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ABSTRACT
At its heart, music information retrieval is characterized
by the need to find the similarity between pieces of music.
However, “similar” does not mean “the same”. There-
fore, techniques for approximate matching are crucial to
the development of good music information retrieval sys-
tems. Yet as one increases the level of approximation, one
finds not only additional similar, relevant music, but also a
larger number of not-as-similar, non-relevant music. The
purpose of this work is to show that if two different re-
trieval systems do approximate matching in different man-
ners, and both give decent results, they can be combined
to give results better than either system individually. One
need not sacrifice accuracy for the sake of flexibility.

Keywords: Classifier Combination, Approximate
Matching

1 INTRODUCTION
It is a well-known result, due to work such as Scha-
pire (1990) and Tumer and Ghosh (1999) that if mul-
tiple classifiers each gives results better than random, one
can achieve results better than each classifier individually
by combining their classification hypotheses. In this pa-
per, we focus on ranked list classifiers, or classifiers that
make some sort of judgement about how relevant or non-
relevant a piece of music is to a query and then rank by
this judgement.

In music information retrieval, we are looking not for
exact matches, but for similarity. As a result, music in-
formation retrieval systems need to be approximate in
their search for matches. However, as one increases the
level of approximation, one not only finds more relevant
music pieces, but more non-relevant ones as well.
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There are two main approaches to approximate match-
ing. One can do “exact matching on fuzzy data, or fuzzy
matching on exact data” Wiggins (2005). We present two
“fuzzy” music retrieval systems: Markov Random Fields
models and Harmonic models. Each of these systems does
its approximation in a slightly different manner, finding
many non-relevant pieces alongside the relevant ones. We
show that by combining the results given by each system,
we can improve upon the results available through either
system.

As a result of this combination, we show that one need
not sacrifice precision to obtain better recall. Thus, one
can confidently build new systems that are more flexible
in their approximations, knowing that through classifier
combination the variations one is seeking can be success-
fully captured.

2 MUSIC REPRESENTATION
For these experiments, we use a 12-pitch class, octave-
invariant, event-based symbolic representation. For ex-
ample:

This is a “polyphonic” sequence of notes, with time
along the x-axis and pitch along the y-axis. All the notes
that start at the same time are arranged into the same ver-
tical slice. For the purpose of this paper, durations of notes
as well as time between notes, is ignored.

3 MARKOV RANDOM FIELD MODEL
A Markov Random Field is a model that will allow us to
predict the value of a current note ni,t from the values
of the surrounding variables (notes). In other words, it is
an estimated probability distribution P (ni,t|Hi,t), where
Hi,t is the set of all variables within some fixed distance
previous to time t, or notes that occur at time t, but have
an index lower than i.

In general, a random field framework allows arbitrary
dependencies (or features) between the target ni,t and its
neighborhood Hi,t. In this work, we deliberately restrict
allowed dependencies to binary questions of the form:
“was note j played at time s before t?”. We also allow
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Figure 1: Examples of musical features that may be in-
duced to predict the probability of note 2 being played
at time t. Black circles represent notes that are part of
the feature function. Boxed black circle denotes the note
n2,t. Boxed area represents the history H2,t. From left to
right, the features are: {n2,t n1,t}, {n2,t n2,t−1 n2,t−2},
{n2,t n1,t n3,t−1 n3,t−2}, {n2,t n0,t n2,t−2 n0,t−2}

generalizations where a question is asked about some sub-
set S of the notes in the allowed history Hi,t. The answer
to a question of this form will be called the feature func-
tion fS and S will be referred to as the support of f . For a
given support S ∈ Hi,t, the feature function fS is defined
as the conjunction of answers about the individual notes in
nj,s∈S:

fS(ni,t, Hi,t) = ni,t

∏

nj,s∈S

nj,s (1)

Defined in this manner, our feature functions are al-
ways boolean, and equal to 1 if all the notes defined by S

were played before the target note ni,t. Features are also
time-invariant (does not matter in which onset time they
occur) but are not index invariant (are not transposable up
or down any semitones). As an illustration, Figure 1 con-
tains some examples of features that could have an impact
on note “2” at time t.

The parametric form that characterizes the random
field model is a member of the exponential (or log-linear)
family, expressed as:

P̂ (ni,t|Hi,t) =
1

Zi,t

exp







∑

f∈F

λff(ni,t, Hi,t)







(2)

In equation (2), the set of scalars Λ = {λf : f ∈ F}
is the set of Lagrange multipliers for the set of structural
constraints F . Intuitively, the parameter λf ensures that
our model predicts feature f as often as it should occur
in reality. Zi,t is the normalization constant that ensures
that our distribution sums to unity over all possible values
of ni,t. In statistical physics, it is known as a partition
function and is defined as follows:

Zi,t =
∑

n

exp







∑

f∈F

λff(n,Hi,t)







(3)

The exact manner in which the features f ∈ F , scalars
λ ∈ Λ and Zi,t are chosen is beyond the scope of this
poster, but is covered in Pickens and Iliopoulos (2005).
However, the basic idea is that there is a target empirical
distribution P̃ (n|H) given by a piece of music, and the
goal is to fit the model P̂ (n|H) to this target.

Music retrieval using these models is done by estim-
ating a model using a given query as a target distribution,

and then observing how well that query model predicts the
notes in each document in the collection.

∑

H

P̃D(H)
∑

n

P̃D(n|H) log P̂Q(n|H) (4)

In other words, our similarity measure is the ex-
pected cross-entropy between the empirical distribution
P̃D(n|H) of the document and the estimate P̂Q(n|H) pro-
duced by the query model, as given by equation 4.

4 HARMONIC MODEL
While the random field models operate on note conjunc-
tion features, the harmonic models developed by Pick-
ens and Crawford (2002) work by mapping each 12-
dimensional note onset vector s onto a 24-dimensional
chord vector of the 12 major and 12 minor triads. This
ad hoc mapping takes into account not only the size of
the overlap between the note and the chord, but also the
total number of notes in the simultaneity, and the Krum-
hansl and Shepard (1979) perceptual distance between the
chords in the lexicon:

Context(s, c) =
|s ∩ c|

|s|

∑

c′∈lexicon

|s ∩ c′|

(|s| ∗ Krum(c′, c)) + 1

(5)
This context score is computed for every chord c in

the lexicon. Additionally, inter-vector smoothing is per-
formed, whereby neighboring vectors are allowed to con-
tribute to the partial observation of the current vector. A
vector of partial observations is then obtained by normal-
izing by the sum total:

PartialObs(s, c) =
Context(s, c)

∑

c′∈lexicon Context(s, c′)
(6)

This vector of partial observations over the chord lex-
icon is then used as the raw feature set for model estim-
ation. For example, suppose we have a lexicon of three
chords, P , Q, and R. A sequence of partial observation
vectors might appear as follows:

Partial observation vectors
Chord 1 2 3 4 5

P 0.2 0.1 0.7 0.5 0
Q 0.5 0.1 0.1 0.5 0.1
R 0.3 0.8 0.2 0 0.9

Total 1.0 1.0 1.0 1.0 1.0

We simply count the number of length m sequences
through a piece of music, each count weighted by the frac-
tional observation amount. Continuing our example, sup-
pose m = 2. We begin with the window from timestep 1
to timestep 2. The sequence P;P is observed in propor-
tion to the amount in which we observe P at timestep 1
and also observe P at timestep 2 (0.2 * 0.1 = 0.02). The
sequence Q;R is observed in proportion to the amount in
which we observe Q at timestep 1 and then R at timestep 2
(0.5 * 0.8 = 0.4), and so on.

We next divide these chains into two parts, the “previ-
ous state”, or history, and the “current state”. We define

649649



the history H as the first m-1 chords in the sequence, and
the current state c as the final chord in the sequence. For
example, with an m=2 chain “P;Q”, the history is the
state “P” and the current state is “Q”. With an m=3 chain
“P;Q;P”, the history is the state “P;Q” and the cur-
rent state is “P”

We obtain parameters for the conditional probability
distribution P̂ (c|H) by doing maximum likelihood estim-
ation using the complete set of extracted chains, where
|H, c| is the number of times the sequence with history H

followed by chord c is observed.

P̂ (c|H) =
|H, c|

∑

Hi
|Hi, c|

(7)

Prior to retrieval, at indexing time, we estimate
P̂ (c|H) for every piece of music in the collection. At re-
trieval time, when presented with a query, we estimate a
model for the query in the exact same manner. Similarity
is calculated between the query model and every docu-
ment model in the collection using the Kullback-Leibler
(KL) divergence measure, also known as relative entropy.
Pieces are ranked by increasing dissimilarity to the query.

5 CLASSIFIER COMBINATION
Our approach is among the simplest possible. Combining
the actual similarity score given by each system is diffi-
cult, because this score means something completely dif-
ferent depending on the system. Instead, we combine the
ranks that each system gives, by giving each piece of mu-
sic a new score equal to the average of the two ranks given
by each system. Pieces are then reranked by this average
score. Ties, if any, are broken by randomly ordering all
pieces with that same score.

If both systems rank a piece highly, it will continue to
be ranked highly in the combined ranking. If one system
gives a high rank and another a low rank, it will not fare as
well. The intuition is that, because the two systems differ
in their approximation methods, non-relevant pieces that
happen to be given a high rank under the peculiarities of
one system will not fare as well under the other. Pieces
which truly are relevant will receive decent, though not
perfect, rankings under both methods, and will therefore
percolate to the top, in the combination.

6 EXPERIMENTS
For our project, we have four collections. The first is a
set of approximately 3000 polyphonic music pieces from
the CCARH at Stanford. These are mostly baroque and
classical pieces from Bach, Beethoven, Corelli, Handel,
Haydn, Mozart and Vivaldi. Our remaining three sets of
music, on the other hand, are pieces which were inten-
tionally composed as variations on some theme. These
are 26 variations on the tune known to English speak-
ers as ‘Twinkle, twinkle, little star’, 75 versions of John
Dowland’s ‘Lachrimae Pavan’ from different 16th and
17th-century sources, and 50 variations by four different
composers on the well-known baroque tune ‘Les Folies
d’Espagne’.

For retrieval, we select a piece from the three sets of
variations and use that as the query. All other pieces from
that same variation set are judged relevant to the query,
and the rest of the collection is judged non-relevant. This
process is repeated for all pieces in all three sets of vari-
ations, for a total of 151 queries.

We define ΘMRF as the retrieval system based on ran-
dom fields. ΘHARM=2 denotes a retrieval system based
on harmonic models with the chord sequence length set to
2 (and a small smoothing window), while ΘHARM=3 is a
length 3 chord sequence and a larger smoothing window.
Finally, ΘMERGE=2 and ΘMERGE=3 denote the com-
bined ranked lists of ΘMRF and ΘHARM , with the chain
set to 2 or 3, respectively. Figure 2 shows the results. Per-
centage improvements are given for the ΘMERGE lists
over each of the other two lists. An asterisk indicates stat-
istical significance (t-test at a 0.05 level).

7 ANALYSIS

The first thing we note is that the classifier combination
works. For both chain lengths, the combination yields
anywhere from a 20% to a 40% or more average improve-
ment over either the harmonic model or the random field
model alone, and the improvement is statistically signific-
ant at every level of recall. Total number of relevant doc-
uments in the top 1000 decreases slightly (≈5%) when
compared against ΘMRF , but it still an ≈20% improve-
ment over the ΘHARM models.

But why does it work? MRF model estimation in-
volves adding thousands of features to the model, each
of which pinpoints some exact subset of notes and gives a
weight to the relative importance of that subset. The idea
is that if a variation has a few notes missing, hundreds of
these feature functions will no longer be activated. Yet
thousands more features will still be activated, along with
their weights, and thus the overall prediction accuracy of
the current note will still be good. However, the system
still makes mistakes in that spurious occurances of notes
sometimes activate highly-weighted feature functions, and
thus pull in non-relevant pieces.

Harmonic models, on the other hand, smear out note
observations into chords. Relevant variations which do
not use the exact same notes might use notes from the ex-
act same chord. By using triads as features, rather than
the notes themselves, one can find these variations. How-
ever, the system still makes mistakes in that there are non-
relevant pieces that are harmonically similar, without ac-
tually being a “true” variation on the query.

Each of these systems makes its relevance-
classification decision using a different technique.
Both do a good job of finding relevant variations, but
also make mistakes. However, they make mistakes for
different reasons. If the mistakes were as consistent as
the successes, i.e. if the same non-relevant pieces were
always ranked highly by both systems, we would not
expect to see the consistent improvement in precision
over both systems at all levels of recall that the merged
list provides.
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ΘMRF ΘHARM=2 ΘHARM=3 ΘMERGE=2 ΘMERGE=3

%Change %Change %Change %Change
(ΘMRF ) (ΘHARM=2) (ΘMRF ) (ΘHARM=3)

Retrieved: 151000 151000 151000 151000 151000
Relevant: 8801 8801 8801 8801 8801
Rel|ret: 7239 5818 5650 6884 -4.90* +18.32* 6832 -5.62* +20.92*
Interpolated Recall - Precision
at 0.00 0.9781 1.0000 1.0000 0.9967 +1.9* -0.3 1.0000 +2.2* 0.0
at 0.10 0.4990 0.6166 0.6484 0.6818 +36.6* +10.6* 0.7215 +44.6* +11.3*
at 0.20 0.3488 0.4352 0.4638 0.5078 +45.6* +16.7* 0.5610 +60.8* +20.9*
at 0.30 0.2597 0.3363 0.3553 0.4015 +54.6* +19.4* 0.4387 +69.0* +23.5*
at 0.40 0.1923 0.2803 0.2945 0.3344 +73.9* +19.3* 0.3589 +86.6* +21.9*
at 0.50 0.1510 0.1398 0.1226 0.2072 +37.3* +48.2* 0.2109 +39.7* +72.0*
at 0.60 0.1174 0.1073 0.0861 0.1555 +32.4* +45.0* 0.1531 +30.3* +77.8*
at 0.70 0.0857 0.0730 0.0523 0.1140 +33.0* +56.1* 0.1116 +30.2* +113.4*
at 0.80 0.0575 0.0480 0.0362 0.0763 +32.6* +58.8* 0.0698 +21.5 +92.7*
at 0.90 0.0210 0.0328 0.0239 0.0445 +111.6* +35.8* 0.0397 +88.7* +65.8*
at 1.00 0.0029 0.0106 0.0053 0.0147 +401.5* +37.8* 0.0130 +343.4* +146.6*
Average precision (non-interpolated) over all rel docs

0.2054 0.2360 0.2476 0.2859 +39.22* +21.7* 0.3061 +49.05* +23.61*

Figure 2: Recall-Precision results. In the ΘMERGE columns, results are given for the combination of the ΘMRF and
corresponding-sized ΘHARM model, followed by the percentage improvement over both individual systems.

8 CONCLUSION
We have shown in this paper that two good polyphonic
retrieval systems can be combined to become even better.
Though the systems evaluated were for symbolic data, this
has serious implications for much of music retrieval. Mu-
sic retrieval systems typically do not work by finding exact
matches, no matter if the data is symbolic or audio. Music
is fluid and changing, and there are no hard rules about
what constitutes a “variation”. Some degree of approxim-
ation is always going to be needed.

In the future we hope to test an assortment of other
boosting and classifier combination techniques, not just
ranked list averaging. We also hope to test a number of
other matching systems beyond random fields and har-
monic models. However, the point of this short paper is
not the specifics of any one boosting technique, or even
any one retrieval technique. It is simply to show that we
need not build all-encompassing retrieval systems to do
approximate matching or variation finding. By building a
host of systems, each of which tackles the variation prob-
lem from a slightly different angle, and then combining
them, future music retrieval systems will be able to gain
the flexibility of finding more pieces without sacrificing
accuracy, and thus better capture musical variation.
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