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Abstract

Recently, Teng, Wu and Tang proposed a new ID-based
authenticated dynamic group key agreement (DGKA)
protocol. They claimed that leaving users cannot calcu-
late subsequent group session keys and joining users can-
not calculate previous group session keys. In this paper,
we will show that Teng et al.’s protocol cannot provide
forward confidentiality or backward confidentiality.

Keywords: Backward confidentiality, bilinear pairing, dy-
namic group key agreement, forward confidentiality

1 Introduction

Ingemarsson et al. [4] first introduced the concept of group
key agreement (GKA). Afterward, many group key agree-
ment protocols have been proposed [1, 2, 3, 5]. In par-
ticular, some of them are designed for dynamic groups,
which are called dynamic group key agreement (DGKA)
protocols. Secure DGKA protocols must provide the fun-
damental security requirements for general GKA proto-
cols, and also should encompass the following two require-
ments [6, 8]:

• Forward confidentiality: While a group user leaves
from the current group, he should not be able to cal-
culate the new session key.

• Backward confidentiality: While a new user joins into
the current group, he should not be able to calculate
the previous session key.

Recently, Teng, Wu and Tang [7] proposed a new ID-
based authenticated DGKA protocol, called Teng-Wu-

Tang protocol. They proved the Teng-Wu-Tang proto-
col’s security in the random oracle model. In addition,
they also claimed that the leaving users cannot obtain in-
formation about subsequent new group session keys and
joining users cannot obtain information about previous
group session keys. In this paper, we will demonstrate
that the Teng-Wu-Tang protocol is not secure. Though
the Teng-Wu-Tang protocol’s join algorithm only requires
one round communication and its leave algorithm does
not require exchange message, the Teng-Wu-Tang pro-
tocol cannot provide forward confidentiality or backward
confidentiality. It means that the Teng-Wu-Tang protocol
is infeasible for real-life implementation.

2 Review of the Teng-Wu-Tang
Protocol

In this section, we briefly review the Teng-Wu-Tang pro-
tocol, which is composed of the following three stages as
well as the join algorithm and the leave algorithm. For
more details, refer to [7].

2.1 System Initialization Stage

Let q be a large prime, G1 and G2 be two groups with the
same order of q. P is a generator of G1 and Q is randomly
chosen from G1. ê : G1 × G1 → G2 is a bilinear pairing
and H : {0, 1}∗ → G∗1 is a hash function. Key generation
center (KGC) randomly chooses the master private key
s ∈ Z∗q and computes Ppub = sP as the master public key.
The system parameters are {q,G1, G2, P,Q, ê,H, Ppub}.
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2.2 Key Extract Stage

This phase is run by the KGC for each user with an
identity IDi ∈ {0, 1}∗. The KGC first computes Qi =
H(IDi), and then computes the user’s private key Si =
sQi.

2.3 Key Agreement Stage

Let {U1, . . . , Un} be the initial group of n users. The key
agreement stage is described below:

1) Each user Ui(1 ≤ i ≤ n) define the (n−1)×n matrix

A =


a2
a3
·
·
·
an

 =


1 1 0 · · · 0
1 0 1 · · · 0
· · · ·
· · · · ·
1 · · · 1 0
1 0 0 · · 0 1


2) Each user Ui(1 ≤ i ≤ n) randomly chooses ri ∈ Z∗q

and computes Pi = riP, Vij = riQ
′
j(1 ≤ j ≤ n, j 6=

i), where Q′j = Q + Qj . Then user Ui broadcasts
Pi, Vij .

3) Each user Ui(1 < i < n) sets two vectors ai1 =
(0, ..., 0, 1i, 0, 0, ..., 0), which denotes ith element is 1,
and a′i1 = (0, ..., 0, 1i+1, 0, 0, ..., 0) with n elements,
which denotes i + 1th element is 1, and then defines
two n× n matrixes Ai and A′i as follows:

Ai =


ai1
a2
...
an

 , A′i =


a′i1
a2
...
an


User U1 sets a vector a′11 = (0, 1, 0, ..., 0) with n ele-
ments. User Un also sets a vector an1

= (0, 0, ..., 1)
with n elements. Then U1 and Un define two ma-
trixes A′1 and An respectively as follows:

A′1 =


a1′1
a2
...
an

 , An =


an1

a2
...
an


Two matrixes Ai and A′i are nonsingular due to
|Ai| 6= 0 and |A′i| 6= 0, where | · | denotes the de-
terminant of a matrix. Let (x1, x2, . . . , xn) be the
solution of X × Ai = (1, 1, ..., 1) and (x′1, x

′
2, . . . , x

′
n)

be the solution of X ×A′i = (1, 1, ..., 1).

Further, Ui defines the (n − 1) × (n − 1) matrix Mi

as follows:

Mi =


V12 · · · V(i−1)1 V(i+1)1 · · · Vn1

V13 · · · V(i−1)2 V(i+1)2 · · · Vn2

...
...

V1n · · · V(i−1)n V(i+1)n · · · Vn(n−1)



It means that messages Vcd from the cth column is
received from user c, when c < i, and also messages
V(c+1)d from the cth column is received from user
c + 1, when c ≥ i.
Next, Ui sets two matrixes Mi,1 and Mi,2, which are
composed of the first i− 1 columns of the matrix Mi

and the other columns of the matrix Mi respectively.

Mi,1 =



r1(Q + Q2) · · · ri−1(Q + Q1)
r1(Q + Q3) · · · ri−1(Q + Q2)

...
...

r1(Q + Qi−2) · · · ri−1(Q + Qi−2)
r1(Q + Qi−1) · · · ri−1(Q + Qi)

...
...

r1(Q + Qn) · · · ri−1(Q + Qn)



Mi,2 =



ri+1(Q + Q1) · · · rn(Q + Q1)
ri+1(Q + Q2) · · · rn(Q + Q2)

...
...

ri+1(Q + Qi) · · · rn(Q + Qi)
ri+1(Q + Qi+2) · · · rn(Q + Qi+1)

...
...

ri+1(Q + Qn) · · · rn(Q + Qn−1)


With (x1, x2, · · · , xn) and (x′1, x

′
2, · · · , x′n), Ui com-

putes

Q̂i,1 = (x2, x3, · · · , xn)Mi,1


1
1
...
1


n−1

Q̂i,2 = (x′2, x
′
3, · · · , x′n)Mi,2


1
1
...
1


n−1

Finally, Ui(1 < i < n) computes the group session
key

sk = ski,1 · ski,2 · ê(Ppub, riQi) =

i=n∏
i=1

ê(Ppub, Qi)
ri ,

where

ski,1 = ê(

i−1∑
j=1

Pj , x1Si) · ê(Ppub, Q̂i,1),

ski,2 = ê(

n∑
j=i+1

Pj , x
′
1Si) · ê(Ppub, Q̂i,2)

and Qi = Q+Q1 +Q2 + · · ·+Qi−1 +Qi+1 + · · ·+Qn

(1 ≤ i ≤ n).

User U1 computes the group session key sk =
sk1,2 · ê(Ppub, r1Q1) =

∏i=n
i=1 ê(Ppub, Qi)

ri and user
Un computes the group session key sk = skn,1 ·
ê(Ppub, rnQn) =

∏i=n
i=1 ê(Ppub, Qi)

ri .
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2.4 Join Algorithm

Let {U1, . . . , Un} be the current group and
{Un+1, . . . , Un+m} be the set of joining users. For
generating the new group session key, each user
Ui(1 ≤ i ≤ n+m) first defines a new (n+m−1)×(n+m)
matrix A as follows:

A =


a2
a3
·
·
·

am

 =


1 1 0 · · · 0
1 0 1 · · · 0
· · · ·
· · · · ·
1 · · · 1 0
1 0 0 · · 0 1


Then each user Ui(1 ≤ i ≤ n) computes ri(Q +

Qn+j)(1 ≤ j ≤ m), where ri is chosen in the key
agreement stage. Then user Ui(1 ≤ i ≤ n) broadcasts
riP, ri(Q + Qj′)(1 ≤ j′ ≤ n + m, j′ 6= i), where riP and
ri(Q + Qj′)(1 ≤ j′ ≤ n, j′ 6= i) are computed in the key
agreement stage. At the same time, user Un+j(1 ≤ j ≤
m) randomly chooses rn+j ∈ Z∗q , computes and broad-
casts Pn+j = rn+jP, V(n+j)j′

= rn+j(Q + Qj′)(1 ≤ j ≤
m, 1 ≤ j′ ≤ n+m, j′ 6= n+j), where rn+j is kept secretly.

Finally, each user Ui(1 ≤ i ≤ n+m) computes the new

group session key as sk =
∏i=n+m

i=1 ê(Ppub, Qi)
ri , where

Qi = Q + Q1 + Q2 + · · ·+ Qi−1 + Qi+1 + · · ·+ Qn+m.

2.5 Leave Algorithm

Let {Um+1, . . . , Un} be the set of leaving users and
{U1, . . . , Um} be the current group. For generating the
new group session key, each user Ui(1 ≤ i ≤ m) first
defines a new (m− 1)×m matrix A as follows:

A =


a2
a3
·
·
·

am

 =


1 1 0 · · · 0
1 0 1 · · · 0
· · · ·
· · · · ·
1 · · · 1 0
1 0 0 · · 0 1


Then each user Ui(1 ≤ i ≤ m) defines the new (m −

1) × (m − 1) matrix M ′i , which includes the first m − 1
rows and the first m− 1 columns of matrix Mi.

Finally, each user Ui(1 ≤ i ≤ m) computes the new

group session key as sk =
∏i=m

i=1 ê(Ppub, Qi)
ri , where Qi =

Q + Q1 + Q2 + · · ·+ Qi−1 + Qi+1 + · · ·+ Qm.

3 Cryptanalysis of the Teng-Wu-
Tang Protocol

In this section, we show that the Teng-Wu-Tang protocol
is not secure. Here, we only consider the simplest case, i.e.
a joining user and a leaving user. In the join algorithm,
a new joining user can use his private key and ephemeral
key to recover the accepted group session key generated
by the former group users before he joined the group. In

the leave algorithm, a leaving user can use his private key
and ephemeral key to compute the new group session key
generated by the new group users after he left the group.

3.1 Attack on the Backward Confiden-
tiality

Let {U1, . . . , Un} be the set of the current group users
and Un+1 be the new joining user. From the key agree-
ment stage, we know that U1, U2 . . . , Un−1 and Un have
shared the group session key sk =

∏i=n
i=1 ê(Ppub, Qi)

ri ,
where Qi = Q+Q1 +Q2 + · · ·+Qi−1 +Qi+1 + · · ·+Qn.
In order to keep the previous encrypted messages se-
cretly, U1, U2 . . . , Un and Un+1 must use the join algo-
rithm to generate a new shared group session key sk′ =∏i=n+1

i=1 ê(Ppub, Q′i)
ri , where Q′i = Q + Q1 + Q2 + · · · +

Qi−1 + Qi+1 + · · ·+ Qn + Qn+1.
If Un+1 is a malicious user, he can use his private key

Sn+1, ephemeral key rn+1 and the new group session key
sk′ to recover the previous group session key.

Since

sk′ =

i=n+1∏
i=1

ê(Ppub, Q′i)
ri

=

[
i=n∏
i=1

ê(Ppub, Q′i)
ri

]
ê(Ppub, Q′n+1)rn+1

=

[
i=n∏
i=1

ê(Ppub, Qi + Qn+1)ri

]
ê(Ppub, Q′n+1)rn+1

=

[
i=n∏
i=1

ê(Ppub, Qi)
ri

][
i=n∏
i=1

ê(Ppub, Qn+1)ri

]
ê(Ppub, Q′n+1)rn+1

= sk

[
i=n∏
i=1

ê(Ppub, Qn+1)ri

]
ê(Ppub, Q′n+1)rn+1

= sk

[
i=n∏
i=1

ê(P, sQn+1)ri

]
ê(Ppub, Q′n+1)rn+1

= sk

[
i=n∏
i=1

ê(riP, sQn+1)

]
ê(Ppub, Q′n+1)rn+1

= sk

[
i=n∏
i=1

ê(Pi, Sn+1)

]
ê(Ppub, Q′n+1)rn+1 ,

the malicious user Un+1 can compute
∏i=n

i=1 ê(Pi, Sn+1)

and ê(Ppub, Q′n+1)rn+1 with his private key Sn+1 and
ephemeral key rn+1, where Pi = riP (1 ≤ i ≤ n) is a
public message and Q′n+1 = Q + Q1 + Q2 + · · ·+ Qn.

Then the malicious user Un+1 can compute the previ-
ous group session key as follows:

sk =
sk′[∏i=n

i=1 ê(Pi, Sn+1)
]
ê(Ppub, Q′n+1)rn+1

Clearly, the new joining user Un+1 has successfully
computed the previous group session key generated be-
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fore he joined the current group. Therefore, the Teng-
Wu-Tang protocol cannot provide backward confidential-
ity.

3.2 Attack on the Forward Confidential-
ity

Let {U1, . . . , Un} be the set of the current group users and
Un be the leaving user. From the key agreement stage,
we know that U1, U2 . . . , Un−1 and Un have shared the
group session key sk =

∏i=n
i=1 ê(Ppub, Qi)

ri , where Qi =
Q+Q1+Q2+· · ·+Qi−1+Qi+1+· · ·+Qn. In order to keep
the future encrypted messages secretly, U1, U2 . . . , Un−2
and Un−1 must use the leave algorithm to generate a new
shared group session key sk′′ =

∏i=n−1
i=1 ê(Ppub, Q′′i )ri ,

where Q′′i = Q + Q1 + Q2 + · · · + Qi−1 + Qi+1 + · · · +
Qn−2 + Qn−1.

If Un is a malicious user, he can write the current group
session key sk as follows:

sk =

i=n∏
i=1

ê(Ppub, Qi)
ri

=

[
i=n−1∏
i=1

ê(Ppub, Qi)
ri

]
ê(Ppub, Qn)rn

=

[
i=n−1∏
i=1

ê(Ppub, Q′′i + Qn)ri

]
ê(Ppub, Qn)rn

=

[
i=n−1∏
i=1

[
ê(Ppub, Q′′i )ri ê(Ppub, Qn)ri

]]
ê(Ppub, Qn)rn

=

[
i=n−1∏
i=1

ê(Ppub, Q′′i )ri

][
i=n−1∏
i=1

ê(Ppub, Qn)ri

]
ê(Ppub, Qn)rn

= sk′′

[
i=n−1∏
i=1

ê(Ppub, Qn)ri

]
ê(Ppub, Qn)rn

= sk′′

[
i=n−1∏
i=1

ê(riPpub, Qn)

]
ê(Ppub, Qn)rn

= sk′′

[
i=n−1∏
i=1

ê(risP,Qn)

]
ê(Ppub, Qn)rn

= sk′′

[
i=n−1∏
i=1

ê(riP, sQn)

]
ê(Ppub, Qn)rn

= sk′′

[
i=n−1∏
i=1

ê(Pi, Sn)

]
ê(Ppub, Qn)rn .

Since Sn is the private key of user Un and rn is se-
lected by user Un, he can compute

∏i=n−1
i=1 ê(Pi, Sn) and

ê(Ppub, Qn)rn , where Pi = riP (1 ≤ i ≤ n− 1) is a public
message and Qn = Q + Q1 + Q2 + · · · + Qn−1. Finally,
the malicious user Un can compute the new group session

key as follows:

sk′′ =
sk[∏i=n−1

i=1 ê(Pi, Sn)
]
ê(Ppub, Qn)rn

Clearly, the leaving user Un has successfully computed
the new group session key generated after he left the cur-
rent group. Therefore, the Teng-Wu-Tang protocol can-
not provide forward confidentiality.

4 Conclusion

In this paper, we have pointed out that the Teng-Wu-
Tang protocol fails to provide forward confidentiality and
backward confidentiality. It means that a leaving user
can calculate the future session key and a joining user can
calculate the previous session key. So the Teng-Wu-Tang
protocol is not suitable for practical applications.
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