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Abstract

The aim of the present paper is to reveal the
interrelation between general patterns of non-
monotonic reasoning and multiple belief revi-
sion. For this purpose we define a nonmono-
tonic inference frame in which individual infer-
ence rules have been proposed in the literature
but their combination as a system has not been
investigated. It is shown that such a system is
so strong that almost all the rules (including
the supracompactness) suggested for nonmono-
tonic inference relations in the literature hold in
it. We prove that this nonmonotonic inference
frame is strictly correspendent with multiple
belief revision operation. On the basis of this
result we analyse a specific paradigm of defult
theory which satisfies all the rules under con-
sideration and discuss limitations of methods
based on consequence relations for the study of
nonmonotonic reasoning.

1 Introduction

In recent years much work has been done on the relation-
ship between nonmonotonic reasoning and belief revision
[Makinson and Gardenfors 1991] [Brewka 1991] [Nebel
1992] [Cravoand Martins 1993] [Li 1993][Gardenfors and
Makinson 1994] [Boutilier 1994] [Gardenfors and Rott
1995] [Zhang 1996]. A very close correspondence be-
tween them has been found based on the following formal
translation:

AR O iff CER+A

The main idea is to identify revision of a belief set K
by a proposition A with nonmonotonic inference from
A under the guidance of the background knowledge A'.
With this connection, it has been shown in [Makinson
and Gardenfors 1991] [Gardenfors and Rott 1995] that
each postulate for the belief revision function * can be
translated into a plausible conditions on the nonmono-
tonic inference relation |~; conversely, almost all the
plausible conditions on the nonmonotonic inference re-
lation in the literature can also be translated into condi-
tions on * that are consequences of the postulates for the

revision function. In fact, it is not difficult to verify that
the revision function * satisfies all eight postulates in
[Gardenfors 1988] if and only if p~ satisfies the following
five inference rules:

1. If A+ B, then Al~B (Supraclassicality).
2. If A~ UL, then AFL (Consistency Preservation).
3. If ABi forall B; € I', '+ (', then ARC (Clo-

sure).
4. If AABI-C, then AB — ' (Conditionalization).

5. If Ap~nB and ApC, then A A Bi~C (Rational
Monotony).

This translation may be extended to the finite case, If
I is a finite set of propositions, written by {A;, -, 4.},
then:

Thd iff A€K*(AA-AA)

As mentioned in [Makinson 1993], however, this
extension muddies the ‘neat’ distinction between
Al AnbA and A A - A ApA. A possible im-
provement is to replace the revision operation with some
sort of multiple revision function. Suppose we have had
a multiple revision function @ such that A @ F repre-
sents the result of revising a belief set K with a set F
of propositions. The translation given below would be
more natural;

I hyA iff A€KQ®T

This extension is also essential because it enables a treat-
ment of inference relation in which premises are arbitrary
sets of propositions, including infinite sets.

The questions arises naturally now that:

* how the nonmonotonic inference rules on |~ are ex-
tended to the infinite level so that they are still plau-
sible for nonmonotonic reasoners;

* how an infinite revision framework is constructed so
that it is a natural generalization of the original one;

* whether the strict correspondence between belief
revision and nonmonotonic reasoning can be pre-
served in the setting of the extended frameworks.

Fortunately, the first question has been widely inves-
tigated in the literature [Makinson 1989] [Freund 1990]
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[Makinson 1993] [Herre 1994], only the presentation of
the extended rules is mostly in the Tarski-style's infer-
ence operation C.

As far as the generalization of belief revision are con-
cerned, [Zhang 1996] presented a kind of multiple revi-
sion framework, called general revision, which enables
a treatment of revisions of belief set by arbitrary set
of sentences. [Zhang et al. 1997] further developed the
framework by providing two presentation theorems and
suggesting an additional postulate to characterize the in-
finite properties of revision operations.

This paper is devoted to the last question. In the next
section, we combine some of the nonmonotonic inference
rules which have been suggested in the literature into a
system of nonmonotonic reasoning, called RN, and dis-
cuss its properties. Section 3 outlines the general belief
revision, and then, section 4 investigates the relationship
between the system RN and the general belief revision.
Section 5 presents a specific system of default reasoning
which satisfies all the inference rules of RN. The last
section discusses the inference power of RN and con-
cludes the paper.

2 Rational Nonmonotonic Frame

This section will define a nonmonotonic frame of infer-
ence through combining generalized rules of the five non-
monotonic relations of inference mentioned above into a
system, named RN. Although each of the generalized
rules has been suggested in the literature, their prop-
erties as a whole have not been investigated. We start
with the syntax of RN and then discuss its properties
and derived rules.

We shall restrict the language of the indented system
within any propositional language £ with the standard
logical connectives -, vV, A and —. Elements of £ are
called formulas which are denoted by A,B,C. Sets of
formulas are denoted by I', A, F and etc. There are
two relations of inference between premises on the left
and conclusions on the right: +, denoting the classical
propositional derivability, and |~, used for a nonmono-
tonic relation of inference. An associated Tarski-style’s
consequence operation may be defined by each of the re-
lations of inference in such manner:

Cn(T)={A: T+ A}

C(Iy={A . ThA).

It is presupposed that the inference relation + satisfies
all the inference rules of the classical propositional logic
so it 18 compact:

'+ A iff there exists a finite subset [y of ' such that
IoF A

A set T of formulas is said to be closed if I' = Cn(I').
T~(F)A indicates that Thv(F)A for all A € A (A may
be empty); I' o A indicates that I' A does not hold.

Definition 2.1 A sysiem RN = (£, ) is said to be a
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rational nenmonctonic frame if £ is o language of clas-
sical propositional logic ot least including propositional
connectives (—,A,V and —) and |~ is a relation from 2¢
te £, called the rotional nonmonolonic inference rela-
tion, if 1t satisfies:

(RN1) IfT+ A, then Ti~A (Supraclassicality).

(RN2) IfTh L, then T kL {Consistency Prescrva-
tion).

(RN3) IfThAt+ A, thenT|~A {Closure or Weak Tran-
sitivity).

(RN4) If T U ARA end A # ¢, then there are
Ay, A € A such that (A A - A AL) — A
(Infinite Conditionalization).

{(RNS) If T A~ ~(A1 A -AAp) forall Ay, - Ap €
A, thea ThA implies T U A~A (Infinste Rational
Monotonicily).

Furthermore, a rationel nonmenolonic frame ts said
o be fintle supracompact if 1f satisfies:

(RNG6) I'l~A4 iff there erists a finile subset Ty of T
such that o U YA for every finite subsei I of
Cn(T)(Finile Supracompaciness).

The name ‘rational’ follows from [Lehmann and Magi-
dor 1992] [Herre 1984] but the rational inference relation

here 15 stronger because the consistency preservation is
added.

For those who are familiar with Tarski-style's non-
monotonic consequence operations, the following equiv-
alent presentation of the conditions (RN1) — (RN6)
would be preferential,

1. Cn(T") € C(T)(Supraclassicality).
2. If Cn(T} # L, then C(I') # L{Consistency Preser-

vation).
3. Cn{C(T)) C C(I')}{Closure}.

4. C('u A) € Cn(T U C(A))(Infinite Conditionaliza-
tion).

5. IF AUC(T) # L, then C(T) € C(I' U A)(Rational
Monotony).

6. [j~A iff there exists a finite subset 'y of I such that
I'y U Ap-A for every finite subset A of Cn{T)}{ Finite
Supracompactness).

It should be noted that none of the above conditions is
the authors’ invention. They all have been suggested for
nonmonotonic reasonings in the literature. In fact, the
conditions 1-4 were presented in [Makinson 1993} and
the last two conditions are found in [Herre 1994]}

In [Berre 1994] the finite wupracompactness refers to
that I' jvA if there exists a finite subset [y of T such that
To U & pvA for every finite subset A of Cn(T'). However the
complete Ap-compactness is just the meaning of the finite
supracompatness in this paper.



In order to reveal the power of RN, we shall show that
most of the inference rules for nonmonotonic reasoning
suggested in the literature are derived rules of RN.

Lemma 2.2 The following rules are dertved rules of
RN:

(1). T~T'(Reflezivity)

(2). If T, AjvB, =B, then T~A (Reductio ad Absur-
dum).

(3). IfT, Al~B, then TA — B{Deduction Theorem).
(4). If T'~A — B and T''~A, then T'~B (Modus Po-

nens).
Proof: (1) follows (RN1). (2) follows (RN2)
and (RN3). {3) is the special case of (RN4) where

A = {A}. For (4), since I' |~A4 — B and I" |~A, s0
[ {A—B A} B By (RN3) weget ~B. O

The above theoremn shows that |~ satisfies all tha for-
mal inference rules of classical propositional logic except
for the following deductive transitivity:

If TARA(A # ), then Tj~A.

Lemma 2.3 The following rules ere derived rules of
RN:

(1). If Tha and T U AlA, then TivA{Cumulative

Transitiviiy}

(2). If T~A and T}~A, then T U ApA{Cautious
Monotony)

(3). Jf TA and ApT, then Tp~A if and only if
ApRA(Reciprocity)

(4). IfT'HA, then ThA of and only if A|~A.(Left Log-
ical Equivalence)

(5). If AH B, then I'~A of and only if I'B.(Right
Logical Eguivalrnce}

Prouf: For (1), suppose that I j~A{A # ¢)and T'U
A kA. Then, by (RN4), there exists Ay,---, A, € &
such that I' jm{ A1 A AAL) — A Since Ay, -+, A€ A
inplies A F A; A .-~ A Ay, hence we obtain T A by
{RN3) and Theorem 2.2 (4).

For (2), suppose that T' |~A and I ~A. If there are
At Ap € A such that I' p={4; A A 4,), since
I' A implies F [~4; A - A A, by (RN3), then we
have I |~ L again by (RNS) It follows from (RN2)
that T +L. By the compactness of the classical propo-
sitional logic, FUA FL, so TUA + A. By the Supra-
classicality, we have TUA A, If T f~ (A1 A+ 4y)
for any A,,- -, 4n € A, then by (RNS) and I' |~ A, we
have TU A |~A as desired.

(3) follows from (1) and (2). {4) follows from (RNl)
and (3). (5) follows from (RN3).

As shown by [Makinson 1993}, the Infinite Condition-
alization along with other rules implies the following Dis-
tributivity.

Lemma 2.4 If T U A4, T U AxpeAa,
{A1V g4

Specially, if Ay~A and Ayb~A, then A\ AzA (Dis-
tribution).

where Ay \f Ay = {AVB: A€ A and A3).

It is well-known that compactness is a very important
property of the classical logic which provides a bridge be-
tween inferences of finite and infinite premises: ' = A iff
I'y + A for some finite subset 'y of I'. But such equiv-
alence implies monotony, so this kind of compactness
must fail in any nonmonotonic logic. This does not mean
that there are no properties of compactness for the non-
monotonic logic. In fact there are a number of alterna-
Live versions of compactness for nonmonotonic reasoning
proposed([Freund 1990] [Makinson 1993] {Herre 1994]).

then T U

[Freund 1990] suggested the following Supracompact-
ness for nonmonotonic inference:

I'|~A iff there exists a finite subset [y of I' such that for
any set of formulas A, ')A implies [y U Ap~A.

The following theorem shows that such supracompact-
ness follows from the finite supracompactness. This was
also noted by [Freund 1990] and [Makinson 1993] with a
litile different setting.

Theorem 2.5 Any finite supracompact rational infer-
ence relation satisfies the Supracompaciness.

Proof: 1t is enough to show that if [j~A then there
exists a finite subset Ty of I' such that I'~A mmplies
T'ouU Al~A. For this, let I'lA. By Finite Supracom-
pactness, there exists a finite subset 'y of I" such that
T UT|~A for every finite subset I of Cr(T’). Suppose
that T'A. Since Cn{(Fo UA) YT} € Cn(T), the finite
supracompactness implies that 'y U I} A for every fi-
nite subset I of Cnr((T'o U A)\/T"). Again by the finite
supracompactness, we have Cn((ToUA) V')A (noting
that Ty € Cn{(ToUA) Y T)). It follows by the left logical
equivalence that (I'o U A)\/T'vA. On the other hand,
by I'l~A and the supraclassicality as well as Lemma 2.4,
it is not difficult to verify that (o UA)\/ T|~A. Thus by
the cautious monotony we have A U ((IFp U A) / [')i~A.
Noting that A U ((To UA)VT) H T UA, we conclude
from the left logical equivalence that I'y U Al~A as de-
sired. a

Op the basis of Makinson's werk on general patterns
in nonmonotonic reasoning, it is not difficult to see that
any rational nonmonotonic relation of inference also sat-
isfies conditions such as Absorption, Cut, Cumulativ-
ity, Loop, Negation Rationality(see [Makinson 1989] and
[Makinson 1993]).

3 Multiple Belief Revision

This section recalls definitions and results on the multi-
ple belief revision. [Zhang 1995)[Zhang 1996) introduced
and further developed by [Zhang et al. 1997) a frame-
work for multiple belief changes through extending the
AGM theory([Gardenfors 1988]). The extended revision
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function was called the general revision. Formally, a
function K ¢ % : 2¢ — 2% with respect to a given belief
set k' is said to be a general revision function over K if
it satisfies the following nine postulates:

(hol) Ko F=Cn(KQF).

(K&2) FCR®F.

(Ko3) KoFCK+F,

(A 4) If K UF is consistent, then K+ FC K ® F.
{h ¢18) K w0 F is inconsistent ifl F is inconsistent.
(Re16) HCu(F)=Cn(F,),then KRS Fy =K @ Fy.
(Ka?) Ro(RRUFRCRKeF + F.

{K ¢28) If FoU (K ® Fy) is consistent, then (K @ F1)+
FBRCHhe(Ru ).

(RwlP) KoF= |J N KoF
FeCr F‘EF"
Flecr

where Cp = {F : F € Cn(F) and F is finite }.

The postulates {K © 1)-(K & 8) were presented in
[Zhang 1996] and the last one, called the Limit Postu-
late, was introduced by [Zhang et al. 1997]. The repre-
sentation theorem for all nine postulates was given in
[Zhang et al. 1897] based on the following notions:

For any set ' of formulas, let P be a partition 3 of I’
and < a total-ordering(well-ordering) relation on P. For
any p € P, if A € p, p is called the renk of A, denoted
by b A).

The triple & = (I', P, <} is called a nice-ordered par-
tition(NOQP) (perfect-ordered partition(POP)) of T' if it
satisfies the following Legical Constraint:

If Ay An b B, then sup{b(A1), --,b(An))
b(B).

Now let A be a closed set of formulas and £ =
(K, P, <) a nice-ordered partition . A function ® : 2 —
2% ig said to be the revision funclion generaled by T if
forany F C L,

i). if FUK is consistent, then K @ F = K + F; oth-
erwise,

i), Be NwF ifandonlyif B &€ K 4+ F and there
exists A € K such that F+ -4 and

YO € K(AF CAF F ~C — (b(CVB) < b{CWV + CVB))

The original presentation of the representation
theorem is based on the coniraction function(see
[Zhang et al 1897]). The following theorem is obtained
by using the intertelation of revision and contraction.

v

Theorem 3.1 For any closed set K of formulas, o re-
vision funclion @ satisfies (K ® 1) — (K ® 8) as well as
(K @ LP) if end only if there ezists a nice-ordered parti-
tion T = (K, P, <) suck that ® is the revision function
generated by T,

2In the present paper, K® is also written as ®x or ® if
without confusion.

* A partition of a set T is a disjoint family P of subsets of
T wuch that T = J{p:p € P}.
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4 Representation Theorem

In order to reveal the interrelation between RN and the
multiple belief revision, we shall take revision operations
as the semantic of RN rather than follow the traditional
approach of Shoham's preferential models,

Theorem 4.1 (Soundness)let £ be a language of
proposttional logic and K a consistent closed set tn L.
Let @ be o general revision funclion over K. Define o
relation b C 2¢ x L as follows: for any set I' C £ and
any formula A€ L,

ThAifA€ KoT

then (L, ) is a finite suprocompact rational non-
monotonic frame.

Proof: We need to show p~ satisfies the rules (RN1)-
(RN6). For (RN1), assume that I' jvA. Since T' C
K®Fand R ®T is closed, thus A € A ® I, that is,
I ~A.

For (RN2), assume that T |~ L, 1e., Le A®I', which
means that X @ I is inconsistent. It follows by (A ¢ 5)
that T is inconsistent. Thus 'L,

For (RN3), assume that T A + A which means
that AC A ® T and A € C'n(A). By (A ® 1}, we have
Ae K@l e, T A

For (RN4}, assume that [ U A |~ A, that is, A €
K@TUA) By (Ko7, ANe(TUA)C AT+ A, 80
wehave A € A &I+ A. There exist then A;,. .-, A, €
A such that (A, A - ANA,) — A€ K@ T, that is
Tie(A A AAL)— A

For (RNS), if forany Ay A A4, E AT pem{A A
A Ap) ot (A AAEROT, then AU(K T
is consistent. Therefore, when ' jvA. or A€ A & T, we
conclude by (K @B)that 4 € A®(TUA), so TUA (4
as desired.

For the finite supracompactness, suppose that ¢ sat-
isfies (K ® LP), that 15, A € K @' iff there exists a
finite subset I’y of Cn(T') such that for any finite sub-
set T3 C Cn{T'), I', €T Ty implies 4 ¢ W T, It
is easy to see that we only need to show that I' |~4
implies that there exists a finite subset I'y of I such
that To U A A for every finite subset A of CU'n('). To
this end, assume that I' j~4, that s A € K @ I". By
(& ® LP), there exists a finite subset I'; of Cn(1') such
that for any finite subset I'; of Cn(T), if ['; C '3, then
A€ K®Tl3. Let Ty be a finite subset of T such that
I'y € Cn(To). For any finite subset A of Cn(T), since
ToUT; U A is finite and also a subset of Cn(T'), we
have A € K @ ([ U, UA). It follows from (K & 6)
that A € K ® Cn(TqUT; UA). On the other hand,
I') € Cn(Tp) implies Cn(l'p U A} = Cr([y U U A).
Thus we obtain that A € K @Cn([yUA). It follows from
(K @6) again that A € K ®(ToUA), that is ToUA A
4

Theorem 4.2 (Completeness) Let (L,~) be a finile
supracompact rationel nenmonotonic frame. Lel K =
{A € L : ¢vA}. Define a function ®x : 25 — 2¢ as
follows: forany FC L,

@x{F)={A € L: FpA}



Then ¢ 15 o general belief revision function over K.

Proof: We first prove that K is closed and consis-
tent. The consistency of K follows easily from (RN2).
To show that & is closed, let us assume that K F A,
There are then 4y, .-, A€ K suchthat Ay, -, A, A.
Hence ¢p~Ay, -+, ¢}~An, that is ¢ {A;,---, A,}. By
{RN3), we see ¢f~A and then A € K,

We now turn to show that ®j satisfies all nine postu-
lates for the general belief revision.

Proof of (A ¢ 1) 1s similar to that of closeness of K.
(K 22) follows immediately from the Reflexivity. (K @3)
and (/4 t04) are special cases of (K ®7) and (K ®8), re-
apectively. { A ¢ b) follows directly from (RN2}. (K ®6)
follows from the Reciprocity.

For {K ¢37), assume that A € @ (F1 U Fu), or AL U
FapvA. Then by {RN4), there are Ay, .-, A,€ F3 such
that Fype(A;A---AAR)— A, that s, (A; A AAL) —
A€ g (Fy). Consequently we have A € @k (F)) 4 Fa.
Therefore, e (Fy U Fy) C @ (F)} + F2.

For (K ¢ 8), assume that F3 U ©x{F)) is consistent,
which means that for any Ay, Ag€ F (A1 A A
An)g ©r(F), or Fip=(A; A- - AA;). Now sup-
pose A € wox(F1) + Fo. then there exist By, -, B, €
Fy such that (By A - A Bn)— A € Qg{F), or
Fipe(B1 A - By) — A, It follows from (RNS) that
Fyu F_gl‘\-(fh Ao -ABy)— A Since B),.-- B, € I,
implies FyU Fyl~By A+ A By, we conclude, by Theorem
2.2(4), that FUF;~A, that is, A € @ (F1UF3). There-
fore we have proven that ®g(FiY+ Fy C @ (FL U Fy)
as desired.

The proof of the limit postulate is similar to that of
the soundpess. (]

5 A Paradigm of Default Reasoning

Following the general considerations of the previous sec-
tions, we now look at a specific approach to nonmono-
tonic reasoning. We aim to seek a 'natural' system of
nonmonotonic logic which satisfies all the inference rules
for the rational nonmonotonic frame. On the basis of
Makinson's 'satisfaction table' in [Makinson 1993], only
Poole's system without constraints based on finite set
of defaults in the systems of nonmonotonic logic consid-
ered in that paper satisfies all the inference rules of RN
except the rational monotony. There is a disadvantage
of Poole's approach, however, that it does not allow to
represent priorities between defaults, which causes that
the inference relations generated by Poole's system hap-
pen to collapse into the classical one when the default
set is closed. [Nebel 1992] developed a system of de-
fault logic, called ranked default theory (RDT), which
efficiently overcame this shortage. We here reformulate
Nebel's system in a more general fashion.

Let (F, D) be a default theory, where F and D are
both sets of propositions, interpreted as 'facts' and 'de-
faults', respectively. (F, D) is said to be a perfect-
ordered partitioned default theory (POP DT) w.r.t. E

if & = (D,P,<) is a perfect-ordered partition(see sec-
tion 3). The order-type n of P is called the type of
(F, D), dencted by np. The partition P is denoted as
{Do < np}.

A set E of propositions is a syntar-based eriension

of (F,.DYIf E = Cn(( J Ras)U F) such that for all
a<n

a < 1p,
Roe € D, and R, is maximal (with respect to set-
inclusion) among the subsets of D, such that ( |J R,)U
Flw
F is consistent. -
A proposition A is strongly provabie in (F, D}, denoted
by Fl~p 4, iff for every extension E of (F,D), A€ E.

It is casy to see that Poole’ system without constraints
iz a limiting case of POP DT when P = {D} and Nebel’
RDT is the special cage when np is finite. Unfortunately,
as pointed out by [Nebel 1992], the inference relation |,
generated by syntax-based extensions still fails to satisfy
the rational monotony. [Zhang 1996] modified the defi-
nition of extensions into the following form:

a set F is a syntar-imndependent cxfension of (F, D) if
E=Cn(( |J Ra)U F)such that for all o < #p,

a<np
Ro € Cn( |J D) and R, is maximal among the sub-
v€e
sets of Cn( | Dy} such that ( {) Ry)UF is consistent.
TLe Y<a

This approach, though slightly complicated, can yet
be regarded as 'natural’. The only difference between
two types of extensions is that the former does not sat-
isfies the principle of irrelevance of syntax but the latter
does,

On the basis of the notion of syntax-independent ex-
tensions, we have the following result:

Theorem 5.1 Let D be a sel of formulas tn a language
L. For any perfect-ordered partition £ of D, (L, b~p) is
a finite supracompact raltonal nonmonotonic frame.

The limited space does not afford a direct proof of the
theorem. An indirect one may be done by using the re-
sult in (Zhang 1996] that F |~,A iff A€ Cn(D)® F.

6 Discussions and Conclusions

We have established a very close connection between the
general patterns of nonmonotonic reasoning and the mul-
tiple belief revision. This enables us to take the strategy
to use methods from belief revision, set-theoretical, to
contribute to a better understanding of nonmonotonic
reasoning. We have seen that RN is such a strong sys-
tem that almost all the rules suggested for nonmonotonic
inference in the literature are the derived rules of RN.
One may think that much more consequences would be
derived in RN than in the classical logic from the same
premises. This is clearly false when none of the pieces of
background knowledge is available. Precisely specking,
we have
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Proposition 6.1 Let (L, |~) be a rational nonmono-
tonic inference frame. If K = {B : ¢|~B} = Cn(4¢),
then

ThA iff THA

Furthermore, even though we equip with the whole
background knowledge, the upshot is still less optimistic.

Proposition 6.2 For any propositional lenguage £,
there is a rationel nonmonolonic frame (L, ) such that
Jorany ' C L and any formula A€ L,

i). sf KUT is consistent, then A ff KUT F A;

it). f K UT is inconsistent, then ThA iff T - A.

where K = {B : ¢|~B}.

This means that we can not always count on entail-
ing more information from nonmonotonic inference rules
alone than from classical ones. For example, even if
we are told that ¢ pp — ¢ and ¢ |~—p, we still can
not conduct the inference p ~g. There are two ways
to surmount this obstacle. One is to construct some
sort of ordering for the background knowledge such as
nice-{perfect-Jordered partition, epistemic entrenchment
or expeciation ordering. The other is to transform the
background knewledge into a conditional knowledge base
as [Kraus et al. 1990] and [Lehmann and Magidor 1992}
have already done. After all, the less we know, the less
we can do.
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