
Planning wi th Abstraction Hierarchies can be
E x p o n e n t i a l l y L e s s E f f i c i e n t *

Chr is ter Backs t rom and Peter Jonsson
Department of Computer and Information Science
Lmkopmg Umversity, S-581 83 Linkoping, Sweden

email {cba,petej}@ida huse

Abs t rac t

It is well-known that state abstraction can speed
up planning exponentially, under ideal condi
tions We add to the knowledge—showing that
state abstraction may likewise slow down plan­
ning exponentially, and even result in generat
ing an exponentially longer solution than nec­
essary This phenomenon can occur for ab­
straction hierarchies which are generated au­
tomatically by the A L P I N E and H I G H P O I N T al­
gorithms We further show that there is l i t t le
hope of any drastic improvement upon these
algorithms—it is computationally difficult to
generate abstraction hierarchies which allow
finding good approximations of optimal plans

1 I n t r o d u c t i o n
One common approach to improving the efficiency of
planning is to use a hierarchical planner based on state
abstraction—ignoring certain literals, either in the op­
erator preconditions [Sacerdoti, 1974] or in the whole
language [Knoblock, 1991, 1904] First an abstracted
version of the problem instance is Bolved, thus not tak­
ing all details into account and resulting in a plan which
is correct at this abstraction level This plan is then
used as a skeleton plan to be filled in with more detail at
the next lower level—a process referred to as refinement
Repeated refinement results m a solution to the original,
non abstract problem

Although state abstraction cannot avoid exponential
search Bpaces in the general case, it is usually considered
a powerful method for reducing the search effort The
method has been demonstrated to speed up planning
considerably for certain test examples [Knoblock, 1994,
Bacchus and Yang, 1994] This is augmented wi th the­
oretical results [Knoblock, 1991] showing that state ab­
straction can reduce the size of the search space from ex­
ponential to linear under certain ideal conditions These
conditions are very strong, however, and are not likely
to be met In (m)any real applications One of the condi­
tions is that the hierarchy satisfies the downward refine-

"This research wai iponsored by the Swedish Research
Covnal for Engineering Sciences (TFR) under grants
Dm- 92-143 and Dnr 93-270

ment property (DRP) [Bacchus and Yang, 1994], which
guarantees that no backtracking occurs between abstrac­
tion levels Bacchus and Yang [1994] analysed the ex­
pected search complexity when this particular condition
does not hold—more precisely, as a function of the prob-
ability that a plan at some abstraction level can be re­
fined mto a plan at the next lower level They found that
the search complexity is linear both when this probabil­
i ty is close to 1 and when it is close to 0 However,
there is a phase-transit ion effect increasing the search
complexity considerably, when the probability is neither
low nor high Bacchus and Yang even reported that the
expected search effort may be somewhat higher wi th ab-
straction than without in this middle region, namely if
most search has to be redone at the ground level How­
ever, the literature seems to tacitly assume that state
abstraction wi l l never do any big harm Contrary to
this, we show that just as state abstraction can speed
up planning exponentially, it can also slow down plan-
ning exponentially, and even force the hierarchical plan­
ner to produce an exponentially longer solution than a
non-hierarchical planner1

Knoblock [1994] has further presented an algorithm,
A L P I N E , for generating abstraction hierarchies that are
ordered monotonic—a property guaranteeing that no re­
finement of an abstract plan can undo any effects of the
abstract plan Bacchus and Yang [1994] have presented
a modification of this algorithm, H I G H P O I N T , whose hi­
erarchies are ordered monotonic and expected to satisfy
the DRP more closely While these algorithms produce
good hierarchies in many cases, they are not guaranteed
to be harmless In fact, we show that both algorithms
may produce the type of abstraction hierarchy that leads
to exponentially longer solutions Furthermore, we show
that using the Bame underlying principle as in ALPINE
and H I G H P O I N T , n is computationally difficult to gen­
erate an abstraction hierarchy that allows a hierarchical
planner to generate a solution w i th length wi th in a con­
stant factor of the optimal plan length (we actually prove
an even stronger approximation bound—a logarithmic
factor m the size of the instance)

2 B a s i c F o r m a l i s m

We first define some basic concepts

BACKSTROM AND JONSSON 1699

1000 PLANNING

The process of using a plan on one abstraction level as
a skeleton for producing a plan at the next lower level Is
called refinning the plan In the general case, for abstrac­
tion hierarchies not satisfying the DRP, H P L A N must
also use backtracking and t ry refining another skeleton
plan on some level whenever a subproblem cannot be
solved However, to simplify matters we omit backtrack­
ing in this paper since we wi l l only use H P L A N for hier­
archies satisfying the DRP

4 E x p o n e n t i a l S l o w - d o w n
Knoblock [l99 l] has shown that, under certain Ideal con­
ditions, the size of the search space can be reduced from
exponential to linear by using H P L A N and an abstraction
hierarchy instead of an ordinary non-hierarchical plan­
ner Most of these conditions are expressed in terms
involving properties of the actual planning process and
properties of the final solution, and are thus difficult to
cast in terms involving only properties of the instance
One of the conditions is the DRP, ve , there is no back
tracking between abstraction levels

This section presents some complementary results
state abstraction can also cause an exponential blow-up
of the search space, causing an exponential slow-down,
under certain conditions—even for hierarchies satisfying
the DRP Furthermore, this exponential slow-down is ac­
companied by the even worse result that the generated
solution is exponentially longer than the shortest one'

Consider the following generic planning instance, E „ ,
and the two possible abstraction hierarchies 7i\ and Hi

BACKSTROM AND J0NSS0N 1601

1602 PLANNING

BACKSTROM AND JONSSON 1603

neither theorem depends on the assumption that P L A N
generates an optimal plan

6 Discussion
It is well-known [Knoblock, 1091] that state abstraction
can speed up planning exponentially Under certam ideal
conditions, plans can be generated In linear tune in the
length of the solution for some planning problems, eg
the Towera-of-Hanoi problem However, the value of
this demonstration is questionable since the problem is
unrealistic in the sense that it has exponentially sized
MINIMAL solutions 3 One of these ideal conditions is the
downward refinement property (DRP), which guarantees
that no backtracking occurs between abstraction levels
We have added to previous analyses of state abstrac­
tion by showing that not only can state abstraction give
exponential speed-up in some cases, it can also cause ex­
ponential slow-down in other cases—even for hierarchies
satisfying the DRP More precisely, there exist problem
instances such that the ideal choice of abstraction hier­
archy leads to the generation of a linear-size plan, while
a more unfortunate choice forces the generation of an
exponential-size plan, taking exponentially longer time
to generate This may even happen m cases where a
standard non-hierarchical planner equipped wi th a sim­
ple, domain-independent heuristic produces a shortest,
te linear-size, solution m polynomial t ime Instances of
this kind seem no less realistic than, for instance, TOwers-
of-Hanoi

We have further shown that the A L P I N E [Knoblock,
1994] and HlGHPOlNT [Bacchus and Yang, 1994] algo-
rithms for generating abstraction hierarchies are not able
to distinguish between such good and bad hierarchies as
mentioned above Furthermore, we have also shown that
it is even impossible to design an algorithm based on the
same underlying principle as ALPINE and HlGHPOlNT
that always produces hierarchies allowing a hierarchical
planner to generate plans of length w i th in a constant
factor of the shortest length (actually, not even wi th in a
logarithmic factor in the size of the instance) We have
choosen in this paper to concentrate on state abstraction
as defined and used by Knoblock [1994], te using a total-
order hierarchical planner We are currently investigat­
ing the consequences of using a partial-order hierarchical
planner like A B T W E A K [Yang and Tenenberg, 1990] in
stead Although A B T W E A K seems to handle correctly
the particular example we have used to demonstrate the
exponential slow-down effect, we do not believe there is
any fundamental difference in general In fact, the ap-
proximation result mentioned above should be valid also
for partial-order planners like A B T W E A K

The message of this paper is not that state abstrac­
t ion and the use of algorithms like A L P I N E and H I G H -
P O I N T should be abandoned, in many cases, these can
st i l l be powerful tools for tackling the search complexity
in planning However, the results tell us that we must
be very careful, state abstraction is a powerful tool, but
a tool that may occasionally turn its power against us,

3See Baekstrom and Nebel [1993] or [Garey and Johnson,
1079, pp 11-12] for a discussion of this topic

making things exponentially woree Even if good ab-
straction hierarchies exist m many domains, the task of
finding these is non-tnvial and seems to remain a highly
domain-dependent heuristic endeavour We believe that
more research is needed in order to understand when
state abstraction works and how to exploit the inher­
ent structure of problems for building good abstraction
hierarchies

A c k n o w l e d g e m e n t s
We would like to thank Craig Knoblock, Jalal Maleki,
Qiang Yang and the anonymous referees for comments
which helped improving this paper

References
[AAAI , 1991] PROC 9th (US) Natl Conf on Artif In­

tell (AAAI 91), Anaheim, CA, USA, 1991

[Bacchus and Yang, 1994] Fahiem Bacchus and Qiang
Yang Downward refinement and the efficiency of hi­
erarchical problem solving Artxf Intel!, 71 43-100,
1994

[Backstrom and Nebel, 1993] Christer Backstrom and
Berahard Nebel Complexity results for SAS+ plan­
ning In PROC 13th Intl Joint Conf on Artif Intell
(IJCAI-98), Chambery, France, 1993

[Backstrom, 1995] Chnster Backstrom Expressive
equivalence of planning formalisms Artif Intell, Spe­
cial Issue on Planning and Scheduling, 1995 To ap-
pear

[Bellare et a l , 1993] M Bellare, S Goldwasser, C
Lund, and A Russel Efficient probabilistically check­
able proofs and applications to approximation In 25th
ACM Symp Theory Comput (STOC-9S), pages 294-
304 A C M , 1993

[Chapman, 1987] David Chapman Planning for con­
junctive goals Artxf Intell, 32 333-377, 1987

[Garey and Johnson, 1979] Michael Garey and David
Johnson Computers and Intractability A Guide to
the Theory of NT-Completeness f reeman, New York,
1979

[Knoblock, 1991] Craig A Knoblock Search reduction in
hierarchical problem solving In A A A I [1901], pages
686-691

[Knoblock, 1994] Craig A Knoblock Automatical ly
generating abstractions for planning Artxf Intell,
68 243-302, 1994

[McAllester and Rosenbhtt, 1991] David McAllester
and David Rosenbhtt Systematic nonlinear planning
In A A A I [1991], pages 634-639

[Sacerdoti, 1974] Ear l D Sacerdoti Planning in a hier
archy of abstraction spaces Artif Intell, 5 115-135,
1974

[Yang and Tenenberg, 1990] Qiang Yang and Josh D
Tenenberg A B T W E A K Abstracting a nonlinear,
least commitment planner In Proc 8th (US) Natl
Conf on Artxf Intell (AAAI-90), pages 204-209,
Boston, M A , USA, 1990

1604 PLANNING

