theory de­
scribes which coalitions can form in N-person games un­
der different settings and how the players will distribute 
the benefits of the cooperation among themselves, e.g., 
[Neumann and Morgenstern, 1947; Rapoport, 1970; 
Kraus and Wilkenfeld, 1991; Luce and Raiffa, 1957]. 
Game theory does not provide algorithms which agents 
can use in order to form coalitions. Given a previously 
formed coalitional configuration, game theory usually 
concentrates on checking its stability or its fairness2. 
Game theory rarely takes into consideration the special 
properties of a multi-agent environment. That is, the 
communication costs and limited computation time are 
not considered, and the solutions are not distributed. In 
our case, we are particularly interested in the coalition 
formation mechanism and how it will be distributed. We 
also seek a dynamic evaluation of the coalitions, where 
game theory usually provides a static evaluation. There­
fore, the game-theoretic coalition formation theories are 
not appropriate for the multi-agent situation with which 
we are concerned. 

The problem of coalition formation can be approached 
as a Set Partitioning Problem (SPP). Set partitioning en­
tails the partition of a set into subsets, and the set par­
titioning problem is finding such a partition that has a 
minimal cost (for details see section 3.2). Since coalition 
formation of agents results in the partition of the agents 
into subgroups, SPP may be an appropriate way for de­
termining which coalitions will form as a result of a coali­
tion formation algorithm. The SPP and the Set Cover­
ing Problem (SCP)3 , have been dealt with widely in the 
context of NP-hard problems [Garey and Johnson, 1979]. 
Exact solutions and approximations to SPP and SCP 
have been proposed in the fields of operations research, 
combinatorial algorithms, and graph theory [Garfinkel 
and Nemhouser, 1969; Balas and Padberg, 1972; 1975; 
Christofides and Korman, 1975; Chvatal, 1979]. How­
ever, the solutions that have been proposed do not pro­
vide an appropriate solution to the problem of coalition 
formation among agents, due to three main deficiencies: 
1) the exact and optimal solutions are solutions for NP-
hard problems. That is, the complexity of the solution 
is exponential in the number of agents. Such a solu­
tion cannot -be applied in cases where there are many 
agents in the environment, since the agents will be un­
able to calculate it; 2) the approximated solutions are 
of polynomial complexity, but they deal with a tightly 
restricted number of pre-defined possible subgroups of 
a given set. This restriction on the subgroups contra­
dicts the fact that there are 2n subsets of a given set 
of size n, and therefore makes such solutions inappro­
priate for coalition formation among agents, unless the 
possible coalitions will be artificially limited; 3) all of 
the present solutions are centralized. That is, the so­
lutions can be calculated and implemented only by a 

2Stability and fairness have several different definitions in 
the context of game theory. 

3The SCP, which is very similar to the SPP, is described 
in section 3.2. 

central agent which dominates the coalition formation 
process and supervises the other agents. Such a case is 
not typical in distributed agents' environments, and is 
inappropriate for our case. 

In this paper we combine the combinatorial algorith­
mic approach and concepts from operations research 
with autonomous agents' methods in order to form a task 
allocation method that employs a coalition-formation 
procedure. The resulting coalitions of this procedure are 
beneficial for systems of agents. We will concentrate on 
environments which are not necessarily super-additive 
[Conte et a/., 1991; Harsanyi, 1963]. 

We begin by illustrating the problem we intend to 
solve (section 2). Then, we give a brief description of the 
environment with which we deal in section 3. We also 
briefly present the basic definitions and assumptions in 
section 3.1. The algorithm is described in section 4, and 
its complexity is analyzed in section 4.4. Section trends 
our paper with a discussion and conclusions. 

2 I l l us t ra t ion of the prob lem 
The problem we solve in this paper is that of task al­
location among groups of autonomous agents in a DPS 
system. Given a set of tasks, the system as a whole has 
to satisfy all of the tasks, or at least seek the satisfac­
tion of as many tasks as possible, thus maximizing its 
benefits. In our case there is no central authority that 
distributes the tasks among the agents. The agents shall 
reach an efficient task allocation by themselves, seeking 
a maximal outcome. 

An example is a transportation company4. The com­
pany supplies transportation services via a system of 
autonomous and automated trucks, lift trucks, cranes, 
boats and planes which we call agents. This system is 
usually constructed in a distributed manner, since every 
single agent may perform limited tasks by itself. The 
agents differ in their capabilities. That is, they differ 
in the type of actions that they can perform, in the 
size, volume and weight of goods that they can carry at 
one time, in the transportation speed, its costs and the 
method by which it is performed. There may be occa­
sions where agents cannot perform a given transporta­
tion task by themselves. In such cases, cooperation is 
necessary. Therefore, the agents shall form groups, and 
each group of agents will cooperatively fulfill a trans­
portation task. We call such cooperating groups 'coali­
tions'. Obviously, not every coalition can perform any 
given task, and among those that are able to perform 
a given task, the efficiency and the costs may be com­
pletely different. 

For example, suppose that a transportation task of 
delivering 10,000 flowers from New Jersey to New York 
City has been ordered. Such a task may be performed 
by several trucks or by a single helicopter. A lift-truck 

Transportation systems have been extensively used as ex­
amples for DPS systems (e.g., [Sandholm, 1993]). We do not 
intend to solve a specific transportation problem. However, 
we provide this example because the reader is familiar with it. 
More interesting examples (such as distributed car-pooling; 
for non-distributed car-pooling, some commercial implemen­
tations are already present) are too long for this paper. 

656 DISTRIBUTED Al 



is necessary in both cases. However, using a helicopter 
in such a case will probably cost much more than using 
trucks and will take approximately the same length of 
time (due to flight constraints and regulations). There­
fore, the most appropriate coalition in such a case is a 
coalition of trucks and lift-trucks, with a size that would 
be appropriate for the freight size. This is because an 
overhead of agents in a coalition may prevent the for­
mation of other beneficial coalitions and therefore may 
reduce the total outcome of the system. 

If the transportation company has many agents, a 
distributed task allocation mechanism may be advan­
tageous (as discussed in section 4.4). In such cases task 
allocation and cooperation shall be decided upon locally. 
However, such a company seeks the maximization of its 
benefits. Therefore, the company shall attempt to satisfy 
every transportation order. This is so because such suc­
cess will bring an immediate profit to the company, and 
will also result in a satisfied client, which is important 
for the future. Since a single agent cannot always sat­
isfy the client's order, close cooperation is necessary. For 
such cases, the company shall provide the agents with a 
simple but also efficient algorithm that will enable the 
formation of coalitions of agents. 

The problem of the transportation company is gen­
eralized in this paper. We provide an algorithm which 
enables the allocation of tasks among a system of agents 
via the formation of coalitions. We show that the al­
gorithm is simple to implement, has a short run-time 
(hence can be used as a real-time method), and yields 
results which are close to the optimal results. 

3 Env i ronment descr ipt ion 
In order to elucidate the problem and its solution, we 
briefly present some general notations and definitions for 
concepts. We assume that agents can communicate, ne­
gotiate and make agreements [Werner, 1988]. Communi­
cations require time and effort on the part of the agents. 
We also assume that some resources can be transferred 
between agents. This ability may help the agents form 
more beneficial coalitions. 

3.1 Definitions 
There is a set of n agents, N = {A1,A2,.-.,An} . Bach 
agent Ai has a vector of real non-negative capabilities 
Bi — (bi,.. ., bl

r). Each capability is a property of an 
agent that quantifies its ability to perform a specific ac­
tion. For example, in the case of the transportation com­
pany, the volume and weight that can be transported 
by an agent is its transportation-volume capability. In 
order to enable the assessment of coalitions and of task-
execution, an evaluation function shall be attached to 
each type of capability. Such a function shall trans­
form the capability units into monetary units. In the 
transportation case, this function may be the income 
from shipping a freight. This may be a linear function 
in the size of cargo. We also assume that there is a 
set of m independent tasks5 T = {t1, t2,... ,tm}- For 

5The partition of a single task into subtasks is beyond 
the scope of this paper. However, if these subtasks are in-

the satisfaction of each task tj, a vector of capabilities 
is necessary. 

A coalition can be defined as a group of agents that 
have decided to cooperate in order to achieve a common 
task. We assume that a coalition can work on a single 
task at a time, and that each agent is not a member of 
more than one coalition. A coalition C has a vector of 
capabilities (which is a sum over vec­
tors). Coalition C can perform a task t only if the vec­
tor of capabilities necessary for its fulfillment Bt satisfies 

For each coalition C a value V can 
be calculated which is the joint utility that the members 
of C can reach by cooperating via coalitional activity for 
satisfying a specific task6. The coalitional value V is di­
rectly affected by the capabilities of the members of the 
coalition. Recall the transportation company. Given a 
specific transportation task, if the sum of transportation-
volumes of a coalition is less than the volume necessary 
for the task, then the value of the coalition for this spe­
cific task is zero. If the coalitional transportation volume 
is much larger than necessary for satisfying the task, then 
the value is positive, but relatively small in comparison 
to the case of having the exact volume. Actually, the 
transportation-volume is not the only capability of the 
agents and therefore does not affect the coalitional value 
exclusively. 

For reasons of convenience, we may sometimes em­
ploy the notion of coalitional cost c instead of coalitional 
value. This cost may be calculated as the reciprocal 
of the coalitional value. Such a calculation attaches a 
low cost to a high-valued coalition and vice versa. The 
coalitional rationality (as described below), which leads 
agents to try to increase the coalitional value, likewise 
leads them to try to reduce the coalitional cost. 

We assume that the agents are coalitionally rational. 
They join a coalition only if they benefit as a coalition 
at least as much as the sum of their personal benefits 
outside of it 7. The agents benefit if they fulfill tasks. 
Coalitional rationality is necessary to ensure that when­
ever agents form a coalition they always increase the sys­
tem's common outcome, which is the sum of the coali­
tional outcomes. We also assume that each agent tries to 
maximize the common utility; among all the possibilities 
that an agent has, it will choose the one that will lead 
to the maximum common utility. However, coalitional 
rationality of the agents does not necessarily entail a 
super-additive environment. In order to emphasize the 
difference between the super-additive environment and 
the ones we deal with, we describe the super-additive 
environment below. 

A super-additive environment is such that the set of 
the possible coalitions satisfies the following rule: for 

dependent, then the algorithm that we suggest can be used 
recursively to allocate sub-groups of agents to the subtasks. 

6This notion of coalitional value is different from the no­
tion of game theory coalitional value, since here the value 
depends on the coalitional configuration and on the task 
allocation. 

7This assumption is usually called "group rationality" in 
the game theory literature [Harsanyi, 1977; Rapoport, 1970; 
Luce and Raiffa, 1957]. 

SHEHORY AND KRAUS 657 



reasonable n, the derived solution is not too far from the 
optimal one. Given an algorithm with such a low ratio 
bound, it is very tempting to adopt it and implement it 
for the case of multi-agent coalition formation. Unfortu­
nately, this cannot be done - the algorithm provides a 
solution to the set covering problem, in which subgroups 
may overlap. Such a situation is not allowed in the case 
of coalitions of agents; even if we do allow agents to be 
members of more than one coalition (i.e., overlapping 
subgroups) there still remain other problems. These in­
clude the following: the set covering problem deals only 
with a small given set of subsets, and in the case of 
agents, the number of possible coalitions is 2n (hence, 
we need heuristics for reducing this number); agents do 
not necessarily try to increase the common benefits of 
the group (or decrease the costs of the group), and may 
be self-motivated and try to increase their own benefits 
(even if such selfish behavior decreases the common ben­
efits); the algorithms for SCP and SPP are all centralized 
and, since we deal with autonomous agents, we seek a 
distributed algorithm. Despite the deficiencies indicated 
above, we shall try to borrow some of the properties of 
the Chvatal algorithm, thus constructing a coalition for­
mation algorithm with a low ratio bound. 

4 The a lgo r i thm 
The algorithm we present below is a greedy distributed 
set-partitioning algorithm with a low ratio bound. It was 
designed for the special case of autonomous agents in an 
environment which is not necessarily super-additive, and 
that work as a DPS system (i.e., they try to act in order 
to increase the performance and benefits of the group as 
a whole). Another important property of the algorithm 
we provide is that it is an any-time algorithm. That is, if 
the execution is stopped before the algorithm would have 
normally terminated, it still provides the agents with a 
solution which is better than their initial state or any 
other intermediate state. 

The algorithm will be constructed from three main 
stages (which we present in detail later): 

1. In the first stage of the algorithm the coalitional val­
ues shall be calculated. This is done because any ef­
ficient coalition formation algorithm requires infor­
mation about the values of the possible coalitions, 
in order to be able to choose the preferred ones. 

2. The second stage of the algorithm entails an itera­
tive greedy process through which the agents decide 
upon the preferred coalitions and form them. 

3. Finally, the benefits of the cooperation may be dis­
bursed among the agents. This stage is not always 
necessary since we deal with DPS systems. How­
ever, if the disbursement of the outcome of the task-
execution is necessary, then we can provide some fair 
methods for doing so. 

As previously stated, the solution of the set partition­
ing problem in the case of autonomous agents is of an 
exponential complexity, since the number of the possible 
coalitions is exponential (2n). Therefore, any attempt 

timal cost and the approximated cost. 

658 DISTRIBUTED Al 



to reduce the complexity of such a solution shall include 
a reduction of the number of permitted coalitions. This 
can be done via the constraints of the specific problem 
under investigation, e.g., it may happen that all of the 
tasks must be performed by the same number of agents. 
If the problem itself does not provide any constraints, 
then the reduction can be done via heuristics. We sug­
gest adopting the following heuristics: since communi­
cation and computation-time have costs, and the agents 
seek cost-reduction, they should try to avoid unnecessary 
communication and computational activities. Therefore, 
small-sized coalitions shall be preferred as more economi­
cal to design than larger coalitions. This is the case since 
the calculations and communication operations are ex­
ponentially dependent on the numbers of members in a 
coalition. These heuristics will be implemented in our 
algorithm by presenting an integer k which will denote 
the highest coalitional size allowed. This restriction will 
turn the number of coalitions into a polynomial num­
ber in n. In the transportation case, a limitation on the 
size of coalitions may be even more reasonable than in 
the general case. Here, it would be very convenient to 
assume that the volume of a single freight task never ex­
ceeds a given size, which is related to k, although it may 
sometimes be more efficient to perform the task by using 
a larger coalition. Such a restriction affects the number 
of coalitions in the same way as in the case of communi­
cation and computation restrictions. More information 
about the properties of the tasks and the coalitional val­
ues may enable the calculation of the expectation values 
of the outcome of different coalitions, and improve the 
heuristics we employ, thus reducing the number of coali­
tions and the complexity of the algorithm. 

The initial coalitional state consists of n, single agents. 
The agents then begin negotiating [Kreifelts and Martial, 
1990] and, step by step, form coalitions. Agents that join 
coalitions quit the coalition-formation process, and only 
the remaining single agents will continue negotiations. 
The reduction in the number of agents that continue ne­
gotiating reduces the computational and communication 
costs. At the beginning of this coalition formation pro­
cess, each agent will calculate the values of coalitions in 
which it is a member. 

4.1 Distr ibuted calculation of coalitional 
values 

As stated above, the first stage of the algorithm entails 
the calculation of the coalitional values in a distributed 
manner. In order to decide which coalitional values to 
calculate, each agent will perform the following steps: 

1. Calculate all of the possible coalitions up to size k 
in which you are a member and form a personal list 
of coalitions. 

2. For each coalition in the personal list, contact each 
member and ask for its task-performing capabilities. 

3. Inform the agent whom you have approached that 
you are committed to the calculation of the coali­
tional values of the coalitions in which you are both 
members. 

4. Construct a personal list of agents that you have 
approached and avoid repeated approaches to the 
same agents. 

5. In case you were approached by another agent and 
it had committed to the calculation of the values 
of the common coalitions, erase all of your common 
coalitions from your personal list of coalitions. 

6. Repeat the contacting of other agents until you have 
none to approach. 

At this stage, the agent has a list of coalitions for which 
it had committed to calculate the values. It also has all 
of the necessary information about the capabilities of the 
members of these coalitions. Now, in order to calculate 
the values, each agent shall perform the following steps: 

1. Check which capabilities are necessary for the exe­
cution of each task ti € T. Compare them to the 
capabilities of the members of the coalition, thus 
finding the tasks that can be performed by the coali­
tion. 

2. Calculate the expected outcome of the tasks that 
can be performed by the coalition. For each task 
perform the following: 

• First, calculate the monetary values of all of its 
capabilities and sum them. 

• Then, calculate the monetary values of the ca­
pabilities of the coalition which are not used for 
the fulfillment of the task and sum them10. 

• Subtract the second sum from the first. This 
will be the expected outcome of the task. 

3. Among all of the expected outcomes, choose the 
maximal one. This will be the coalitional value. 

Having calculated the coalitional values, the agents 
can proceed to the next stage of the process. 

4.2 Choosing coalitions 
In the second stage of the algorithm, the preferred coali­
tions are chosen and the coalitional configuration is grad­
ually achieved. In order to simplify the representation 
of the algorithm, we denote the ratio between the cost 
of the coalition and the coalition's size by wi = ci | Ci, | 
and call it the coalitional weight. At the end of the first 
stage of the algorithm, each agent will have calculated a 
list of coalitions and their values. Each agent will choose 
the best coalition from among its list, i.e., the coalition 
Ci that has the smallest Wi. Next, each agent will an­
nounce the coalitional weight that it has chosen, and the 
lowest among these will be chosen by all agents. The 
members of the coalition that was chosen will be deleted 
from the list of candidates for new coalitions. In addi­
tion, any possible coalition from the lists of any agent, 
that includes any of the deleted agents, will be deleted 
from its list. 

10Note that this calculation is done in order to reduce the 
value of coalitions whose capabilities do not precisely fit the 
capabilities necessary for task fulfillment. However, this re­
duction method was not tested for its quality, and other 
methods of such a reduction may be considered once the al­
gorithm is implemented. 

SHEHORY AND KRAUS 659 



The procedures of calculating coalitional values and 
choosing the preferred coalitions will be repeated un­
til all agents are deleted (that is, until all are assigned 
to coalitions), or until there are no more tasks to be 
allocated, or none of the possible coalitions is benefi-
cial. The coalitional values shall be calculated repeatedly 
since they are affected by the coalitional configuration. 
This is because each value is calculated subject to the 
tasks that should be performed. Any change in the coali­
tional configuration means that a task was assigned to a 
coalition, so this specific task no longer affects the coali­
tional values which may previously have been affected 
by it. Therefore, the coalitional values that have been 
calculated with reference to a task that has just been 
allocated must be re-calculated. All other values remain 
unchanged. 

will be the calculation of all of the relevant coalitions. 
This requires computation 
operations, which is of an average order per 
agent. Since there are n agents, each agent will approach 
up to n — 1 agents. The average number of such com­
munications is 1. However, considering the worst case, 
the communication complexity per agent at this stage is 
O(n). 

The value-calculation process will proceed with the as­
signment of tasks to coalitions. Since such an assignment 
is done for all tasks, it shall be done m times. The num­
ber of such operations per agent is of order 
However, while some agents perform value-
calculations, others may happen to perform less than 

calculations. This property of the process 
is advantageous because it occurs when there are differ­
ences of computational capabilities among the agents. 
In such cases the non-equal partition of the calculations 
moderates the differences in the calculation-time of the 
agents, thus reduces the average time of calculation com­
pletion. Assuming that the number of capabilities de­
pends neither on the number of agents nor on the num­
ber of tasks, each assignment operation requires 0(1) 
operations. However, the constant here may be large. 

Choosing the largest value is of the order of the num­
ber of coalitions, i.e., computations per agent. 
The two processes of calculating coalitional values and 
choosing coalitions may proceed up to n — 1 times in the 
worst case, where all of the coalitions are of single agents. 
The average case is much smaller, but still the commu­
nication and computational complexity will be 0(n m). 

To summarize, the average computational complexity 
is of order and the communication complex-
ity is of order 0(n ■ m), both for each agent. This com­
plexity can be compared to the centralized case, where 
a single agent performs all of the operations. In such a 
case, this single agent will experience compu­
tations and 0(n) communications. Therefore, the com­
putational complexity is higher than in the average dis­
tributed case (the speed-up is of order 0(n)), but the 
communicational complexity is lower11. 

5 Discussion 
In this paper we presented an algorithm for task alloca­
tion among computational agents via coalition formation 
in a non-super-additive environment. The algorithm is 
suitable for cases where agents are motivated to act in or­
der to maximize the benefits of the system as a whole. It 
is most appropriate for the incidents in which the agents 
cannot perform the tasks by themselves. However, it is 
also important for improving the efficiency of task execu­
tion when tasks can be performed by single agents. This 
may be the case when the performance of single agents 
is worse than their performance within groups. 

Although the general task allocation problem is 
computationally exponential, we bring a polynomial-

11 If, for all agents, there exists a communication channel 
between every pair of agents, then the computational over­
head of the distributed case will not affect the performance 
of the algorithm. 

660 DISTRIBUTED Al 



complexity algorithm that yields results which are close 
to the optimal results and, as we have proven, are 
bounded by a logarithmic ratio bound. Another ad­
vantage of the algorithm, which is crucial in the case 
of a distributed system, is the distribution of the algo­
rithm. We distribute the calculations in a natural way. 
That is, the distribution is an outcome of the algorithm 
characteristics since each agent performs mostly those 
calculations that are required for its own actions during 
the process. In addition, our distribution method pre­
vents most of the possibly overlapping calculations, thus 
saving unnecessary computational operations. 

The algorithm is an any-time algorithm. If halted 
before normally terminated, it still provides the system 
with several coalitions that have already formed. Since 
the first coalitions to be formed are the better ones, the 
results, when halted, are still of good quality. The any­
time property of such an algorithm is important for dy­
namic environments, wherein the time-period for negoti­
ation and coalition-formation processes may be changed 
during the process. 

Due to space limitations, we neither expand the exam­
ples nor provide the complete details of the algorithm. 
We also do not provide a method for distributing the 
outcome of the task-execution among the agents. These 
topics shall be presented in a full-length paper. 

To conclude, we suggest that designers of dynamic sys­
tems of distributed computational agents, wherein tasks 
shall be assigned to agents in order that the agents will 
perform them, use our algorithm in order to maximize 
the expected outcome of the system as a whole and to 
minimize the necessary run-time. 

References 
[Balas and Padberg, 1972] E. Balas and M. Padberg. 

On the set covering problem. Operations Research, 
20:1152-1161,1972. 

[Balas an d Padberg, 1975] E. Balas and M. Padberg. 
On the set covering problem: An algorithm for set 
partitioning. Operations Research, 23:74-90, 1975. 

[Christofides and Korrnan, 1975] N. Christofides and 
S. Korrnan. A computational survey of methods for 
the set covering problem. Mathematics of Operations 
Research, 21(5):591-599, 1975. 

[Chvatal, 1979] V. Chvatal. A greedy heuristic for the 
set-covering problem. Mathematics of Operations Re­
search, 4(3):233-235, 1979. 

[Conte et al, 1991] R. Conte, M. Miceli, and C. Castel-
franchi. Limits and levels of cooperation: Disentan­
gling various types of prosocial interaction. In Y. De-
mazeau and J. P. Muller, editors, Decentralized A.I. -
2, pages 147-157. Elsevier Science Publishers, 1991. 

[Cormen et al, 1990] T. H. Gormen, G. E. Leiserson, 
and R. L. Rivest. Introduction to Algorithms. MIT 
Press, 1990. 

[Garey and Johnson, 1979] M. R. Garey and D. S. John­
son. Computers and Intractability: a Guide to the 
Theory of NP-completeness. W. H. Freedman and 
Company, New York, 1979. 

[Garfinkel and Nemhouser, 1969] R. S. Garfinkel and 
G. L. Nemhouser. The set-partitioning problem: set 
covering with equality constraints. Operations Re­
search, 17:848-856,1969. 

[Harsanyi, 1963] J. C. Harsanyi. A simplified bargaining 
model for n-person cooperative game. International 
Economic Review, 4:194-220, 1963. 

[Harsanyi, 1977] J. G. Harsanyi. Rational Behavior and 
Bargaining Equilibrium in Games and Social Situa­
tions. Cambridge University Press, 1977. 

[Ketchpel, 1994] S. P. Ketchpel. Forming coalitions in 
the face of uncertain rewards. In Proc. of AAAI194, 
pages 414 419, Seattle, Washington, 1994. 

[Kraus and Wilkenfeld, 1991] S. Kraus and J. Wilken-
feld. Negotiations over time in a multi agent envi­
ronment: Preliminary report. In Proc. of IJCAI-91, 
pages 56-61, Australia, 1991. 

[Kreifelts and Martial, 1990] T. Kreifelts and F. Von 
Martial. A negotiation framework for autonomous 
agents. In Proc. of the Second European Workshop 
on Modeling Autonoumous Agents in a Multi Agent 
World, pages 169-182, France, 1990. 

[Luce and Raiffa, 1957] R. D. Luce and H. Raiffa. 
Games and Decisions. John Wiley and Sons, Inc, 
1957. 

[Neumann and Morgenstern, 1947] J. Von Neumann 
and O. Morgenstern. Theory of Games and Economic 
Behavior. Princeton University Press, Princeton, N.J., 
1947. 

[Rapoport, 1970] A. Rapoport. N-Person Game Theory. 
University of Michigan, 1970. 

[Sandholm, 1993] T. Sandholm. An implementation of 
the contract net protocol based on marginal cost cal­
culations. In Proc. of AAAI-93, pages 256-262, Wash­
ington D.C., 1993. 

[Shapley, 1953] L. S. Shapley. A value for n-person 
game. In H. W. Kuhn and A. W. Tucker, editors, 
Contributions to the Theory of Games. Princeton Uni­
versity Press, 1953. 

[Shechory and Kraus, 1993] 0. Shechory and S. Kraus. 
Coalition formation among autonomous agents: 
Strategies and complexity. In Proc. of MAAMAW-93, 
Neuchatel, 1993. 

[Smith, 1980] R. G. Smith. The contract net protocol: 
high-level communication and control in a distributed 
problem solver. IEEE Transaction on Computers, 
29(12):1104-1113,1980. 

[Werner, 1988] Eric Werner. Toward a theory of com­
munication and cooperation for multiagent planning. 
In Proceedings of the Second Conference on Theoreti­
cal Aspects of Reasoning about Knowledge, pages 129-
143, Pacific Grove, California, March 1988. 

[Zlotkin and Rosenschein, 1994] G. Zlotkin and J. S. 
Rosenschein. Coalition, cryptography, and stability: 
Mechanisms for coalition formation in task oriented 
domains. In Proc. of AAA 194, pages 432-437, Seat­
tle, Washington, 1994. 

SHEH0RY AND KRAUS 661 


