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Abstract

We characterise the set of subalgebras of Allen's
algebra which have a tractable satisfiability
problem, and in addition contain certain basic
relations. The conclusion is that no tractable
subalgebra that is not known in the literature
can contain more than the three basic relations
(=), (b) and (b™"), where b € {d,0,5,f}. This
means that concerning algebras for specifying
complete knowledge about temporal informa-
tion, there is no hope of finding yet unknown
classes with much expressivity. Furthermore,
we show that there are exactly two maximal
tractable algebras which contain the relation
{=< »). Both of these algebras can express the
notion of sequentially; thus we have a com-
plete characterisation of tractable inference us-
ing that notion.

1 Introduction

This paper improves on known results about algorithms
for the problem of reasoning about temporal constraints.
Such reasoning is an important task in many areas of
Al and elsewehere, such as planning [Allen, 1991], nat-
ural language processing [Song and Cohen, 1988], time
serialization in archeology [Golumbic and Shamir, 1993]
and more, and there are several frameworks for formalis-
ing such problems, according to different needs. Among
the most frequently used ones are the point algebra [van
Beek and Cohen, 1990], used for expressing qualitative
relations between time points, the point-interval alge-
bra [Vilain, 1982] for expressing qualitative relations be-
tween time points and time intervals, and the famous
interval algebra of Allen [1983] for expressing qualitative
relations between time intervals. There are also com-
binations of these and extensions to handle also metric
time, such as Meiri's framework [Meiri, 1991], and the
works of Kautz and Ladkin [1991], Gerevini et ai [1993],
Dechter et ai [1991], Jonsson and Backstrom [1996] and
Drakengren and Jonsson [1997]. However, it was early
proved that the reasoning problem for these formalisms
is very hard; e.g. reasoning in Allen's interval algebra is
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NP-complete [Vilain and Kautz, 1986], and NP-hardness
carries over to more expressive formalisms.

These computational problems have motivated the
search for various tractable fragments of the tempo-
ral formalisms, where reasoning can be guaranteed to
be reasonably efficient. In particular, several sub-
classes of Allen's algebra have been reported tractable
(we assume P # NP) [van Beek and Cohen, 1990;
Golumbic and Shamir, 1993; Nebel and Biirckert, 1995;
Drakengren and Jonsson, 1996; 1997]. However, in view
of the large number of possible subclasses of Allen's al-
gebra (the algebra contains 8192 relations, leading to
28192 oy 102 subclasses), such results are in danger of
appearing ad hoc. As a first reaction to this, research
has recently focused on identifying maximal tractable
subclasses; i.e. classes which cannot be extended with-
out losing tractability. This direction is clearly more
systematic, since any tractable subclass is included in a
maximal tractable one. The first such algebra was identi-
fied by Nebel and Biirckert [1995], soon to be followed by
Drakengren and Jonsson [1996, 1997], resulting in eigh-
teen known maximal algebras, subsuming all algebras
previously known to be tractable. Still, however, this is
a very small number compared to the total number of
possible subclasses.

Due to this apparent lack of systematicity, techniques
have recently been developed allowing full classifications
of tractability, in particular for the point-interval algebra
[Jonsson et a/., 1996], but also for the RCC-5 algebra for
spatial reasoning [Jonsson and Drakengren, 1997]. A full
classification of tractability for an algebra means that we
identify the complete set of tractable subclasses in the
algebra. Despite the success for the point-interval alge-
bra and the RCC-5 algebra, the corresponding task for
Allen's algebra poses a problem more difficult by several
orders of magnitude: the number of subclasses in these
algebras is only 2% ¢ 4.3 10°. In principle, all these
can be enumerated on a computer, but this is certainly
not the case with the Allen algebra.

In this context, this paper presents a significant step
towards a full classification of tractability in Allen's al-
gebra. We show that any algebra that is yet to be found
can contain at most three basic relations: {=), (b) and
(b~), for b € {d,0,s,f}. This means that in order to



[ Basic relation Example | Endpoints ]
z before g ~ xxx et <y
v alter z - y¥y
T meets y m XXXX T =y
y met-by = m~ yyYY
z overlaps g o XXXX =<y <at,
gy overl-by o yyyy | et <yt
z during ¢ d % 4 Ty,
p includes z d” | yyyyyyy | 2t <yt
z staris ¥ 5 XXX =y,
ysiarted byz S yyyyyyy | 2t <yt
z finishes y i x|zt =yt
v finished by z T~ | yyyyyyy | 2° >4~
x equals y = xxxx =y
wyy lzt=y*

Table 1: The thirteen basic relations.

specify complete temporal knowledge, we cannot hope to
find more expressive algebras than those already known.
Furthermore, we show that there are exactly two maxi-
mal tractable algebras which can express the important
notion of sequentiallty [Sandewall, 1994].

Finally, note that the main results of this paper are
proved using exhaustive search by computers. Naturally,
such proofs cannot be reproduced in a paper, but we
encourage researchers in the field to repeat our proofs.
All software used in the paper can be obtained from the
authors.

The structure of the paper follows. First we present
Allen's algebra in Section 2, after which the classification
results follow. A discussion concludes the paper. The
more complicated proofs are collected in an appendix.

2 Allen's Algebra

Allen's interval algebra [Allen, 1983] is based on the no-
tion of relations between pairs of intervals. An inter-
val x is represented as a tuple (:',1‘+) of real numbers
with #= « g%, denoting the left and right endpoints of
the interval, respectively, and relations between intervals
are composed as disjunctions of basic interval relations,
which are those in Table 1 (denoted B). Such disjunc-
tions are represented as sets of basic relations, but using
a notation such that e.g. the disjunction of the basic in-
tervals «, mand §~ is written (< m{™). Thus, we have
that (< f)C (.< m f"'), Sometimes, the disjunction
of all basic relations is written T, and the empty relation
is written |} (this also used for relations between interval
endpoints, denoting "always satisfiable" and "unsatisfi-
able", respectively). The algebra is provided with the
operations of converse, intersection and composition on
intervals, but we shall need only the converse operation.
The converse operation takes an interval relation i to its
converse §=~  obtained by inverting each basic relation in
i, i.e., exchanging x and y in the endpoint relations of
Table 1.

By the fact that there are thirteen basic relations, we

get 213 — 8192 possible relations between intervals in the
full algebra. We denote the set of all interval relations
by A, Subclasses of the full algebra are obtained by
considering subsets of A. There are 98192 o 102496 g\ cpy
subclasses.

Although there are several computational problems as-
sociated with Allen's interval algebra, this paper focuses
on the problem of satisfiability of a set of interval vari-
ables with relations between them, i.e. deciding whether
there exists an assignment of intervals on the real line
for the interval variables, such that all of the relations
between the intervals are satisfied. We define this as
follows.

Definition 2.1 {A-SAT(Z)) Let I be aset of interval
relations. An instance of A-SAT(Z) is a labelled directed
graph S = {V, E}, where the nodes in V are interval
variables and E is a subset of V x I x V. A labelled
edge {u,r,v) € E means that u and v are related llay r.

A function M taking an interval variable v to iis in-
terval representation M(v) = {#~,z%) with z= < z%,
z~,2% € R, is said to be an interpretation of S.

An instance {V, E) is said to be satisfiable iff there ex-
ists an interpretation M such that for each {u,7,v} € E,
M(u)rM(v) holds, Le. the endpoint relations required
by r (see Table 1) are satisfied by the assignments of u
and v. Then M is said to be a model of (V, E).

We refer to the size of an instance (V, E) a8 [V} 4+ |Ei.
a

For A, we have the following result.

Proposition 2.2 4-SAT(A} is NP-complete.
Proof: See Vilain and Kautz {1986]. D

Next, we introduce Nebel and Biirckert’s [1995] closure
operation, here denoted C4(-), which transforms a given
subclass of A to one that is polynomially equivalent to
the original subclass wrt. satisfiability.

Definition 2.3 (Closure) Let $ C A. Then we de-
note by Ca(S) the A-closure of S, defined as the least
subalgebra containing § and which is closed under con-
verse, intersection and composition, O

Closures can be computed using Nebel and Biirckert’s
software [1993]. _ _ )

The key result for extrapolating complexity results is
the following.

Proposition 2.4 Let S C A.  Then A-SAT(S) is
polynomial iff A-SAT(CA(S)) is, and A-SAT(S) is NP-
complete iff A-SAT(C4(5)) is.

Proof: See Nebel and Biirckert {1995). O

A-SAT is sometimes defined such that for each pair of
objects (e.g. time intervals), we have exactly one rela-
tion (cf. Golumbic and Shamir [1993]). In this way, the
reduction needed for Proposition 2.4 would fail, since
intervals which are added are not always related.

3 Classification of A

This section contains the parts of the classification.
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3.1 Intractable Subclasses

In order to provide the classification, we need to find
more NP-complete subclasses of A than those previously
known. Our main tools for proving intractability are the
following NP-complete subclasses of A.

Definition 3.1 (Subclasses N, relation R, sets A,
Aq and Ayxp) First define the auxiliary set A by A =
{(= 4= o m f~),(< d o ms)}. Define the following
sets.

Ni=Au{(dd— o~ s~ f)},
M= Au{(d~ oo™ s~ )},
M ={(< ), (007},
Ne={(x»), (00 mmT)},
Ns={{mm~), (x> ss~ ff)]}.
Define the relations R and R by R = (d d~ 0 0~) and

R={= mm~ss™ {f~), and set Axp to be the union
of the following sets:

{N1, N3, N, Ny, N5},

Ao = {{(< »),rHRCr C RUR'},

A= {{(x ), rTHRU(R)Cr S RU(<JUR'}.
o

Proposition 3.2 A-SAT(S) is NP-complete for all § €
Anp.

Proof: For N, and N3, see Nebel and Biirckert [1995)].
The remaining cases are proved in Theorem A.9 (Ao U
Ay) and Theorem A.12 (N3, Ay and M) in the appendix.
a

3.2 Tractable Algebras

Next we define what are the polynomial algebras in-
volved in the classification.

Definition 3.3 (bas(A), polynominl algebras) Let
bas(A) for A C A be the set of basic relations contained
in A. Also let H denote the ORD-Horn algebra by Nebel
and Biirckert [1995] and 8, Sy, So, £«, &4 and &
the maximal tractable algebras of Drakengren and Jons-
son {1997], where S, denotes the unique starting point ai-
gebra containing the basic relation (r), and £, the unique
ending poinl algebra containing the basic relation (r).
0o

The following facts about the algebras shall be needed
in the classification.

Proposition 3.4 H, &, and £, are maximal tractable
subclasses of A4, i.e. it is impossible to extend them
without losing tractability. Furthermore, any tractable
subclass A C A with B C A satiglies A C M. Also,
bas(H) = B, das(S;) = {=,r,r~,s,5~}, and bas(£,) =
{=,r,r ,f~} forall r€ {<,d,0}.

Proof: The proofe for H can be found in [Nebel and
Biirckert, 1995), and those for S and &, in [Drakengren
and Jonsson, 1997]. O
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In order to define the subject of our classification, define
T to be the set of maximal tractable subalgebras of A
not included in X, & or &,, for any r € {<,d,0}. Note
that it is sufficient to restrict the attention to maximal
tractable algebras, since any tractable subset can be ex-
tended to such an algebra. Also note that some of the
algebras known from the literature (those of Drakengren
and Jonsson [1996, 1997]) are included in T, but this
will not affect the classification, since these all contain
three basic relations or less.

3.3 The Classification

We start by stating the main theorem of the paper, from
which the classification results will follow. Since this
kind of result has already been needed at least twice in
the literature [Jonsson et a/., 1996; Jonsson and Drak-
engren, 1997], we take the opportunity to abstract it in
order to make future classification results easier to state.

Theorem 3.5 Let R be a set equipped with an opera-
tion Cr(R) on sets £ € R, and for each set RC R a
problem fc-SAT(R), satisfying the following:

o If R-SAT(Czr(H)) is NP-complete, then R-SAT(R)
is NP-complete

e If R-SAT(R) is NP-complete, then R-SAT(S) is
NP-complete for all § D R

¢ If R-SAT(R) is polynomial, then R-SAT(S) is poly-
nomial for all 5 C R.

Let Rp,Ryp C 2% and B C R, such that R-SAT(X) is
polynomial for each X € Rp, each X € Rp satisfies B C
X, and R-SAT(D) is NP-complete for each D € Ryp.
Then if each set T' C R with |T| £ [Rp| aatisfies
either that T i3 a subset of some set in Rp, or that
D C Cr(TU B) for some D € Ryp, then for any § with
B C 8, R-5AT(S) is polynomial iff § is a subset of some
set in Rp. Otherwise R-SAT(S) is NP-complete.
Proof:
<) For each R € Rp, R-SAT(R) is polynomial by defi-
nition, and so are subsets of R.
=) Consider a set § C A with B C &, § not being a
subset of any set in Rp. For each set C in R p, choose an
elemnent z such that £ € § and z ¢ C. This can always
be done since § € C. Let X be the set of these elements.
By the construction of X, |X| < |[Rp|. But then, by the
condition of the theorem, either X is s subset of some
set in Rp, or D C Cr{X U B} for some D € Ryp. But
the former case cannot hold by the construction of X;
thus R-SAT(Cr (X U B)) is NP-complete. 1t follows that
R-SAT(X U B) is8 NP-complete, and since X UB C §,
that R-SAT(S) is NP-complete. The result follows, O

We now proceed gradually with the classification by ex-
cluding certain combinations of basic relations. Note
that the three conditions making Theorem 3.5 applica-
ble always hold for Allen's algebra. Also note that any
algebra has to contain an odd number of basic relations,
since algebras are closed under the converse operation,
and {=) is always included.



The following result is similar to one of Drakengren
and Jonsson [1997].

Proposition 3.8 Let AC A If A C A and (m) € 4,
then either A C M or A-SAT(A) is NP-complete.
Proof: It can easily be verified that B C C4({(m)})
{use the aclose utility by Nebel and Biirckert i1993 X
and the result follows by Proposition 3.4. D

Thus, A € 7 = bas(A) < 11.
Now for the first application of the quite abstract The-
orem 3.5.

Proposition 3.7 Let A C A, If (<) € bas(A), then
either A C K, A C 8, A C £, or 4-5AT(A) is NP-
complete.

Proof: First choose R = A, Rp = {M, 8,6}, Rap =
Axnp and B = {(<)}. Then enumerate each set T C A
with |T| € [Rp| = 3 and test if for each T, either T € X,
TC8(TGCE,or DCCATUB) forsome D € Ayp.

There are 3> 81i92 ) 72 9.2-10' such subsets. The

i=0
test succeeds for all T, and the result follows. O

The subsets were enumerated on several Sun SPARC 10
stations in parallel, taking approximately 40 CPU weeks.

By this result, A € 7 = bas(A) < 9. The ba-
sic relations remaining to check are those in Z =
{d,d=,0,07 5,57 ,1,f=}. If we can show that for any
ri,rz € Z with ry # ro and m™ # r,, if for some
A€ T, {r,r) C bas{A), then A C H, A C 5.
or A € £, for some r, then we could conclude that
A€ T = bas(A) < 3, which is the goal of the paper.
The following results will prove this.

Proposition 3.8 Let A C A. For W = {(d}, (o)} or
W = {(s),(F)}, if W C bas{A), then either 4 C A, or
A-SAT(A) is NP-complete.

Proof: First choose R = A, Rp = {H}, Rnp = Anp
and B = W. Then enumerate each set T C 4 with
|T| < |[Rp| = 1 and test if for each T, either T C H
or D C Ca(T'U B) for some D € Ayp. There are 8193
such subsets, regardless of W. The test succeeds for all
T, and the result follows from Theorem 3.5. O

Proposition 3.9 Let A C A. If {(s), (r)} C bas(4) for
r € {d,o}, then either A C N, A C &,, or A-SAT(A) is
NP-complete.

Proof: First choose R = A, Rp = {H,S,}, Rnp =
Anp and B = {(s), (r)}. Then enumerate each set T G
A with |T'| € {Rp| = 2 and test if for each T, either
TCH,TCS. or DCCsTUB) forsome D € Anp.
There are &2 3.4 107 such subsets. The test succeeds for
all T, and the result follows from Theorem 3.5. O

The cases with {(f}, (d)} and {(f), (o)} follow by symme-
try from Proposition 3.9, using £, instead of S,. We can
thus conclude that A € T => bas{A) < 3, and that alge-
bras in 7 can only contain basic relations in {=,d, 0,s,f }
which is the main result of the paper. )
We conclude by a classification of all algebras contain-
ing the relation (< >}, needed for expressing the notion

of sequentiality. This notion is importani in many Al

contexts, such as planning and reasoning aboui action
[Sandewall, 1994], where actions are often assumed to
come in sequence.

Proposition 3.10 Let A C A. H (< ») € A, then
either A G 84, A C £, or A-SAT{A) is NP.complete.
Proof: First choose R = A, Rp = {54, E<}, Rnp =
Ayxp and B = {(< >)}. Then enumerate each set T C
A with |T| < |[Rp| = 2 and test if for each T, either
TCES,TCE,, 0t DCCaA{TUB) forsome D € Axp.
There are 2 3.4 - 107 such subsets. The test succeeds for
&ll T, and the resuli follows from Theorem 3.5. O

Since both of these algebras also contain the relations
(=) (<), (>), (= <), (= »), these are the only tractable
algebras capable of expressing sequentiality.

In fact, when enumerating subsets in Proposition 3.7,
Proposition 3.9 and Proposition 3.10, it is possible to op-
timise by stopping at subsets known to be NP-complete
(those in ANP)\ sometimes with a factor thirty.

4 Discussion

It is appropriate to indicate the applicability of this
method to further classify tractability in A. Therefore,
consider the task of classifying all tractable algebras con-
taining the basic relation (s). There are nine known max-
imal tractable algebras containing this relation. Thus,
we have to enumerate all subsets of an 8192-element set
having nine or fewer elements. This amounts to 4.6 + 10%°
subsets, making this task more difficult by a factor of
10", which is clearly impossible using today's comput-
ers.

For the full classification, we certainly need meth-
ods that combine theoretical studies of the structure of
A with brute-force computer methods, similar to how
the four-colour theorem was proved [Appel and Haken,
1976].

5 Conclusion

We have partially classified tractability of reasoning in
Allen's interval algebra, with the result that any yet un-
known tractable subclass can contain at most the ba-
sic relations (=), (), (b)), where b € {d,0,5,f}, This
means that for specifying complete knowledge about
temporal relations, there is no hope of finding more ex-
pressive and yet tractable subclasses than those known
today. Furthermore, we completely characterise the set
of tractable subclasses which can express the notion of
sequentially, which is useful in many Al contexts.

Appendix

Here the intractability proofs needed for the proof of
Proposition 3.2 are collected.

A.1 Model Transformations

Definition A.1 (Subsets Ap and A,) Let R =
(d d= o o) as in Definition 3.1, and define
Ay = {(Xx>)RU(= mm~ss~ )}, and Ay =
{{(x»)RU(z=< mm~ss™ ff)}. D
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Proposition A.2 A-SAT(A) and A-SAT(A,) are NP-
complete,
Proof: See Golumbic and Shamir [1993}. O

The NP-completeness results of Proposition A.2 can be
exteded considerably by techniques introduced next.
Our main vehicle for showing intractability of differ-
ent subclasses is that of model transformations. It is a
method for transforming a solution of one problem to
a solution of a related problem. The concept of model
transformation and related results were introduced in the
context of temporal reasoning in Jonsson et ai [1996].

Definition A.3 (Model transformation) A model
transformation is a mapping on A-interpretations. O

Next, a way to describe such transformations.

Definition A.4 (Model transformation descrip-
tion) Let T be a model transformation. A function

Jr:B — 2B is a description of T iff for arbitrary A-
interpretations 3, the following holds: if & € B and 1(b)J
under ¥ then I(fr(4))J7 under T(J). A description fr
can be extended to handle disjunctions in the obvious
way: fr(R) = UrER fr{r). O

We can now provide a result on how model transforma-~
tions can be used.

Lemma A.5 Let R = {ry,.. ,r,.} A and R =
{r{,..-,va} C A be such that v, C r for all 1 <
k < n, and A-SAT(R) is NP-complete. If there exists a
model transformation T with a description fr such that
Jr(ri) € ri for every 1 < k < n then A-SAT(R') is
NP-commplete.

Proof: Almost identical to one of Jonsson et al. [1996).
(]

Before we define a model transformation that we will
use later on, we need an auxiliary definition (also from
Jonsson el al [1998]).

Definition A.6 (Minimal distance) Let S C R be
finite. The minimal distance in S, MD(S), is defined aa
min{z ~ylz,y € SAz>y}. O
Observe that |S| > 2 in order to make MD(S) defined.
This is no problem, since we are working with inter-
vals. For all such S, MD(S) > 0. The definition of
minimal distance can be extended to A-interpretations
m the following way: Let 3 be an 4-interpretation that
values to a set of interval variables 7, and set
MD(%‘) MD({(1"), ()| € I}).

A concrete model transformation follows.
Definition A.7 (Transformation T, description f)
Define the model transformation T’ on 4-interpretations
assigning values to interval variables I,,..., I, as fol-
lows. T(Q) = ', where & is obtained from S by
first setting ¢ = MD(2)/(n + 1) and defining /(L) =
QU7 ) — ie, N(I}) +ie).

Then define f(3) forr € B as f(=) = {d,d~, 0,0},
#20 = (0, fo) = 1), 10 = 14), 60 = )
ffo) , 1(m) = {o}, f(m>) = {01, £6) = {4,0},

)"" dv!ow} f(f) = {d OH} f(fv) = {d“lo}
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Thus T decreases starting points and increases ending
points of intervals, and does this differently for every
interval. Now f(b) represents what can happen with the
basic relation b when the transformation T is applied.

Proposition A.8 f is a description of T.
Proof: Obvious from the definitions. D

We can now extend the results of Proposition A.2.

Theorem A.9 For any A4 € Ay U Ay of Definition 3.1,
A-SAT(A) is NP-complete.
Proof: Let vy = (< ») and r» = R U (=
mm~ ss ff), where R = (d d~ o o~). Thus
R = {r1,7) = Ap and is NP-complete. Take A € Ay.
Now A= {r},ri}forri=(< >)and RCr, CRU(=
mm~ ss~ f {), and it is obvious that the conditions
of Lemma A.5 are satisfied. NP-completeness follows.
Similarly, let r; = (< >) and r, = RU (= <
mm~ ss f ), where R = (d d~ o o~). Thus
R = {r1,r2} = A, and is NP-complete. Take A € Ay,
Now A = {r{,r3}forr{ = (< >)and RC r; C RU(= <
mm™~ s s> f £), and it is obvious that the conditions
of Lemma A.5 are satisfied. NP-completeness follows. D

A.2 B-Composition

In order io find the last necessary NP-completeness re-
sults, we introduce a new operation to the Allen algebra.

Definition A.10 (5-composition) Letry,...,rgz €
A Define the &S-composition of ry,...,rs, de-
noted Scomp(ry,...,rs), by IScomp(ry,...,rs)J +

BK, L. IrlK, Ki‘g.], I?‘sL, LI"4J, Kl";L. 0

The 5-composition of relations r4,..., rs can easily be
computed by using Nebel's software for computing sat-
isfiability of networks of Allen relations’, by construct-
ing a network of four interval variables with relations
according to the definition, and computing the entailed
relation between two of the variables by choosing the
basic relations which are consistent there.
NP-completeness results can be obtained as follows.

Proposition A.11 Le¢ A € A, and suppose
A-SAT(AU{Scomp(ry,...,Ts)}) can be shown to be NP-
complete, for r; € A. Then A-SAT(A) is NP-complete.
Proof: Any network expressed using the extended set
of relations can be converted to an equivalent one using
only relations from A, by the definition of 5-composition.
The transformation is obviously polynomial. O

Theorem A.12 A-SAT for the subclasses As, Ay and
N are NP-complete.

Proof: Recall the definitions:

M = {(<»),(007)}, Ny = {{(<>), (007 mm™)}
and Ny = {fmm>) (<> ss= ff-)}. Define
e(ry, rz2) = Seomp(ry,ry,r1,v1,r2). First, we verify that
rg=clfoo~ )} (<= =(= dd~ 00~ s~ f ),
and we see that 4 C As U {r3} for some A €

'This software was developed for obtaining the results of
Nebel's paper [1996], and can be obtained from Bern hard
Nebel.



Ao, and NP-completeness follows. Next, rq =
efleo” mm™),(<>)) = (= dd~ 00~ 55— f ),
and we see that A C Ay U {ry]} for some A €
Ap, and NP-completeness follows.  Last, ry =
ef{mm™), (<>~ 587 ff)) = (= 55~ ff~), and
it can be verified using Nebel and Biirckert’s soft-
ware [1993] that Ay © Ca(Ns U {rs}), implying NP-
completeness. O
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