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ABSTRACT
This paper introduces a novel way to detect metrical struc-
ture in music. We introduce a way to compute autocorre-
lation such that the distribution of energy in phase space is
preserved in a matrix. The resulting autocorrelation phase
matrix is useful for several tasks involving metrical struc-
ture. First we can use the matrix to enhance standard auto-
correlation by calculating the Shannon entropy at each lag.
This approach yields improved results for autocorrelation-
based tempo induction. Second, we can efficiently search
the matrix for combinations of lags that suggest particular
metrical hierarchies. This approach yields a good model
for predicting the meter of a piece of music. Finally we
can use the phase information in the matrix to align a can-
didate meter with music, making it possible to perform
beat induction with an autocorrelation-based model. We
present results for several meter prediction and tempo in-
duction datasets, demonstrating that the approach is com-
petitive with models designed specifically for these tasks.
We also present preliminary beat induction results on a
small set of artificial patterns.

Keywords: Meter prediction, tempo induction, beat in-
duction, autocorrelation, entropy

1 Introduction
In this paper we introduce an autocorrelation phase ma-
trix, a two-dimensional structure (computed from MIDI
or digital audio) that provides the necessary information
for estimating the lags and phases of the music’s metrical
hierarchy. We use this matrix as the core data structure to
estimate the meter of a piece (meter prediction), to esti-
mate the tempo of a piece (tempo induction) and to align
the piece of music with the predicted metrical structure
(beat induction).

We will provide algorithm details and experimental re-
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sults for meter prediction and tempo induction. We will
also present some details concerning the alignment of the
metrical structure with a piece of music. We will also
present alignment results for a small dataset of artificial
patterns. However the details of computing this alignment
online (for beat induction) are the topic of another paper.

The structure of this paper is as follows. In Section 2
we will discuss other approaches to finding meter and beat
in music. In Section 3 we will describe our model consist-
ing of the creation of an autocorrelation matrix, computa-
tion of the entropy for each lag in this matrix, the selection
of a metrical hierarchy and the alignment of the hierarchy
with music. Finally in Section 4 we present simulation
results.

Due to space constraints we have omitted de-
tails for aligning the autocorrelation phase matrix
with a musical signal so as to aid in beat induc-
tion. A longer report containing these details is
available at www.iro.umontreal.ca/˜eckdoug/
publications.html.

2 Meter and Autocorrelation
Meter is the sense of strong and weak beats that arises
from the interaction among hierarchical levels of se-
quences having nested periodic components. Such a hi-
erarchy is implied in Western music notation, where dif-
ferent levels are indicated by kinds of notes (whole notes,
half notes, quarter notes, etc.) and where bars establish
measures of an equal number of beats (Handel, 1993). For
instance, most contemporary pop songs are built on four-
beat meters. In such songs, the first and third beats are
usually emphasized. Knowing the meter of a piece of mu-
sic helps in predicting other components of musical struc-
ture such as the location of chord changes and repetition
boundaries (Cooper and Meyer, 1960).

Autocorrelation works by transforming a signal from
the time domain into the frequency domain. Autocorre-
lation provides a high-resolution picture of the relative
salience of different periodicities, thus motivating its use
in tempo and meter related music tasks. However, the
autocorrelation transform discards all phase information,
making it impossible to align salient periodicities with
the music. Thus autocorrelation can be used to predict,
for example, that music has something that repeats every
1000ms but it cannot say when the repetition takes place
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relative to the start of the music. One primary goal of our
work here is to compute autocorrelation efficiently while
at the same time preserving the phase information neces-
sary to perform such an alignment. Our solution is the
autocorrelation phase matrix.

Autocorrelation is certainly not the only way to per-
form meter prediction and related tasks like tempo induc-
tion. Adaptive oscillator models (Large and Kolen, 1994;
Eck, 2002) can be thought of as a time-domain correlate to
autocorrelation based methods and have shown promise,
especially in cognitive modeling. Multi-agent systems
such as those by Dixon (2001) have been applied with suc-
cess. as have Monte-Carlo sampling (Cemgil and Kappen,
2003) and Kalman filtering methods (Cemgil et al., 2001).

Many researchers have used autocorrelation for mu-
sic information retrieval. Due to space constraints only
a short listing is provided here. Brown (1993) used au-
tocorrelation to find meter in musical scores represented
as note onsets weighted by their duration. Vos et al.
(1994) proposed a similar autocorrelation method. The
primary difference between their work and that of Brown
was their use of melodic intervals in computing accents.
Scheirer (1998) provided a model of beat tracking that
treats audio files directly and performs relatively well over
a wide range of musical styles (41 correct of 60 exam-
ples). Volk (2004) explored the influence of interactions
between levels in the metrical hierarchy on metrical ac-
centing. Toiviainen and Eerola (2004) also investigated
an autocorrelation-based meter induction model. Their
focus was on the relative usefulness of durational accent
and melodic accent in predicting meter. Klapuri et al.
(2005) incorporate the signal processing approaches of
Goto (2001) and Scheierer in a model that analyzes the
period and phase of three levels of the metrical hierarchy.

3 Model Details
3.1 Preprocessing

For MIDI files, the onsets can be transformed into spikes
with amplitude proportional to their midi note onset vol-
ume. Alternately MIDI files can simply be rendered as
audio and written to wave files. Stereo audio files are con-
verted to mono by taking the mean of the two channels.
Then files are downsampled to some rate near 1000Hz.
The actual rate is kept variable because it depends on the
original sampling rate. For CD-audio (44.1Khz), we used
a sampling rate of 1050Hz allowing us to downsample by
a factor of 42 from the original file. Best results were
achieved by computing a sum-of-squares envelope over
windows of size 42 with 5 points of overlap. However
for most audio sources a simple decimation and rectifi-
cation works as well. The model was not very sensitive
to changes in sampling rate nor to minor adjustments in
the envelope computation such as substituting RMS (root
mean square) for the sum of squares computation.

3.2 Autocorrelation Phase Matrix

Autocorrelation is a special case of cross-correlation
where x1 == x2. There is a strong and somewhat sur-
prising link between autocorrelation and the Fourier trans-

form. Namely the autocorrelation A of a signal X (having
length N ) is:

A(X) = ifft(|fft(X)|) (1)

where fft is the (fast) Fourier transform, ifft is the in-
verse (fast) Fourier transform and || is the complex mod-
ulus. One advantage of autocorrelation for our purposes
is that it is defined over periods rather than frequencies
(note the application of the IFFT in Equation 1), yielding
better representation of low-frequency information than is
possible with the FFT.

Autocorrelation values for a random signal should be
roughly equal across lags. Spikes in an autocorrelation in-
dicate temporal order in a signal, making it possible to use
autocorrelation to find the periods at which high correla-
tion exists in a signal. As a music example, consider the
autocorrelation for a ChaChaCha from the ISMIR 2004
Tempo Induction contest is shown (Figure 1). The peaks
of the autocorrelation align with the tempo and integer
multiples of the tempo.
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Figure 1: Autocorrelation of a ChaChaCha from the ISMIR
2004 Tempo Induction contest (Albums-Cafe Paradiso-08.wav).
The dotted vertical lines mark the actual tempo of the song (484
msec, 124 bpm) and harmonics of the tempo.

Unfortunately autocorrelation has been shown in prac-
tice to not work well for many kinds of music. For exam-
ple when a signal lacks strong onset energy, as it might
for voice or smoothly changing musical instruments like
strings, the autocorrelation tends to be flat. See for ex-
ample a song from Manos Xatzidakis from the ISMIR
2004 Tempo Induction in Figure 2. Here the peaks are
less sharp and are not well-aligned with the target tempo.
Note that the y-axis scale of this graph is identical to that
in Figure 1.

0 500 1000 1500 2000 2500 3000 3500 4000

460

480

500

Target tempo = 563.0 ms (106.6 BPM)

lag (msec)

au
to

co
rr

el
at

io
n

15−AudioTrack 15.wav

Figure 2: Autocorrelation of a song by Manos Xatzidakis
from the ISMIR 2004 Tempo Induction contest (15-AudioTrack
15.wav). The dotted vertical lines mark the actual tempo of the
song (563 msec, 106.6 bpm) and harmonics of the tempo.

One way to address this is to apply the autocorrelation
to a number of band-pass filtered versions of the signal, as
discussed in Section 3.1. In place of multi-band process-
ing we compute the distribution of autocorrelation energy
in phase space. This has a sharpening effect, allowing au-
tocorrelation to be applied to a wider range of signals than
autocorrelation alone without extensive preprocessing.
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The autocorrelation phase information for lag l is a
vector Al:

Al =




bN−l

l
c∑

i=0

xli+φ xl(i+1)+φ




l−1

φ=0

(2)

We compute an autocorrelation phase vector Al for
each lag of interest. In our case the minimum lag of in-
terest was 200ms and the maximum lag of interest was
3999ms. Lags were sampled at 1ms intervals yielding
L = 3800 lags. Equation 2 effectively “wraps” the signal
modulo the lag l question, yielding vectors of differing
lengths (|Al| == l). To simplify later computations we
normalized the length of all vectors by resampling. This
was achieved by fixing the number of phase points for all
lags at K (K = 50 for all simulations; larger values were
tried and yielded similar results but significantly smaller
values resulted in a loss of temporal resolution) and re-
sampling the variable length vectors to this fixed length.
This process yielded an autocorrelation phase matrix P

where |P | = [L,K].
To provide a simple example, we use the first pattern

from the set found in Povel and Essens (1985). See Sec-
tion 4.4 for a description of how these patterns are con-
structed. For this example we set the base inter-onset in-
terval to be 300ms. In Figure 3 the autocorrelation phase
matrix is shown. On the right, the sum of the matrix is
shown. It is the standard autocorrelation.

Figure 3: The autocorrelation phase matrix for Povel & Essens
Pattern 1 computed for lags 250ms through 500ms. The phase
points are shown in terms of relative phase (0, 2π). Black in-
dicates low value and white indicates high value. Since only
relative values are important, the exact colormap is not shown.
On the right, the autocorrelation is displayed; it was recovered
by taking the row-wise sum of the matrix.

3.3 Shannon Entropy

As already discussed, is possible to improve significantly
on the performance of autocorrelation by taking advan-
tage of the distribution of energy in the autocorrelation
phase matrix. The idea is that metrically-salient lags will
tend to be have more “spike-like” distribution than non-
metrical lags. Thus even if the autocorrelation is evenly

distributed by lag, the distribution of autocorrelation en-
ergy in phase space should not be so evenly distributed.
There are at least two possible measures of “spikiness” in
a signal, variance and entropy. We focus here on entropy,
although experiments using variance yielded very similar
results.

Entropy is the amount of “disorder” in a system. Shan-
non entropy H:

H(X) = −
N∑

i=1

X(i)log2[X(i)] (3)

where X is a probability density.
We compute the entropy for lag l in the autocorrelation

phase matrix by as follows:

Asum =
N∑

i=0

Al(i) (4)

Hl = −
N∑

i=0

Al(i)/Asumlog2[Al(i)/Asum] (5)

This entropy value, when multiplied into the autocor-
relation, significantly improves tempo induction. For ex-
ample, in Figure 4 we show the autocorrelation along with
the autocorrelation multiplied by the entropy for the same
Manos Xatzidakis show in in Figure 2. On the bottom ob-
serve how the detrended (1- entropy) information aligns
well with the target lag and its multiples. Detrending
was done to remove a linear trend that favors short lags.
(Simulations revealed that performance is only slightly
degraded when detrending is omitte.) Most robust per-
formance was achieved when autocorrelation and entropy
were multiplied together. This was done by scaling both
the autocorrelation and the entropy to range between 0 and
1 and then multiplying them together.
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Figure 4: Entropy-of-phase calculation for the same Manos
Xatzidakis song shown in Figure 2. The plot displays (1 - en-
tropy), scaled to [0, 1] and detrended. Observe how the entropy
spikes align well with the correct tempo lag of 563ms and with
its integer multiples (shown as vertical dotted lines). Entropy
compares favorably with the raw autocorrelation of the same
song as shown in Figure 2.

3.4 Metrical hierarchy selection

We now move away from the autocorrelation phase ma-
trix for the moment and address task of selecting a win-
ning metrical hierarchy. A rough estimate of meter can be
had by simply summing hierarchical combinations of au-
tocorrelation lags. In place of standard autocorrelation we
use the product of autocorrelation and (1 - entropy) AE as
described above. The likelihood of a duple meter Mduple
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existing at lag l can be estimated using the following sum:

M
duple

l = AE(l) + AE(2l) + AE(4l) + AE(8l) (6)

The likelihood of a triple meter is estimated using the
following sum:

M
triple

l = AE(l) + AE(3l) + AE(6l) + AE(12l) (7)

Other candidate meters can be constructed. using sim-
ilar combinations of lags. A winning meter can be chosen
by sampling all reasonable lags (e.g. 200ms <= l <=
2000ms) and comparing the resulting M∗

l values. Pro-
vided that the same number of points are used for all can-
didate meters, these M∗

l values can be compared directly,
allowing for a single winning meter to be selected among
all possible lags and all possible meters. Furthermore,
this search is efficient given that each lag/candidate meter
combination requires only a few additions. For the meter
prediction simulations in Section 4 this was the process
used to select the meter.

3.5 Prediction of tempo

Once a metrical hierarchy is chosen, there are several sim-
ple methods for selecting a winning tempo from among
the winning lags. One option is to pick the lag closest to
a comfortable tapping rate, say 600ms. A second better
option is to multiply the autocorrelation lags by a win-
dow such that more accent is placed on lags near a pre-
ferred tapping rate. The window can be applied either be-
fore or after choosing the hierarchy. If it is applied be-
fore selecting the metrical hierarchy, then the selection
process is biased towards lags in the tapping range. We
tried both approaches; applying the window before selec-
tion yields better results, but only marginally better (on the
order of 1% better performance on the tempo prediction
tasks described below). To avoid adding more parameters
to our model we did not construct our own windowing
function. Instead we used the function (with no changes
to parameters) described in Parncutt (1994): a Gaussian
window centered at 600ms and symmetrical in log-scale
frequency.

4 Simulations
We have run the model on several datasets. To test
tempo induction we used the Ballroom and Song Excerpts
databases from the ISMIR 2004 Tempo Induction con-
test. For testing the ability of the model to perform me-
ter prediction we used the the Essen European Folksong
database and the Finnish Folk Song database. We also in-
clude preliminary simulations on alignment using the 35
artificial patterns from Povel and Essens (1985) as well as

4.1 ISMIR 2004 Tempo Induction

We used two datasets from the ISMIR 2004 Tempo In-
duction contest (Gouyon et al., 2005). The first dataset
was the Ballroom dataset consisting of 698 wav files each
approximately 30 seconds in duration encompassing eight
musical styles. See Table 1 for a breakdown of song styles

Table 1: Performance of model by genre on the Ballroom
dataset. See text for details.

Style Count Acc. A Acc. B Acc. C
ChaChaCha 111 106 107 109
Jive 60 6 60 60
Quickstep 82 0 77 80
Rumba 98 84 85 92
Samba 86 78 79 83
Tango 86 81 82 83
Vienn.Waltz 65 0 57 64
Waltz 110 86 86 93
Global 698 441 633 664

Table 2: Summary of models on the Ballroom dataset. See
text for details.

Model Acc. A Acc. B Acc. C
Acorr Only 49% 77% 77%
Acorr+Meter 58% 80% 85%
Acorr+Entropy 41% 85% 85%
Full Model 63% 91% 95%
Klapuri 63% 91% 93%

along with the performance of our model on the dataset.
In the table, “Acc. A” is Accuracy A from the contest:
the number of correct predictions within 4% of the tar-
get tempo. “Acc. B” is Accuracy B from the contest. It
also takes into account misses due to predicting the wrong
level of the metrical hierarchy. Thus answers are treated
as correct if they are within 4% of the target tempo mul-
tiplied by 2,3,1/2 or 1/3. “Acc C.” is our own measure
which also treats answers as correct if they are within 4%
of the target tempo multiplied by 2/3 or 3/2. This gives
us a measure of model failure due to predicting the wrong
meter.

We computed several baseline models for the ball-
room dataset. These results are shown along with
our best results and those of the contest winner, Kla-
puri et al. (2005), in Table 2. The “Acorr Only”
model uses simple autocorrelation. The “Acorr+Meter”
model incorporates the strategy described in this paper
for using multiple hierarchically-related lags in predic-
tion. The “Acorr+Entropy” uses autocorrelation plus en-
tropy as computed on the phase autocorrelation matrix
(but no meter). The full model could also be called
“Acorr+Entropy+Meter” and is the one described in this
paper. “Klapuri” shows the results for the contest winner.

Two things are important to note. First, it is clear that
both of our two main ideas, meter reinforcement (“Me-
ter”) and entropy calculation (“Entropy”) aid in comput-
ing tempo. Second, the model seems to work well, return-
ing results that compete with the contest winner.

We also used the “Song Excerpts” dataset from the
ISMIR 2005 dataset. This dataset consisted of 465 songs
of roughly 20sec duration spanning nine genres. Due to
space constraints, we do not report model performance on
individual genres. In table Table 3 the results are summa-
rized in a format identical to Table 2.
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Table 3: Summary of models on the Song Excerpts
dataset. See text for details.

Model Acc. A Acc. B Acc. C
Acorr Only 49% 64% 64%
Acorr+Meter 50% 80% 85%
Acorr+Entropy 53% 74% 74%
Full Model 60% 79% 88%
Klapuri 58% 91% 94%

Here it can be seen that our model performed slightly
better than the winning model on Accuracy A but per-
formed considerably worse on Accuracy B. In our view,
Accuracy B is a more important measure because it re-
flects that the model has correctly predicted the metrical
hierarchy but has simply failed to report the appropriate
level in the hierarchy.

4.2 Essen Database

We computed our model on a subset of the Essen collec-
tion (Schaffrath, 1995) of European folk melodies. We
selected all melodies in either duple (i.e. having 2n eighth
notes per measure; e.g. 2/4 and 4/4) or triple/compound
meter (i.e having 3n eighth notes per measure; e.g. 3/4 and
6/8). This resulted in a total of 5507 melodies of which
57% (3121) were in duple meter and 43% (2386) were in
triple/compound meter. The task was to predict the meter
of the piece as being either duple or triple/compound. This
is exactly the same dataset and task studied in Toiviainen
and Eerola (2004).

Our results were promising. We classified 90% of the
examples correctly (4935 of 5507 correct). Our model
performed better on duples than triple/compounds, classi-
fying 94% of the duple examples correctly (2912 of 3121
correct) and 85% of the triple/compound examples cor-
rectly (2023 of 2386 correct).

These success rates are similar to those in Toiviainen
and Eerola (2004). However it is difficult to compare our
approaches because their data analysis technique (step-
wise discriminant function analysis) does not control for
in-sample versus out-of-sample errors. Functions are
combined using the target value (the meter) as a depen-
dent variable. This is suitable for weighing the relative
predictive power of each function but not suitable for pre-
dicting how well the ensemble of functions would perform
on unseen data unless training and testing sets or cross-
validation is used. Our approach used no supervised learn-
ing.

4.3 Finnish Folk Songs Database

We performed the same meter prediction task on a sub-
set of the Finnish Folksong database (Eerola and Toivi-
ainen, 2004). This dataset was also treated by Toivi-
ainen and Eerola (2004) and the selection criteria were
the same. For this dataset we used 7139 melodies of
which 80% (5720) were in duple meter and 20% (1419)
were triple/compound meter. (For the Toiviainen et. al.
study, 6861 melodies were used due to slightly more

stringent selection criteria. However the ratio of duples
to triple/compounds is almost identical.) Note that the
datasets are seriously imbalanced: a classifier which al-
ways guesses duple will have a success rate of 80%. How-
ever given the relative popularity of duple over triple, this
imbalance seems unavoidable.

Our results were promising. We classified 93% exam-
ples correctly (6635 of 71239 correct). Again, our model
performed better on duples than triple/compounds, classi-
fying 95% of the duple examples correctly (5461 of 5720
correct) and 83% of the triple/compound examples cor-
rectly (1174 of 1419 correct).

4.4 Povel & Essens Patterns

To test alignment (beat induction) we used a set of
rhythms from Experiment 1 of Povel and Essens (1985).
These rhythms are generated by permuting the interval se-
quence 1 1 1 1 1 2 2 3 and terminating it by the interval 4.
These length-16 patterns all contain nine notes and seven
rests.

Their model works by applying a set of rules that
forced the accentuation of (a) singleton isolated events,
(b) the second of two isolated events and (c) the first and
last of a longer group of isolated events. Of particular im-
portance is that they validated their model using a set of
psychological experiments with human subjects.

Our model predicted the correct downbeat (correct
with respect to the Povel & Essens model) 97% of the time
(34 of 35 patterns). The pattern where the model failed
was pattern 27. Our interest in this dataset lies less in the
error rate and more in the fact that we can make good pre-
dictions for these patterns without resorting to perceptual
accentuation rules.

5 Discussion
The model seems to perform basic meter categorization
relatively well. It performed at competitive levels on
both the Essen and the Finnish simulations. Further-
more it achieved good performance without risk of under-
generalizing due to overfitting from supervised learning.
One area of current research is to see how well the model
does at aligning (identifying the location of downbeats) in
the Essen and Finnish databases.

As evidenced by the Povel & Essens results, the model
has potential for performing alignment of an induced met-
rical hierarchy with a musical sequence. Though we
have many other examples of this ability performance, in-
cluding some entertaining automatic drumming to Mozart
compositions, we have yet to undertake a methodical
study of the the limitations of our model on alignment.
This, and related tasks like online beat induction, are ar-
eas of ongoing research.

6 Conclusions
This paper introduces a novel way to detecting metrical
structure in a music and to use meter as an aid in detect-
ing tempo. Two main ideas were explored in this paper.
First we discussed an improvement to using autocorrela-

508



tions for musical feature extraction via the computation of
an autocorrelation phase matrix. We also discussed com-
puting the Shannon entropy for each lag in this matrix as
a means for sharpening the standard autocorrelation. Sec-
ond we discussed ways to use the autocorrelation phase
matrix to compute an alignment of a metrical hierarchy
with music. We applied the model to the tasks of meter
prediction and tempo induction on large datasets. We also
provided preliminary results for aligning the metrical hier-
archy with the piece (downbeat induction). Though much
of this work is preliminary, we believe the results in this
paper suggest that the approach warrants further investi-
gation.
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