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Abstract

An insider-robust approach to file integrity verification is
developed using interacting strata of mobile agents. Pre-
vious approaches relied upon monolithic architectures, or
more recently, agent frameworks using a centralized con-
trol mechanism or common reporting repository. How-
ever, any such distinct tampering-point introduces vulner-
abilities, especially from knowledgeable insiders capable
of abusing security-critical resources. In the Collaborative
Object Notification Framework for Insider Defense using
Autonomous Network Transactions (CONFIDANT), the
mechanisms for tampering detection, decision-making,
and alert signaling are distributed and corroborated by
autonomous agents. In this paper, the CONFIDANT file
integrity verification framework is presented focusing on
insider defense aspects. User capability classes are de-
fined and critical physical tampering points in intrusion
detection architectures are identified. CONFIDANT mit-
igation techniques of insider tampering exposures and ex-
ample scenarios are presented.

Keywords: File systems management, multiagent sys-
tems, network-level security and protection, security ker-
nels, user profiles and alert services

1 Introduction

Intrusion Detection Systems (IDSs) aim to accurately
identify computer system attacks. Intrusion detection
does not seek to provide a comprehensive defense, but
does play a significant role in overall network security to
identify exploitation of vulnerabilities [6, 14, 15, 20]. File
Integrity Analyzers are not considered a full-fledged IDSs
but are an important component of an intrusion detection
environment [3]. They serve as a vital IDS component
by performing filesystem inspections to detect suspicious
modification to security-critical files [9, 10, 12, 19, 21, 22].
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Identification of an unauthorized modification results in
an alarm to a security administrator and also helps to
identify software changes that might facilitate subsequent
access to the system [5, 8].

1.1 Insider Tampering Risk

Malicious actions by a user with administrative-level
access permissions, referred to as insider tampering,
presents a significant challenge to existing file integrity
analyzers. Insiders possess both the ability and opportu-
nity to perform unauthorized computer system use. Thus,
tampering by insiders is potentially more damaging than
by those without administrator-level permissions. Iden-
tification of misuse by insiders, particularly attacks on
intrusion detection components, is a challenging prob-
lem [1, 2, 11, 13, 16]. While some file analyzers have
taken steps to reduce tampering exposures, avenues by
which malicious activities are able to occur, eliminating
or reducing the risk from knowledgeable insiders remains
an evolving area of research.

1.2 CONFIDANT Objectives

The Collaborative Object Notification Framework for In-
sider Defense using Autonomous Network Transactions
(CONFIDANT) aims at trusted detection of unautho-
rized modifications to filesystem data. The design of
CONFIDANT is based on two goals in order to limit ex-
posures present in existing frameworks reviewed in [4].
Goal-1 is to reduce single point-of-failure exposures in ex-
isting IDS frameworks. Increasing barriers against insider
tampering is Goal-2. These goals are addressed by:

1) identifying single point-of-failure exposures in IDSs
to address Goal-1,

2) developing a taxonomy of insider risks to address
Goal-2,
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Figure 1: Relative rank of tampering modes addressed by CONFIDANT

3) designing a framework to address single point-of-
failure and insider tampering exposures,

4) perform experiments to evaluate performance against
both Goal-1 and Goal-2, and

5) evaluate performance of the proposed and existing
approaches using comparative metrics.

In this paper, the CONFIDANT file integrity verifica-
tion framework is presented focusing on insider defense
aspects. IDS user capability and architectural tamper-
ing points are identified in Section 2. An overview of the
CONFIDANT agent framework defined in [17] is provided
in Section 3. Insider tampering modes and CONFIDANT
mitigation techniques are provided in Section 4. CONFI-
DANT evaluation methodology and results are presented
in [17] for Goal-1 and in [18] for Goal-2.

2 Mitigation of Insider Risks in

Networked Environments

To attain a robust file integrity framework, it is necessary
and sufficient to address vulnerabilities within the domain
of administrators or superusers. Let TMSU denote the
set of tampering modes available to superusers, let TMLU

denote tampering modes of local users without superuser
capabilities, and let TMO denote tampering modes of out-
siders. By definition, TMSU ⊇ TMLU since superusers
can perform all operations available to any other local
user. Likewise, TMLU ⊇ TMO since being a local user
does not preclude conducting tampering activities avail-
able to outsiders. By transitivity, TMSU ⊇ TMO, hence
tampering modes of superusers subsume vulnerabilities of
both authorized local users and unauthorized outsiders.

Motivated by this subsumption relationship, a de-
sign flow for IDS frameworks is obtained that focuses
on insider risks, rather than considering them as an af-
terthought. As depicted in Figure 1, Rank I exposures
denote only those tampering modes available exclusively
to superusers; Rank II exposures denote any non-Rank
I modes available to local users, but not to outsiders;
and Rank III modes denote any exposure that is not a
Rank I nor Rank II exposure. More formally, let the
set of exclusive exposures of Rank x be denoted by Ex.
Thus, EI = TMSU − TMLU , EII = TLU − TMO, and
EIII = TMO. Based on these rankings, the required
agent behaviors can be developed as follows:

1) identify EI vulnerabilities,

2) postulate an IDS design against which all identified
vulnerabilities are evaluated,

3) repeat Step 2 until a design is obtained capable of
detecting all identified vulnerabilities,

4) identify EII vulnerabilities,

5) verify the postulated design already meets all EII

vulnerabilities, or if it does not then return to Step
2,

6) identify EIII vulnerabilities, and

7) verify the postulated design already meets all EIII

vulnerabilities, or if it does not then return to Step
2.

Using this design flow, many agent behaviors that were
developed to detect only Rank I vulnerabilities were also
capable of detecting Rank II and Rank III exposures. By
focusing the agent development effort on superuser expo-
sures, other vulnerabilities can be mitigated without the
need to explicitly design mechanisms to address the lower
rank exposures.

The tampering capability classes describe categories of
individuals based on access to computing resources. Phys-
ical tampering points in a computer system architecture
along with the most general tampering capability at each
point are listed in Table 1 and illustrated in Figure 2.
Tampering by outsiders, denoted TMO, without physical
access to computing resources can only be performed re-
motely. Thus, TMO is limited to tampering with network
resources. In addition to the EIII exposure of tampering
over the network, local users are able to exploit EII vul-
nerabilities including modifying local filesystem contents
and memory locations based on permissions assigned by
the administrator. For this reason, tampering modes of
local users, denoted TMLU , include points TPFS, TPPT ,
TPIC , TPID in Figure 2. These stand for tampering
points at the filesystem, process table, IDS code, and IDS
data, respectively. Insiders have few restrictions on com-
puter resource use. Administrators, unlike the other ca-
pability classes, can tamper with any filesystem resource
or memory location as well as modify the system clock,
shown as TPSC .
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Figure 2: Physical architecture

3 CONFIDANT Agent Frame-

work

The CONFIDANT mobile agent framework, defined in
[17], consists of an agent gateway on each monitored host,
four agent behaviors, and agent interaction operating in
three echelons. The lowest echelon, the Sensor level, is
responsible for surveillance. The middle echelon is the
Control level which provides updates for agent itineraries
as well as performs result collection and correlation. The
uppermost echelon, the Response level, provides alarm no-
tification.

3.1 CONFIDANT Terminology

Agents interact within committees. A single committee Ci

is defined as Ci = {ai
1, . . . , a

i
n} where i is the committee

index and n is the number of agents in committee Ci. All
agents within a single committee correlate processing re-
sults. The set of all m committees within a monitored
network is defined as C = {C1, . . . , Cm} =

⋃
i∈m Ci.

Multiple adjacent committees can be defined with each
limited to a subset of monitored hosts in order to en-
hance scalability and adapt to physical network layout.
Clustering and scalability of mobile agent based IDSs is
discussed in [7] and [13]. Due to the overlapping nature
of adjacent committees,

⋂
i∈m Ci 6= ∅.

The agent gateway provides the interface between the
agents and services on each host as well as the commu-
nication mechanism for the agents to travel over the net-
work. Each gateway, G = {g1, . . . , gk}, corresponds to a
monitored network node, where k is the number of mon-
itored hosts. Multiple agents within a single committee
will attempt to travel to a gateway that is not currently
hosting other members of the committee. If agents within

a committee are able to congregate at a single gateway, a
single point-of-failure exposure is created. The maximum
number of agents that each gateway can host at one time
is the subject of future research.

3.2 CONFIDANT Operational Assump-

tions

Critical requirements that exist for proper CONFIDANT
operation include the integrity of agent operation, inter-
agent communication, and processing results obtained.
First, the initial configuration must be well-formed and
completely installed prior to live network operation. Also,
CONFIDANT reconfigurability following initial agent de-
ployment is neither enabled nor desirable as configuration
and management routines can facilitate insider tamper-
ing.

CONFIDANT agents verify the correctness of individ-
ual hosts on the network as well as other agents during
operation. File contents and digest computation obtained
by agents is trusted as agents have direct disk access to
ensure accurate file validation. Agent interactions are ro-
bust as transport and communication occur via SSL to
preclude spoofing. While an insider has full and direct
access to any computer system resource, the stated as-
sumptions coupled with use of mobile agents significantly
diminishes the ability of any insider to compromise file
integrity capabilities.

Even with assurance of an initial known safe state, host
and communication correctness, and encrypted messag-
ing, network hardware and the operating system kernels
must remain free of tampering as CONFIDANT operates
at the application-layer. Hardware and operating system
tampering may subvert file integrity verification by intro-
ducing kernel trojans, corrupting agent data prior to SSL
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Table 1: Computer system resource tampering points

Tampering Associated Capability

Point Definition Class

User Apps IDS Apps

TPFS Alteration of filesystem contents TMLU TMSU

TPPT Modifying the process table in memory TMLU TMSU

TPIC Changing application code while in memory TMLU TMSU

TPID Changing application data while in memory TMLU TMSU

TPN Tampering from remote network nodes TMO, TMLU , TMSU

TPSC Modification of the system clock TMSU

ciphering, or modifying hardware drivers to redirect file
access requests. Future research in techniques to mitigate
tampering at the hardware and operating system level
include bypassing the kernel to achieve direct device to
device communication.

3.3 CONFIDANT Design

The CONFIDANT framework emphasizes mitigation of
insider tampering vulnerabilities using a distributed con-
trol scheme realized with mobile agents. By distribut-
ing both control and data in the form of mobile agents
across the network, insider tampering risks are mitigated
and single point-of-failure exposures present in existing
frameworks are eliminated.

CONFIDANT performs filesystem scans using the
agent dataflow sequence illustrated in Figure 3. Integrity
scans are performed by obtaining file contents, comput-
ing the file MD5 hash value, and comparing that result
to the internal baseline data. Upon scan completion, the
result is sent to other committee members to corroborate
the result. Next, the agent travel operation commences.
Prior to dispatch, the agent will parse the internal list
of monitored gateways. Once a gateway is selected, the
agent will send a travel request to committee members
in order to maintain communication upon arrival at the
remote gateway. When the agent arrives at the desti-
nation gateway, arrival notification is sent to committee
members and filesystem scans resume.

Each agent maintains three internal timers. These
timers define a waiting period for operation confirmation.
If a message from a remote agent or gateway is expected,
∆tr defines the maximum time allowed for the message
to be received prior to an alarm being generated. Also,
∆ts is the waiting period from when a message is sent un-
til confirmation is received. The maximum time allowed
prior to alarm notification for an agent to be dispatched
to a remote gateway and send arrival notification to com-
mittee members is ∆td.

Pseudocode for the scan operation is provided in Fig-
ure 4. The computeMD5 function is performed to obtain
the MD5 hash value of the monitored file. A MD5 OK event
is created if the result matches the baseline. If a file mod-
ification is detected, a MD5 Error event is created. The

event generated as a result of the scan is then distributed
to other committee members. The name of each commit-
tee agent is stored locally in an array ca[1..n] along with
the name of the gateway on which the agent is operating.
A foreach loop is used to send the scan result to each
committee member. The agent will then sleep for ∆ts to
allow committee member responses to arrive. Responses
are handled asynchronously and stored in an array. The
responses are then processed to ensure the message was
successfully conveyed.

In order to maintain agent interlocking, three commu-
nication sequences occur between distributed committee
members as illustrated in Figure 5. The first sequence
occurs upon file scan completion. Once the scan is com-
plete, results are sent to committee members. The re-
maining sequences enable committee agents to maintain
robust communication while travelling between remote
gateways. Prior to dispatch, an agent will select an avail-
able gateway and notify committee members of intent to
travel. Committee members respond in order to confirm
that communication will be maintained upon arrival at
the destination gateway. Once confirmation is received,
dispatch commences. If the remote gateway is unavail-
able, an alarm is triggered, a new destination gateway
is selected, and the interlocking communication process
repeats. Upon arrival at the remote gateway, arrival no-
tification is sent to committee members in order to en-
sure that future messages are transmitted to the correct
gateway. An alarm may result from any of these three se-
quence if message acknowledgment is not received within
∆ts or if agent dispatch is not successful within ∆td.

Pseudocode for the agent dispatch communication se-
quence is provided in Figure 6. First, selectGateway

is called to determine the agent dispatch destination. A
new AgentTravelRequest event is created and sent to
committee agents as described previously. The nota-
tion ca[i].g represents the gateway on which the agent
ca[i] is operating. A value of null indicates that
travel or communication for the agent ca[i] has failed.
Once responses are processed, the agent is dispatched to
the remote gateway. Upon arrival at the destination,
sendArrivalNotification is called to inform commit-
tee agents travel success.
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Figure 3: CONFIDANT dataflow diagram

gateways = g[1..m];
committee agents = ca[1..n];

responses = r[1..n];
scanresult.setValue(computeMD5(filename));

if (scanresult.getValue() == baseline) {
result = new ConfidantEvent(MD5\_OK,

scanresult.getValue());

} else {
result = new ConfidantEvent(MD5\_Error,

scanresult.getValue());
}
sendScanResult(result) {

foreach i in ca[] {
if (ca[i].g != null) {

sendmsg(ca[i].g, result)
}

}
sleep(delta_ts);
processResponse();

}

Figure 4: CONFIDANT pseudocode for file scan opera-
tion

4 Insider Tampering Modes and

CONFIDANT Mitigation Tech-

niques

IDS tampering modes are defined in [4]. Each logical IDS
subsystem defined previously is vulnerable to Spoofing,
Termination, Sidetracking, Altering Internal Data, and
Selective Deception as described by the tampering modes
summarized below. The mitigation strategy developed
for CONFIDANT for each tampering mode is listed in
Table 2.

4.1 Spoofing-based Tampering

Spoofing occurs when counterfeit data is transmitted to
the recipient. Three spoofing attacks are considered. The
first is Spoonfeeding sensor information at TPFS that is
not present in the target file. As listed in Table 2 this is

do/ Get File
      Contents

do/ Compute
      MD5

do/ Compare To
      Baseline

Scan Operation

do/ Send Scan
      Result To
      Committee

Scan Result

do/ Notify
      Committee

do/ Select
      Gateway

do/ Process
      Committee
      Response

Travel Request

[Prepare For
  Dispatch]

do/ Dispatch
      Agent To
      Remote
      Gateway

Dispatch

do/ Send Arrival
      Notification
      To Committee

Arrival

[Arrived On
  Gateway]

[Gateway
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[Gateway
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Agent Operation

[Start Scan]

[Scan Complete]

Figure 5: CONFIDANT operation state diagram
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gateways = g[1..n];
committee agents = ca[1..n];
responses = r[1..n];

availablegateway = selectGateway();

destination = new ConfidantEvent(AgentTravelRequest,
availablegateway);

sendTravelRequest(destination) {

foreach i in ca[] {
if (ca[i].g != null) {

sendmsg(ca[i].g, destination)
}

}
sleep(delta_ts);
processResponse();

dispatch(destination);
sendArrivalNotification();

}

Figure 6: CONFIDANT Pseudocode for Agent Dispatch

mitigated in CONFIDANT by encapsulation of the inter-
face between the agents and native services on the host.
CONFIDANT’s agent gateway enables the agents to ac-
cess the host filesystem directly to mitigate this exposure
as described previously. The second attack considered
is Sugarcoating of unfavorable reports. This is mitigated
in CONFIDANT by using SSL encryption for messaging
and transport in order to validate all agent communica-
tion and transfer. Agents will also perform integrity ver-
ification on the agent gateway to determine if tampering
has occurred at the gateway level. The third spoofing-
based attack considered is Recanting of alert notification.
CONFIDANT mitigates Recanting by enforcing transac-
tion interlocks between agents. Agents must remain in
constant communication. If agent communication is in-
terrupted and handshaking is not maintained, then a sus-
picious activity has occurred which activates an alert.

4.2 Termination-based Tampering

Disabling an IDS sensor is called Blindfolding. This is
mitigated in CONFIDANT by enabling multiple agents
to perform similar tasks. Agent a1

i remains in commu-
nication with all agents a1

j 6=i in committee C1. If ∆tr is

exceeded then agent a1
i is determined to be missing by

not maintaining an appropriate communication channel,
or if an agent gateway cannot be contacted then an alert
is initiated.

Overriding of IDS decision-making operations, or Com-
mandeering, is mitigated in CONFIDANT by distributing
all decision-making responsibilities in the form of redun-
dant mobile agents. Multiple agents in each committee
Ci perform the same functionality to mitigate tampering
at any single point. Transactions between agents within
a committee Ci, as well as between overlapping commit-
tees, are interlocked and are also spatially and temporally
distributed.

Soundproofing an IDS framework involves muting the
alarm to preclude end-user notification. This is mitigated
in CONFIDANT by providing communication with mul-
tiple agents and by interlocking I/O via the agent gate-

way. If messages from a remote agent are expected and
not received upon the expiration of the ∆tr window, an
alert is initiated. Each gateway gi provides agents with
direct access to system resources so that alert notification
is reliably transmitted to the security administrator.

4.3 Sidetracking-based Tampering

Some frameworks are subject to Blockading, or isolating a
sensor from needed access to a component or data. CON-
FIDANT mitigates Blockading by distributing the inves-
tigating and decision-making responsibilities. If agent
throughput is limited and agents are not able to access
either a network node or a service on the host within
a specified time, the node is considered suspect and an
alert is initiated. Architectures with centralized control
are particularly vulnerable as Blockading can be focused
on a single point either at the network interface, TPN , or
at the host process level, TPPT .

Altering execution rates, or Pacing, is mitigated in
CONFIDANT by redundancy of agents in committees
Ci. Multiple committee agents traverse the network to
perform analysis of local files on visited hosts. Messages
are then passed across the network between agents on dis-
tributed hosts. Agent actions are based on internal timers
defined by individual agents and not on the time of day,
thus mitigating tampering at TPSC . All agents ai

j must
provide status messages to cooperating agents in com-
mittee Ci prior to expiration of ∆tr, or else tampering is
suspected.

An example of Scapegoating is triggering an alarm as
a decoy in order to hide an actual attack. This is miti-
gated in CONFIDANT by enabling committee Ci agents
to pursue each simultaneous alert independently so that
multiple alerts can be processed concurrently.

4.4 Internal Data Tampering

File integrity tools create an initial baseline reference for
future file verification. Retroactive Baselining modifies
the reference values thus corrupting the baseline at TPID.
This is mitigated in CONFIDANT by maintaining base-
line data within each agent responsible for file integrity
verification. When an agent a1

1 computes a cryptographic
digest for a file, the result is compared to internal base-
line data encapsulated within multiple mobile agents and
transmitted via events to agents in C1. If the internal
data is modified, agent redundancy enables file verifica-
tion to be performed by other agents. An important con-
sideration is the total size of baseline data maintained
within each agent. If an agent is responsible for monitor-
ing hundreds of files, the internal baseline size may elim-
inate any network efficiency benefits that mobile agents
provide. One possible solution is to transmit a reference
value for the individual baseline databases locally stored
on the remote nodes. If the baseline database reference
value is consistent with the internal data, individual sys-
tem files are reliably be inspected for modification. If
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Table 2: CONFIDANT approaches for tampering mitigation
Tampering Tampering Mitigation Mitigation

Mode Description Approach Description

Spoonfeeding Alternate data stream is Encapsulation Vulnerable File I/O
conveyed during file scan contained inside agents
Unfavorable cryptographic

Sugarcoating digest is modified to Validated SSL used for messaging
appear as the desired transactions and transport
result
Fraudulent command is Interlocks, Agent interactions are

Recanting issued to deactivate alert scrambling interlocked and spatially
distributed

Blindfolding Detection mechanism Redundancy, Exceptions are inserted
is disabled vulnerability seeding to test detection status

Agent interactions are
Commandeering Decision-making process Interlocks, interlocked, and both

is usurped scrambling spatially and temporally
distributed

Soundproofing Notification mechanism Redundancy, Alarms at each node
is eliminated or muted interlocks with interlocked I/O
Resource usage is Interlocked file bandwidth

Blockading forestalled to Pulse-taking monitoring and alert
starve access mechanism
Scan timing reference Interlocked CPU

Pacing is corrupted or execution Pulse-taking throughput monitoring
priority is overwhelmingly and alert mechanism
reduced

Scapegoating Attention is diverted to Redundancy Concurrent tracking via
a contrived distraction multiple agents

Retroactive Reference values for Distinct Inception Data dispatched with
Baselining digests are modified agents upon configuration

Exemption is added to Configure only upon
Descoping policy file to exclude scan Mandatory initial startup then

coverage of unauthorized Obsolescence destroy configuration
modifications agents
Stand-alone process Agent execution is

Value Jamming continuously writes FALSE Redundancy, spatially and temporally
into the memory location scrambling scrambled
of status indicator

File Juggling Target files interchanged Redundancy, Unpredictable redundant
before and after scanning scrambling scan scheduling

the baseline database reference value is incongruent with
the internal data, an alert message is raised. The ability
to monitor a large number of files while maintaining effi-
ciency benefits of a mobile agent solution is the subject
of future research.

IDS control components are subject to Descoping by
tampering with the initial policy configuration data. As
with Retroactive Baselining, this occurs at TPID. This
is mitigated in CONFIDANT by including policy infor-
mation within each agent. Agent a1

1 contains the list of
monitored files as defined prior to initial dispatch. The
internal data is not modified during network traversal. If
the policy information for a critical file is somehow ma-
liciously altered within a1

1, redundancy of agents in com-
mittee C1 ensures that particular file will be inspected
by other agents. Also, if policy data has been mali-
ciously altered, the absence of messages provided by a1

1

to other members of C1 reflect that a monitored file was
not scanned. This is detected by agents in C1 as tamper-
ing.

Value Jamming occurs at the alarm level and involves
interference with a malicious high-priority process alter-
ing the contents of memory. This is mitigated in CON-
FIDANT by enforcing each committee agent to be re-
sponsible for maintaining file status information. Multi-
ple agents reside simultaneously on a node at any given

time, so there is no single memory location that serves
as a vulnerable status flag. Memory locations used for
status information can also vary each time an agent ai

j

visits a node due to occupying a different memory lo-
cation. Since status flag memory locations can be both
spatially and temporally distributed for each agent visi-
tation, CONFIDANT is less vulnerable to tampering by
jamming.

4.5 Selective Deception

In order for a framework to be subject to tampering at
TPFS by File Juggling, an adversary must be able to pre-
dict that a file integrity scan will occur at time tscan as
to perform undetected file system modifications. Selective
Deception is mitigated in CONFIDANT by enabling mul-
tiple redundant agents ai

j operating in committee Ci to
have a unique itinerary and scheduling parameters. Agent
visitation does not occur at regular intervals. It is not re-
quired for an individual CONFIDANT agent to visit every
node, but coverage of all nodes is guaranteed by the use
of multiple agents each with an independent itinerary.

4.6 Tampering Mode User Rank

The defined user capability can be illustrated in terms of
tampering modes applicable to each rank. As shown in
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Figure 7: IDS tampering mode rank

Figure 7, outsiders exhibit exposures of the lowest rank,
Rank III, and are able to perform only Blockading across
the network. In addition to Rank III exposures, Legiti-
mate Users can also perform File Juggling in certain cir-
cumstances. Consider the case of delegating web server
administration responsibilities to someone who is not the
superuser. The webmaster has the required access to
modify web server configuration. If these configuration
files are monitored as defined by the administrator in the
IDS policy data, the webmaster has the ability to tamper
via File Juggling. The remaining eleven exposures are
restricted to Rank I, or the superuser level.

5 Conclusion

IDS tampering modes can be divided into five broad cate-
gories defined as Spoofing, Termination, Sidetracking, Al-
tering Internal Data, and Selective Deception. These cat-
egories can be further identified as tampering directed
specifically toward IDS sensor, control, and alarm cate-
gories. All capabilities are distributed and transactions
are interlocked by tamper-evident handshaking proto-
cols. Moreover, the agent dispatch policies and travel
itineraries are constructed dynamically in response to
events throughout the network.

It is necessary and sufficient to attain a robust file in-
tegrity framework by addressing tampering modes within
the domain of administrators, denoted as TMSU . By fo-
cusing development effort on superuser exposures, other
vulnerabilities are mitigated without the need to explic-
itly design mechanisms to address exposures of lower
rank. CONFIDANT employs mitigation strategies such
as Encapsulation, Interlocking, Redundancy, and Manda-
tory Obsolescence for the defined tampering exposures.

Initial evaluation of CONFIDANT has shown it to be
effective in mitigating several severe insider tampering ex-
posures. Detailed evaluation methodology and results il-
lustrating robust operation in the presence of single point-
of-failure exposures are presented in [17]. Evaluation test
cases for each insider tampering mode and a comparative
metric scheme to evaluate the response of multiple frame-
works to the same stimulus is presented in a compan-
ion paper. Future work includes investigation of scenar-
ios that evaluate multiple simultaneous tampering modes

and framework extensions to layered systems with secure
hardware facilities.
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