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Abstract

It is well-known that state abstraction can speed
up planning exponentially, under ideal condi
tions We add to the knowledge—showing that
state abstraction may likewise slow down plan-
ning exponentially, and even result in generat
ing an exponentially longer solution than nec-
essary This phenomenon can occur for ab-
straction hierarchies which are generated au-
tomatically by the ALPINE and HIGHPOINT al-
gorithms We further show that there is little
hope of any drastic improvement upon these
algorithms—it is computationally difficult to
generate abstraction hierarchies which allow
finding good approximations of optimal plans

1 Introduction

One common approach to improving the efficiency of
planning is to use a hierarchical planner based on state
abstraction—ignoring certain literals, either in the op-
erator preconditions [Sacerdoti, 1974] or in the whole
language [Knoblock, 1991, 1904] First an abstracted
version of the problem instance is Bolved, thus not tak-
ing all details into account and resulting in a plan which
is correct at this abstraction level This plan is then
used as a skeleton plan to be filled in with more detail at
the next lower level—a process referred to as refinement
Repeated refinement results m a solution to the original,
non abstract problem

Although state abstraction cannot avoid exponential
search Bpaces in the general case, it is usually considered
a powerful method for reducing the search effort The
method has been demonstrated to speed up planning
considerably for certain test examples [Knoblock, 1994,
Bacchus and Yang, 1994] This is augmented with the-
oretical results [Knoblock, 1991] showing that state ab-
straction can reduce the size of the search space from ex-
ponential to linear under certain ideal conditions These
conditions are very strong, however, and are not likely
to be met In (m)any real applications One of the condi-
tions is that the hierarchy satisfies the downward refine-
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ment property (DRP) [Bacchus and Yang, 1994], which
guarantees that no backtracking occurs between abstrac-
tion levels Bacchus and Yang [1994] analysed the ex-
pected search complexity when this particular condition
does not hold—more precisely, as a function of the prob-
ability that a plan at some abstraction level can be re-
fined mto a plan at the next lower level They found that
the search complexity is linear both when this probabil-
ity is close to 1 and when it is close to 0 However,
there is a phase-transit ion effect increasing the search
complexity considerably, when the probability is neither
low nor high Bacchus and Yang even reported that the
expected search effort may be somewhat higher with ab-
straction than without in this middle region, namely if
most search has to be redone at the ground level How-
ever, the literature seems to tacitly assume that state
abstraction will never do any big harm Contrary to
this, we show that just as state abstraction can speed
up planning exponentially, it can also slow down plan-
ning exponentially, and even force the hierarchical plan-
ner to produce an exponentially longer solution than a
non-hierarchical planner1

Knoblock [1994] has further presented an algorithm,
ALPINE, for generating abstraction hierarchies that are
ordered monotonic—a property guaranteeing that no re-
finement of an abstract plan can undo any effects of the
abstract plan Bacchus and Yang [1994] have presented
a modification of this algorithm, HIGHPOINT, whose hi-
erarchies are ordered monotonic and expected to satisfy
the DRP more closely While these algorithms produce
good hierarchies in many cases, they are not guaranteed
to be harmless In fact, we show that both algorithms
may produce the type of abstraction hierarchy that leads
to exponentially longer solutions Furthermore, we show
that using the Bame underlying principle as in ALPINE
and HIGHPOINT, n is computationally difficult to gen-
erate an abstraction hierarchy that allows a hierarchical
planner to generate a solution with length within a con-
stant factor of the optimal plan length (we actually prove
an even stronger approximation bound—a logarithmic
factor m the size of the instance)

2 Basic Formalism

We first define some basic concepts
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Deflnition 2 1 Given a set 5, we let Seqa(§) denote
the set of all sequences formed by members of S We
further use the symbol “ " to denole sequence concale
natton Gwen a 3¢t P = {p1, .pn} of propos
honal atorns, Lp denoles the corresponding set of -
erals, ¢ Lp = {p,~p|p€EP}) A st § C Lp of
hterals W conmstent iff there 1 no atom p such that
{p.~p} © 8 For S C Lp we further define Gen(S) =
{p)pe S or =p€ S}, 1e the set of stoms generahing
the hterals 1n S

Sice we will only prove hardness resuits, we need
only consider e propositional formalism, and the results
will carry over automatically to more expressive for-
mahsms More precisely, we will uee the ground version
of the TWEAK formalism [Chapman, 1987], which 15
known [Backstrdm, 1095] to be expressively equivalent,
upder polynomial reduction, to most other common van-
ants of propasitional STRIPS

Defirution 22 A planmung problem instance 1 a
quadruple I = (P,0,I,0) where

» P 12 o finste set of atoms,

s O 1 a finite set of operators of the form {pre, post)
where pre, post C Lp are conswtent and denote the
pre- and post-condition respectively,

o 1,6 C Lp are connstent and denote the imtinl and
goal state respectively

For o = {(pre, past} € O, pre(o) and post{o) to denote
pre and post respectvely A seguence {0;, ,0q) €
Seqs(C) of operators 44 called a plan over II The fune-
tion Result 15 defined for all conmatent states § C Ly
and plans (01, ,0n) € Seqs(C) a5

Result((},5) = S
.Re.mit({ol, ,D",>, S) =
Result({o3, ,on),5 U post(o) — {p | —p € post(0)})

We say that a plan (01, ,0p) € Segqs(O) 21 e solution
to an wstance 1 = (P, 0,1, G) 1f

1 pre(m) < T,

2 g - Result((o;. ;on)!I) and

9 pre(o) C Result({oy, 00— 1,7T) for all1< 1 <
mn

3 State Abstraction

There are two common weys of downg state abstiraction
the relared methed and the reduced method The 1o
laxed method was pioneered for planning i the Ab-
STRIPS planner [Sacerdot:, 1974] Crsticality values are
assigned to the literals and at each abstraction level 1,
all hiterals wnth eriticality value < 1 are omitted from the
operetor preconditions The reduced method [Knoblock,
1091, 1904] goes even further by restncting the whale
language at level 1 to only those literals having cniti-
cality value > 1+ We will base our theorems on the
reduced model, but they travially hold also under the
relaxed model

Definition 8 1 Gwen a set of of ators P, an abetrac-
tion of P 15 g set of aloma P' C P An n-level ab-
straction luerarchy or P w0 & cham P" C c P C
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P? where P* = D agrd P° = P We wnll mostly
uwrie the abstrachion herarchy as an ordered porhiion-
mg (D=1, DY of P where D' = P — P! for oll
t The mapping of a state § C Lp onto the abstract
level ¢, for some 1 < 1+ £ n, 15 denated 51 and w5 de-
fined as §' = 8N Lp:  Simadarly, the mapping of a
ground operulor o = {pre, post) onio the abetract level
1 4 denoted o' and defined oo o* = (pret, post') The
mapping of an operator aet to level v 1 consequently de-
fined as O' = {o' | 0 € O} and the mappwmy of o plon-
mng wnatance IL = (P, 0, T,G) to level + v defined aa
o = (P, 0, T°,G") We refer to level () as the ground
level

The general method for planning with abstraction hi-
erarchies can be cast as en algonthm, HPLAN (see Fig-
ure 1) This planner rehes on a non-huerarchical planner
PLaAN for solving subproblems wathin sbatrection levels
PLAN can be any planner for the janguage at hand, but
it must be sound and complete to guarantee soundness
and completeness of HPLAN We will further assume
that PLAN generates ahortest plans

When solving an wstance II = {P, 2,7, ) under an
sbstraction hierarchy (D"~1, |, D°), HPLAN first uses
PLAN to solve the most abstract version, 1”1, of this
matance This results 1n a plan (677!, ,0}™!) aver
the abstract operator set 0" Thie plan 15 used as &
skeleton for solving the mstance I1"~2, with imitial and
goal atates I" 3 and ¢n—? respectwelf In addition, the
wiermediate states 5, = Result(o] ", 1" '), 8 =
Result(o?!,8c-1) on level n — 1 are used as new sub-
goalg on level n — 2 In this way we get X+ 1 subproblems
to solve on leveln = 2, each one hopefully easier than
solving I from scratch Each of these subproblems
19 solved using PLAN, and these solutions are concate-
nated into a solution for II"~? Thw process 18 then
repeated untl we reach the ground level, which results
n & solution for I° = I

procedure HpLAN(O,T,G, (D",
w ~ PLAN(O"=1 71 g1y
If noauch plan then fail
fori1fromn—-1tol1 do

w — Refine(w,1)
return o

D)

ok Lo B

1 procedure Refine(w,1)

2 Assume w = (o}, ,ol)

3 ST~

4 for 7 from ltec k do

5 8, « Result(o?, $,-,)

4 for yfrom 1to £ do

T  w,~ Puan(O-),T,_,,5,)
8 if nosuch plan then fail
9 T, « Result(w,, T, ,)

10 wgtr ~ PLan{(O" ), 7,,6* "}
11 return wy, Wi
Figure 1 The hierarchical planmng elgorithm (search
control omitted)



The process of using a plan on one abstraction level as
a skeleton for producing a plan at the next lower level Is
called refinning the plan In the general case, for abstrac-
tion hierarchies not satisfying the DRP, HPLAN must
also use backtracking and try refining another skeleton
plan on some level whenever a subproblem cannot be
solved However, to simplify matters we omit backtrack-
ing in this paper since we will only use HPLAN for hier-
archies satisfying the DRP

4 Exponential Slow-down

Knoblock [I991] has shown that, under certain Ideal con-
ditions, the size of the search space can be reduced from
exponential to linear by using HPLAN and an abstraction
hierarchy instead of an ordinary non-hierarchical plan-
ner Most of these conditions are expressed in terms
involving properties of the actual planning process and
properties of the final solution, and are thus difficult to
cast in terms involving only properties of the instance
One of the conditions is the DRP, ve , there is no back
tracking between abstraction levels

This section presents some complementary results
state abstraction can also cause an exponential blow-up
of the search space, causing an exponential slow-down,
under certain conditions—even for hierarchies satisfying
the DRP Furthermore, this exponential slow-down is ac-
companied by the even worse result that the generated
solution is exponentially longer than the shortest one'

Consider the following generic planning instance, E,,
and the two possible abstraction hierarchies 7\ and Hi

Definition 4 1 For all even n > 0 we define T, =

{{Pu, rPn-l}:amgn {Pn—::Pn—l}): wvhere 0., con-
tains the 2n operotors ag, Ty, ,8p_1,Tn—1 a8 defined m

Table I We further define the follouing twe abstrachon
hierarchies for L.,

Hl = ({Po}m{Pl}:{Pﬂ}m{P!}- 1{}’"—?}!{?“—1})!
Ha = ({m}.{mh{m}{ra}, .{pr-1}h{Pn-2}

Both M, and H; obviously satisfy the DRP and are or-
dered

We can now prove that there 18 an exponential duf-
ference in the exzes of the solutions and search spaces
depending on the choice of abstraction lerarchy

Theorem 4 2 HPLAN usil produce a solutron of length
5 for L, under Mi

Proof  Let L, be the length of the shortest plan
HPLAN ean produce under H; We prove by induction

operator post
ay -1 lm—'a% ipu}
Fa =1 P2i=2 {"P:h}
3hil “Pa-1, -'Pﬂl-a} {P!Hl}
_T_‘J_l-t‘.l “Ple=1: "Pa:—-12 {-'Pii.j-l_}

Table 1 Operators for the planning instance I,,, where
0 < 21 < n end wth the exception that the operators
80,7y, 8 and r; have empty precond:tions

over i that for even n > 0,
for n =2,

.
L"*{ ¥+ Ln-y, for n>2

Base step For n = 2 all operators have empty pre-
conditiona, o the behaviour of HPLAN will correspond
to the two uppermost levels of Figure 2 The resultng
plan 1 {s;,8), whuch clearly must be a shortest plan
Hence, Ly =2

Induction step Assume the clarm holds for all even
k < n for some even i > 2 Planning on the four most
abstract levels will proceed as shown 1n Figure 2 The
mitial state will be empty on all abstraction levels and
orderedness of the abstraction hierarchy guarantees that
the last three states on level n — 4 will be refined into
states subsummg these states Hence, the operators a4
and un_ will be refined into the single-operator plans
(a%,_1) and (s} _,) respectively at each level 1 < n -4 It
remalns to enalyse the subplan {s"74, "4} Ordered-
ness guarantess thet the atom p,_; cannot be affected
and will not be required for any refinement of thus sub-
plan Hence, thus atom cen be ignored for the expansion
Subat:tut.mg wmdicess —landn-2forn—-3andn -4
reapectively then shows that the subplan {s7_3,s7-4) 15
somorpluc to the plan (s7=%,s7") on level n — 2, and
sumilarly for the adjaceni states That 18, by 1gnon.ng
the atom p,_; we see that the subplan {a"”1 s siTh s
the solution at level i — 4 for the wnstance I, _z, 8o 1t
follows Erom the wnduction hypothesis that 1t wll be re-
fined into & ground solution of length L,_2 It follows
that L, = 2 + L,_; for even n > 4, whach proves the
claun and ends the wnduction

The sclution to the recursive equetion 8 L, = n,
which proves the theorem m]

Theorem 4 3 The shortest soiutron HPLAN can gener-
ate for £, under Hy u of nze Q(27)

Proofi Let L, be the length of the shortest plan
HPLAN can produce under ; We prove by induction
over n that for even n > 0,

L = 2, for n =2,
"7 2+42L,7 forn>2
T == s
: : o goal {O} result finitial
1

- - L

= qperator

I% e=- fo = =p= empty subplan
Fo-1
: '.1‘:3 Pl c:“al haa) »= gonl refinement

”"‘ca S
i ] ‘ﬂ:—l
| o

o -

T 5B @"‘

LR

Figure 2 Applymng I-IPLJLN o E

- -

r under H,;
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Baase step For n = 2 all operators have empty pre-
conditions, so the behaviour of HPLAN will correspond
to the two uppermost levels of Figure 3 The resulting
plan 18 (4, #1), which cleariy must be a ahortest plan
Hence, Ly =2

Induchion step Assume the claun holds for all even
k < n for some even n > 2 For n > 4, planning on
the four most abstract levels will proceed as shown m
Figure 3 Ana.logous to the previous proof we see that the
operators s, % and L b w1l1 be refined mmto the single-
operator plans {a,,_l) a.nd (s} _,} respectively st each
level 1 < n =4 Also by analog reasoning, the atoms
pn—1 and p,_3 can be 1gnored wrt the expansions of
the subplane (87”4, s7"%) and {rP23,r77¢) The first
of these 18 clearly the solution at level n — 4 for £, 5
and 1t, thus, {follows from the induction hypothesis that
it upa.nds into a ground subplan of length L,_5 Swmnce
the operators r,—g and r._; have the same preconditions
a8 J,_3 and s,_4 respectively, it 18 :mmediete that the
two subplans will have isomorphic refinements Hence,
also the second subplan expands into 8 ground subplan
of length Ln_g It foliows that L, = 2+ 2L,,_5 for even
n > 4, which proves the <laam and ends the mductmn

The &olutlon to the recursive equationis L, = 2%+1 _

80 Ln, € N(2%), which proves the theorem |:|
These results mean that if we happen to make a for
twtous choice of abstraction hierarchy, then HPLAN will
generate o linear-mze solution, uswng only & Linear-eize
searck space On the other hand, if we are lzss fortunate,
then HPLAN 18 forced to explore an exponential number

of nodes generating an exponentially longer solution

Obwvicusly, an unfortunate choice of abetraction hies-
archy can force HPLAN to take exponential time, pro-
ducing an exponentially suboptimal golution It 18 thus
mteresting to compare this to the performance of & non-
herarchical planner Such a plenner mey also have to
explore an exponential-size search space However, al-
lowwng the planner to search the whole, exponentlal-size
search space would et least guarantee generating a short-
est, ic lneer-size, solution  Furthermore, a standard
planner using & domain-independent standard heuristic
can guarantee finding & solutlon explonng only & linear
pummber of nodes in this case

Theorem 4 4 SNLP [McAllester and Rosenbhitt, 1991)

II‘.— gl

‘-J

f=

‘—J

- A

Figure 3 Applymg HPLAN to E, under H,
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solves T, n polynomnial time of equipped unth a heurs
e which prefers envsting actions to new ones for goal
estoblishment

5 Bumlding Abstraction Hierarchies

Knoblock [1994] has suggested defimng a preorder C in
the set of atoms and then use thie order to define an
abstraction hierarchy satisfy ~ g the follownng restrction

Bestriction 51 Define " on P at for ull p,p' € P
and everyo € O,

1 of p,p' € Gen{post(o)) ond p#p, then p T p' and
FCp

2 f peCen{pre{o}) ond p'E€Gen(post(o)) thenpCp
For gll atornape P',p' € P2, +fpC o, then1 <
The intention 1s thet if p C ¢/, theo p must not occur
higher up in the abstrection hierarchy than p' Restric-
tion 51 18 known [Knoblock, 1984} to be a sufficient,
though not necesaary, condition for an ebstraction h.ler-
archy to be ordered monotonc

Knoblock (1984] has further presented an algorthm,
ALPINE, for generating mexmally deep abstraction hi-
erarchies satisfying Restriction 5 1, thus genersting or-
dered abstraction bierarchies The basic ALPINE algo-
nthm appears in Figure 4! The actual ALPINE algo-
nthm [Knoblock, 1994] 1s somewhat more rdvanced and
also comes equpped with certain heuristics Further, 1t
handles & first-order language, while our version 15 1D-
tended only for a propositional language These differ-
ences do not affect the results to be proven 1n the fol-
lowing section, however—s topic which will be further
discussed later 1n this paper

ALPINE bulds a directed graph, {7, corresponding to
the preorder C and then collapses all strong components
in 7, resulting in a set ' of equivalence classes over P
The final line of the algorithm sorts the partially ordered
set C topologically, but does not specify any preference
for s particular topologcel sort Hence, ALPINE cannot
always distiaguish between good and bad abstraction hi-
erarchies, like X; and H;

Theorem 5 1 Grven the planning wstance I, ALPINE
arhitrorly penerates ony of ¢ number of posmble abstrac
tion Merarchies meluding Hy and Hy

Proof The first step of ALPINE will produce the graph
G m Figure b {corresponding to the preorder C) Since
there are no strong components of size > 1, step 2 will

"Note that, conirary to Knoblock, we durect the ares In
the standerd way

procedure ALPINE(P, D)
G+~ (P D)
for el pp' € P do
if pC p’ then insert arc {p,p) in &
Collapse the strong components in G and let
= {C, A) he the reduced graph
return any topological sorting of A

o b B A

Figure 4 The ALPINE algonthm



Prn—3 Pn-1 Pn-i Pn—3

£ t $

Pn‘—‘: P‘nxa Pn‘—: Pn:l
G ' T1 T2

i hir] h Do

£ t }

Po n Po n

Figure 5 The preorder on P mnduced by the fixst step of
the ALPINE algonthm and two of the possible topological
sortings of the reduced graph

produce an 1eomorphic graph, with each element being
a pingleton component, nducing a partial order on the
atoms [Nwmnally, step J may produce any topological sort-
1ng of this partial order, which clearly include the total
orders reflected by the graphs T end T} 1n Figure5 Ob-
viously, T} correspond to H; and T3 to Mz, whuch proves
the theorem ]

‘What, then, are the chances of improving ALPINE by
malang & more informed choice 1 hne §7 The imple-
mented version comes equpped with certain heunstica
(Knoblock, 1994, pp 272-273), of whuch only one (nwm
ber 3) apphes to the propositional case This heunstic
specifiea that adjacent levels not contawning any goal hit-
erals should be merged nto one smngle level Applying
this heur:stic would cause the atoms py  ,py—3 to end
up on the same level 3

A modified version of the algorithm, HIGHPOINT [Bac-
chus and Yang, 1994], uses s sampling method to deter-
mine for each pair of components ¢,,¢; € C that could
be ordered the expected probability that a plan at level
1t can be refined nt level 3 of ordering 3 ebove 3 These
probabilities are then used to further collapse some com-
ponenta and to gnde the topologcal sorting of the re-
mamng components However, for Z,, HIGHPOINT will
alweys find that the probability of refinement 18 1, 8o it
18 provided no extra information to gmde the topological
sorting Heoce, HIGHPOINT 18 bound to suffer from the
same problem as ALPINE, se, not bemng able to prefer
Hi to Ha

This is hardly surpnsing, however, since 1t 18 posslble
to show that no modification or heunstic cen improve the
topological sorting to always allow HPLAN to produce
shortest plans

Definition 8§ 2 The search problem ALPGENMIN ta de-
fined as follows

Instance: A planning wnstance I = (P, 0,7,6)
Problem When ezecuting the ALPINE sigonthm on1l,
find a topologscal sortsng sn the final step that results n
an abatraciton hiersrchy which allows HPLAN fo find o
shortest solubion

Theorem 5 3 ALPGENMIN 18 NP-hard

Knoblock [personal comm , 1865] argues that this ls the
right behaviour in this case However, our Theorsms 4 2 and
4 3 would hold also under heuristic 3 if setting § = P in Ty

Proof Proof by reduction from MINIMUM COVER
[Garey and Johnson, 1979, p 222}, which 18 NP-
complete Let X = {z;, ,z,} be a set, let C =
{C1, ,Ch.} be aset of subsets of X and let K be an 1n-
teger Wlog we restnct the problem to having covers
of even size only, by requunng that rn 1s even and that the
atoms z;, and z3,,; always appear together 1n members
of ' Define a planning instance I = (P, 3,2, {p}}
where P 18 partitioned into the three sets Ppop = {p},
Puc =X U{r}, and Ps. = {q0, ,9x+1} The set
of operators 18 sumlarly partitioned wnto three sets Oy,
Ouc and Oy, a8t the operators m Oy, change only
atoms 10 Pyop eic The st Opc contans one operator
o for ench member C, of €, baviog no precondition and
G,U{r} aaits effect The set Oy,, contains one operator
o, for eech atom g, € Py, having no preconditron and
{go,q.} as its effect Finally, Oy,, conasts of the two
operators oy 8nd o4,p, both having the effect p and
having the preconditions P and Py, respectively

When applying ALPINE to II, 1t wnll find the three
maxmal strong components Pyp, Py and Py, the
first being ordered above the two latter, which are mu-
tually unordered Hence, there mre two possible ab-
straction hierarchues Haye = (Piopy Pyuzy Parc) and
Mz = (Props Prc,Pre) Obvicusly, under luerarchy
‘M 1t 18 poseible to find & plan of lenght K* + 1, where
K" 1B the sze of the mumimum cover for X Hy,,, on
the other hand, will force the planner to generate & plan
of length K + 2, which 18 optimel iff K* > K (remem-
ber that K* must be even) Now, uf we could choose
o polynomial time the herarchy allowing us to find an
optumal plan, then we could also aolve MINDMUM COVER
in polynomial time Hence, ALPGENMIN 18 NP-hard O

Note that the theorem 18 not about whether HPLAN
will generate a shortest plan, but only sbout whether
the abetraction hierarchy prevents it from doing so or
not This s e disappointing result since one of the condi-
tions guarenteeing a linear-size search space for HPLAN 15
that HPLAN generates a shortest plan [Knoblock, 1891]
Knoblock mentions, however, that this condition can
be relexed, it 18 sufficient that HPLAN finds a plan of
length wvithin & constant factor longer than the short-
est one Unfortunately, ALPGENMIN cannct bs appram-
mated wnthin any constant factor, unless P=NP In fact,
an even stronger approximation limit can be proven

Theorem 5 4 ALPGENMIN cannot be ssympiotrcally

eppronvmated wathin a factor clog, J? Jorany c < %

unless NP C DTIME (n'o6'°8 ")

Proof sketch  Suppose the theorem were noi frue
Then it would follow from the construction in the proof
of Theorem 53 that we could approxmmate MINIMUM
CoVER within clog, | X| for some ¢ < } However, this
18 impossible unless NP C DTIME (n!°#1°8 ") [Bellare et
al., 1993), contradicting the assumption u|

We have previously required that the algonthm Pran
underlying HPLAN always generates optimal plans Un-
fortunately, generatlng an optimal plan at en abstract
level does not guarantee that we find an optimal plan at
the ground level This does not affect Theorems 5 3 and
5 4, however, since 1t 18 obvious from their proofs that
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neither theorem depends on the assumption that PLAN
generates an optimal plan

6 Discussion

It is well-known [Knoblock, 1091] that state abstraction
can speed up planning exponentially Under certam ideal
conditions, plans can be generated In linear tune in the
length of the solution for some planning problems, eg
the Towera-of-Hanoi problem However, the value of
this demonstration is questionable since the problem is
unrealistic in the sense that it has exponentially sized
MINIMAL solutions 3 One of these ideal conditions is the
downward refinement property (DRP), which guarantees
that no backtracking occurs between abstraction levels
We have added to previous analyses of state abstrac-
tion by showing that not only can state abstraction give
exponential speed-up in some cases, it can also cause ex-
ponential slow-down in other cases—even for hierarchies
satisfying the DRP More precisely, there exist problem
instances such that the ideal choice of abstraction hier-
archy leads to the generation of a linear-size plan, while
a more unfortunate choice forces the generation of an
exponential-size plan, taking exponentially longer time
to generate This may even happen m cases where a
standard non-hierarchical planner equipped with a sim-
ple, domain-independent heuristic produces a shortest,
te linear-size, solution m polynomial time Instances of
this kind seem no less realistic than, for instance, TOwers-
of-Hanoi

We have further shown that the ALPINE [Knoblock,
1994] and HIGHPOINT [Bacchus and Yang, 1994] algo-
rithms for generating abstraction hierarchies are not able
to distinguish between such good and bad hierarchies as
mentioned above Furthermore, we have also shown that
it is even impossible to design an algorithm based on the
same underlying principle as ALPINE and HIGHPOINT
that always produces hierarchies allowing a hierarchical
planner to generate plans of length within a constant
factor of the shortest length (actually, not even within a
logarithmic factor in the size of the instance) We have
choosen in this paper to concentrate on state abstraction
as defined and used by Knoblock [1994], te using a total-
order hierarchical planner We are currently investigat-
ing the consequences of using a partial-order hierarchical
planner like ABTWEAK [Yang and Tenenberg, 1990] in
stead Although ABT W E AK seems to handle correctly
the particular example we have used to demonstrate the
exponential slow-down effect, we do not believe there is
any fundamental difference in general In fact, the ap-
proximation result mentioned above should be valid also
for partial-order planners like ABTWEAK

The message of this paper is not that state abstrac-
tion and the use of algorithms like ALPINE and HIGH-
POINT should be abandoned, in many cases, these can
still be powerful tools for tackling the search complexity
in planning However, the results tell us that we must
be very careful, state abstraction is a powerful tool, but
a tool that may occasionally turn its power against us,

%See Baekstrom and Nebel [1993] or [Garey and Johnson,
1079, pp 11-12] for a discussion of this topic
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making things exponentially woree Even if good ab-
straction hierarchies exist m many domains, the task of
finding these is non-tnvial and seems to remain a highly
domain-dependent heuristic endeavour We believe that
more research is needed in order to understand when
state abstraction works and how to exploit the inher-
ent structure of problems for building good abstraction
hierarchies
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