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ABSTRACT

We present an approach to automatically create virtual
communities of users with similar music tastes. Our goal
is to create personalized music channels for these com-
munities in a distributed way, so that they can for example
be used in peer-to-peer networks. To find suitable tech-
niques for creating these communities we analyze graphs
created from real-world recommender datasets and iden-
tify specific properties of these datasets. Based on these
properties we select and evaluate different graph-based
community-extraction techniques. We select a technique
that exploits identified properties to create clusters of mu-
sic listeners. We validate the suitability of this technique
using a music dataset and a large movie dataset. On a
graph of 6,040 peers, the selected technique assigns at
least 85% of the peers to optimal communities, and ob-
tains a mean classification error of less than 0.05 over the
remaining peers that are not assigned to the best commu-
nity.

1 INTRODUCTION

Music recommender systems and algorithms continue to
attract scientific and commercial interest. Generally, mu-
sic recommender research focuses on either service-based
recommender systems, that can be used over the Internet,
or on autonomous recommender systems for non network-
enabled devices such as portable music players. In this pa-
per we are concerned with providing music recommenda-
tions and personalized music radio channels directly be-
tween connected systems and devices using peer-to-peer
networks. The concept of peer-to-peer radio emerged re-
cently. Such systems are already publicly available and
prove its technical feasibility (e.g. [9]). Regarding person-
alized recommendation over peer-to-peer networks rela-
tively little research has been conducted to date. One
such research project on distributed recommendation is
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the TRIBLER project (cf. Wang et al. [12]). TRI-
BLER provides users with personalized recommendations
for items shared in peer-to-peer networks using a dis-
tributed version of the widely-used collaborative filtering
approach (Resnick et al. provide an introduction to col-
laborative filtering in [11]). We describe in this paper our
approach to cluster peers into groups that share similar
music preferences and potentially other criteria, and to
provide music recommendations and shared music radio
channels to these groups. Music shared by peers in such
channels can then be transmitted directly between peers
within the groups or broadcasted to the groups of peers
depending on the underlying infrastructure.
The paper is organized as follows: In Section 2, we dis-
cuss the specific problems that need to be addressed to
realize distributed clustering of peers by music prefer-
ences. In Section 3, we perform an analysis of typical
datasets for recommender systems, we identify properties
of those datasets which can be exploited by using graph-
based clustering techniques. In Section 4, we compara-
tively evaluate several clustering techniques and identify
the most suitable according to its performance on optimal
assignment of peers to communities. We close with final
remarks and pointers to future work in Section 5.

2 PROBLEM DEFINITION AND SOLUTION
APPROACH

The main challenge when automatically creating groups
or communities of users in the desired setting is to iden-
tify clusters of similar peers in a peer-to-peer network so
that every peer in the system can enjoy a selection of mu-
sic that suits her music preferences. Creating communi-
ties of peers can be expressed as an optimization problem
which is composed of several potentially complementary,
but also potentially competitive objectives described in the
following Section.

2.1 A dynamical, distributed optimization problem

• Each peer must be satisfied with the music selection
proposed to her. Recommended or played music
must match the peer’s personal taste.

• Within each community a good average satisfaction
must be obtained. Optimally, each peer should be



more satisfied with the recommendations provided
by her community than she would be in any other
community.

• Adding a new peer to a community must not deteri-
orate the average satisfaction. When adding a new
peer to a community, the previously stated objective
must still be fulfilled both for her and for all mem-
bers of the community.

• Extreme community sizes must be avoided. Both
creating very large communities and very small
communities must be avoided. Assigning most or
all peers to a single large community can result
in an unsatisfactory listening experience; fragment-
ing peers into many very small communities limits
the exposure to additional music not included in a
peer’s music collection.

Moreover, various dynamical aspects have to be taken into
account for resolving the optimization problem:

• Peer-to-peer systems are intrinsically dynamic.
Peers may enter or leave the system at any given
time. This may require the system to dynamically
adapt the community structure.

• Music preferences evolve over time. A peer may
temporarily or permanently change her music pref-
erences. Reflecting such changes in a timely man-
ner is important in order to satisfy listeners.

Finally, given the distributed nature of peer-to-peer sys-
tems, all computations for creating and maintaining com-
munities must be performed by the peers themselves. We
provide an in-depth discussion of solutions for this aspect
elsewhere [2].

2.2 Solution approach

We adopt a graph-theoretic approach to solve the given
problems. We start by constructing a graph of all peers
and then apply a clustering technique on that graph in or-
der to form communities of peers. For constructing this
graph, we link each peer to her N most similar peers in
terms of music preferences. Each peer is characterized
by a vector of preference-song pairs, where the preference
values can be numerical (e.g. on a scale from 1 to 5) or
binary values (like or dislike). In our case, we assume that
these preferences reflect explicit ratings provided by each
peer.

We use the Pearson correlation coefficient to define the
similarity measure s between two peers a and b. This is a
similarity measure that is frequently used in collaborative
filtering recommender systems (e.g. Resnick et al. [11]):

s(a, b) =

∑
j (va,j − v̄a) (vb,j − v̄b)√∑

j (va,j − v̄a)2
∑
j (vb,j − v̄b)2

(1)

where j is the index of the song for songs present in both
peer’s preference vectors, va,i is the preference value by

peer a on song i, va corresponds to the mean preference
value for peer a over her complete song preference vector
Pa:

v̄a =
1
|Pa|

∑
i∈Pa

va,i (2)

Using this similarity measure we use a three step approach
to find a suitable graph-based solution to automatically
create communities of peers:

• We create and analyze graphs of peers using real-
world reference datasets and identify relevant com-
mon properties of such datasets.

• We comparatively evaluate several candidate clus-
tering techniques. We then select the most appropri-
ate technique for extracting communities of peers,
based on our objectives formulated in Section 2.

• We validate the performance of the selected tech-
nique experimentally.

We present selected results of our work in the following
sections. A detailed presentation of the work carried out
can be found in [2].

3 GRAPH OF PEERS

3.1 Datasets

Two datasets from the music and movie domain collected
under real-world conditions have been analyzed. The
datasets vary in the number of peers and in the amount
of preference data available for peers:

1. The EasyAccess (EA) dataset gathered within
Philips Research contains 74,631 ratings provided
by 462 users over 5,234 songs from 234 artists. It
does not contain any content metadata.

2. The MovieLens (ML) dataset [8] contains 1,000,029
ratings over 3,593 movies provided by 6,040 users.
The MovieLens dataset is widely used as a ref-
erence dataset for evaluating recommender algo-
rithms.

Additional evaluation results for a medium-sized dataset
are available in [2].

Both datasets contain regular ratings on a five point nu-
merical scale from one to five. We report evaluation re-
sults both for these regular ratings and for binary ratings.
Binary ratings are constructed as follows: values strictly
larger than 3 are considered as positive ratings, others are
considered as negative ratings. This results in an approxi-
mately equal amount of positive and negative ratings with-
out having to discard rating data.

The parameter N for the number of most similar peers
used is a variable in the analysis in order to study its influ-
ence on the topology of the resulting graphs. In all evalua-
tions we report results for values ofN = 5, 10, 20, 30, and
46. Larger values of N are impractical for distributed so-
lutions: it would be prohibitively time-consuming to com-
pute the exactN most similar peers for each user for large



values of N over a peer-to-peer system (especially for
large datasets as the time needed to compute these sim-
ilar peers increases with the size of the dataset and with
N ).

3.2 Graph properties

Peer-to-peer systems can easily contain thousands or mil-
lions of peers. The recently established scientific field of
complex network theory is concerned with studying and
simulating complex relations and dynamics in large real-
world networks [14]. Complex network theory is based on
graph-theoretic foundations and is specifically concerned
with real-world phenomena that exhibit network proper-
ties [1]. Thus insights and solutions from this field may
prove helpful for addressing the problems we are inter-
ested in.

A graph can be constructed as a directed graph, in
which all edges between nodes are directed, or as an undi-
rected graph, in which edges are not directed. A compo-
nent is a maximal sub-graph of nodes for which a path
exists between every pair of nodes. A connected graph is
a graph that has one unique component: a path exists for
every pair of nodes of this graph. A disconnected graph
consists of several separated components. The distance
dij between two nodes i and j is the length (i.e. the num-
ber of edges) of the shortest path between the two nodes.
The distance between nodes in two components is infinite.
The average distance l in a graph is the mean distance be-
tween node pairs in the graph. The neighborhood of a
node i are the nodes immediately connected to it and its
degree ki is the number of edges connected to it. In a di-
rected graph the indegree and outdegree are the number of
incoming and outgoing edges of a node.

3.3 Graph components and average distance

The “most similar peers”-relation used to construct graphs
of peers is not a symmetric relation. It is most suitably
represented as a directed graph of peers. However, di-
rected graphs created from the evaluation datasets are dis-
connected graphs for all experimental conditions. The
resulting graphs consist of one giant component and nu-
merous small components of size at most of the order of
ln(n), where n is the number of users (cf. Table 1). This
behavior is commonly found in real-world networks and
has been studied in [5].
Given the objectives defined in Section 2, a large fraction
of the small components found must be considered as too
small to constitute communities by themselves. Therefore
we use undirected graphs by discarding all information
about directedness of edges. This transformation is com-
monly used in complex networks analysis. It can be ap-
plied when it is reasonable to assume that connections ex-
pressed by edges can be considered to be symmetric, as it
is the case for user similarities using item ratings. The re-
sulting undirected graphs are fully connected for all exper-
imental conditions. The average distance between nodes
in the resulting undirected graph is no longer infinite but
in the range between 2 and 3 (cf. Table 1).

sc 〈k〉 lr l Cr C
EA N=5 4 9.5 2.73 2.64 0.02 0.10
EA N=10 2 17.8 2.13 2.36 0.04 0.10
EA N=20 1 31.9 1.77 2.10 0.07 0.10
EA N=46 1 62.7 1.48 1.87 0.14 0.17
ML N=5 3 10.0 3.79 0.0017 0.12
ML N=10 3 19.9 2.91 0.0033 0.10
ML N=20 5 39.4 2.37 0.0065 0.10
ML N=46 3 89.1 1.94 0.015 0.10

Table 1. Size of the second biggest component sc in the
directed graph. Average degree 〈k〉, average distance l
and clustering coefficient C of the undirected graphs of
peers for binary ratings and several values of number of
peers N . The average distance is missing for the ML data
set due to computing complexity. lr and Cr are the av-
erage distance and the clustering coefficient of a random
graph of the same size and same average degree.

3.4 Clustering coefficient

The clustering coefficient Ci of a node i measures the ten-
dency of the neighbors of a node i to be also neighbors of
each other. Watts and Strogatz [13] define it as the num-
ber of linksEi between the neighbors of a node divided by
the total number of links that can possibly exist between
those neighbors ki(ki−1)

2 . The clustering coefficient C of
a graph is the average of the clustering coefficients of all
its nodes. A clique is a set of nodes in a graph in which
every node is the neighbor of every other node; as a con-
sequence, the clustering coefficient of a clique is 1.

The clustering coefficient measures whether groups (or
cliques) of nodes tend to form in a graph. This is a po-
tentially interesting property given the objectives in Sec-
tion 2. Frequent occurrences of cliques may be exploited
for creating communities of peers. For the evaluation
datasets, clustering coefficients are indeed consistently
larger, and often much larger, than clustering coefficients
of a random graph with the same number of nodes and
average degree (cf. Table 1). This observation is inde-
pendent of the size of the dataset analyzed. Peers are
highly clustered irrespectively of the size of the network.
However, undirected graphs of most similar peers also ex-
hibit small average distances. This combination of prop-
erties indicates that the analyzed graphs have properties
of small-world networks. Small-world networks are fre-
quently encountered when analyzing real-world phenom-
ena [13]. They tend to form a single very compact cluster
with very small average distances. Here this cluster tends
to be very compact since the connection density (linked
to N ) is high. This makes it difficult to apply traditional
clustering techniques successfully.

3.5 Degree distribution

Since the small average distance within the graphs of
users makes it difficult to apply clustering techniques ef-
fectively, we study the degree distribution of the created
graphs to find other potentially useful properties. The
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Figure 1. Degree distribution of the MovieLens graphs
for regular ratings and N = 10. On a log-log scale it
can be approximated by a straight line (power law distri-
bution) or a broken line of negative slope.

undirected graphs consistently display the same charac-
teristics across all simulation conditions, as indicated in
Figure 1. While the degree distribution of the graphs is
not a power-law distribution, it is similar to one (as shown
in Figure 1), and indeed the graphs exhibit properties sim-
ilar to those of scale-free networks.

A scale-free network is a graph following a power-law
distribution defined by P (k) ∼ k−γ [3]. One property of
such networks that can be useful for us is that connections
between nodes in scale-free networks are not as evenly
distributed as they would be in random graphs. Instead,
scale-free networks contain some nodes that are highly
connected to many other nodes, termed “hubs”, and many
nodes with very small degrees. The graphs obtained from
the EA and ML datasets exhibit exactly such properties.
This presence of hubs can be exploited for cluster analy-
sis using specific techniques as discussed in Section 4.

3.6 Robustness to node removal

Another property of scale-free networks is their resilience:
Scale-free networks are robust to random node removal,
as long as the removed random node is not a hub node.
Hub node removal however can have a large impact on
a scale-free network, potentially splitting the network into
several components. As already mentioned in Section 3.3,
it would be difficult to create and maintain communities in
graphs with several components.

To analyze the robustness to node removal, nodes are
randomly removed from the graphs for different values of
N (see Figure 2). For neighborhood sizes of 10 or larger,
the network proves to be highly robust to random node re-
moval: even when 50% of the nodes are removed from the
network simultaneously, graphs still consist of one unique
component. Smaller neighborhood sizes lead to a higher
sensitivity to node removal. Interestingly, the graphs also
prove to be relatively robust to hub removal. This shows
that while the graphs do contain hub nodes, they only par-
tially exhibit properties of scale-free networks.
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Figure 2. Robustness of the EasyAccess graph to node
removal. Average number of components and percentage
of nodes of the initial graph in the largest component (i.e.
percentage of nodes of the initial graph in the largest com-
ponent) over 50 trials as a function of the percentage of
randomly selected removed nodes.

4 A CLUSTERING TECHNIQUE FOR
EXTRACTING COMMUNITIES

Given the highly compact nature of the analyzed graphs,
selecting a suitable clustering technique to extract com-
munities of peers is not a straightforward task. Well-
studied hierarchical clustering techniques, for example,
can not be readily applied given this property, because the
graphs are too compact to be divided.

4.1 Considered clustering techniques

Two well-known graph-partitioning clustering algorithms
were evaluated for the task of clustering peers: the Max-
Flow technique introduced by Flake et al. [6], and
the Edge-Betweenness clustering algorithm introduced by
Girvan and Newman [7].

The Max-Flow algorithm is based on a source-sink pro-
cedure that starts from a representative set of seed nodes
(source), and extracts a cluster by cutting the minimum
number of edges linking it to the rest of its graph (sink).

The Edge-Betweenness technique is a hierarchical di-
visive clustering technique. Edges are progressively re-
moved from a graph to reveal clusters. Assuming that the
density of edges is higher within a cluster than between
clusters, Girvan and Newman show that all shortest paths
between communities go along inter-cluster edges. Based
hereon they define edge-betweenness as “the number of
shortest paths between a pair of vertices that run along it”
[7], and we progressively remove the edges with the high-
est edge-betweenness to reveal clusters.

Besides these graph-divisive algorithms we can try to
exploit the presence of hubs in the evaluated graphs to
cluster them. They exhibit several interesting properties.
Since the outdegree of a node is fixed toN , a hub is a node
with a high indegree, so a user similar to a high number of
other ones. Moreover, the average number of song prefer-
ences per hub is always considerably smaller than the av-
erage number of songs per user over the whole network,
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Figure 3. Cumulative distribution of the sizes of the com-
munities for binary ratings, N = 20, 150 starting hubs
ML data-set (left) and for regular ratings, N = 46, 46
starting hubs EA data-set (right) using Hub-Based clus-
tering.

with hub users having around a third of this value. Hubs
can be seen as users with songs commonly loved by their
neighbors, and so can federate around them communities
of users with common tastes. Thus a clustering technique
that exploits this idea is also evaluated: the Hub-Based
clustering technique introduced by Da Fontoura Costa [4].

In Hub-Based clustering each hub in a large network
is considered as the centroid of a cluster. Starting from
these centroids, clusters are obtained by propagating la-
bels from the hubs to other nodes through shortest paths.
This procedure is performed as simultaneous wave fronts
and repeated until every node is labeled. This technique
can easily be applied in distributed environments, since
the labels are propagated through purely local interactions
between users and their direct neighbors. Experiments of
this last technique with edges that were assigned with cor-
relation values as weights were also performed, but had
undesirable effects on the sizes of the created communi-
ties.

4.2 Evaluation of clustering techniques

The three clustering techniques are applied on the de-
scribed datasets, again evaluating all experimental condi-
tions described in Section 3.1.

Evaluation results of both the Max-Flow and the Edge-
Betweenness technique are similar across all experimen-
tal conditions: some individual nodes and few very small
clusters (of 2-3 nodes) are isolated from the rest of the
graph, which remains as a single giant component. This is
not sufficient given the objectives defined in Section 2.

The evaluation of Hub-Based clustering shows that this
technique does not generally lead to such extreme cluster
sizes. Figure 3 shows cluster sizes created using Hub-
Based clustering for the EasyAccess and MovieLens data-
sets. Hub-Based clustering results in a larger range of
different cluster sizes for all experimental conditions. It
satisfies the requirement to avoid only creating extreme
cluster sizes (see Section 2). Moreover, the cumulative
distributions of the cluster sizes are very similar to the de-

gree distributions of the networks of most similar peers.
On a log-log scale they can be approximated by a straight
line (power law distribution) or a broken line of negative
slope. Here the created cluster structures from the Hub-
Based clustering technique seem to closely reflect the in-
trinsic topology of the network of peers.

In conclusion, both the Max-Flow and the Edge-
Betweenness technique only create clusters of extreme
sizes. This is likely caused by the specific properties
found in the evaluation datasets. The compactness of
the graphs can not be divided into clusters sufficiently
by these two techniques. Hub-Based clustering creates a
range of different cluster sizes, which makes it a suitable
candidate for further validation.

4.3 Validation measure

Validating the suitability of the Hub-Based clustering
technique to create clusters or communities of peers ac-
cording to our objectives requires us to assess the quality
of the clustering achieved.

A frequently used quality measure for clustering tech-
niques is the modularity Q introduced by Girvan and
Newman [10]. The modularity determines whether a clus-
ter structure tends to have dense connections within clus-
ters and sparser connection between them. For the highly
compact graphs of the evaluation datasets (see Section
3.4) usingQ to evaluate community formation is not feasi-
ble. The graphs of the evaluation datasets are too compact
for any clustering technique to achieve expected values for
good clustering results using Q. The modularity Q is not
well-suited for this validation, at least when considering
standard interpretations of modularity values.

Instead, we evaluate the quality of the communities of
peers we obtain by measuring the peers’ satisfaction with
their assignment to a cluster. To evaluate the satisfaction
using the evaluation datasets, we proceed as follows.

For a community we define the preference list of songs
to be a set containing all songs of all members of the clus-
ter. The average rating for a song is used as the community
score of a song. For each user u a truncated preference list
of her community Cu is computed. This truncated pref-
erence list is composed of the ratings of all users of the
community except for those of user u. To measure how
satisfied a user is by her community, we evaluate whether
the song selection of the community she was assigned to
without her being part of it suits her better than the music
of other communities. A user u is satisfied by her com-
munity if:

s (u,Cu) ≥ 1
|C| − 1

∑
c∈C−{Cu}

s(u, c) (3)

where C is the ensemble of all communities and s is the
Pearson correlation coefficient computed on the prefer-
ence lists. The classification error e, made when a user
is not satisfied by her community (misclassified), is:

e =
µ− s (u,Cu − {u})

2
(4)



where

µ =
1

|C| − 1

∑
c∈C−{Cu}

s(u, c) (5)

4.4 Validation results

Our validation of the clusters found using the Hub-Based
clustering technique results in several noteworthy find-
ings. Firstly, the percentage of well-classified users varies
between 48% and 92%. It increases with the size of the
network. Using regular ratings leads to better classifica-
tion results than using binary ratings. The neighborhood
size chosen also influences the classification accuracy: the
percentage of satisfied users reaches its maximum values
for numbers of most similar peers N = 20, and N = 30.
It is consistently above 75% for all datasets used for vali-
dation for those values ofN when they are combined with
regular ratings and an optimal number of starting hubs
chosen so that the average number of users per community
is between 20 and 30 (cf. [2]). For the largest dataset used
this percentage is consistently above 85%. This indicates
that the percentage of correctly assigned peers increases
with the overall community size.

The classification error for the remaining users varies
between 0.03 and 0.16. Again, this error decreases as the
size of the dataset increases and is consistently smaller
than 0.05 for the best parameters described above. This
means that the music of their community is almost as good
for them as the music from the other communities.

Summarizing our evaluation, we find that the evalu-
ated Hub-Based clustering technique assigns a large ma-
jority of users to the clusters optimal to them and assigns
the non-optimally assigned users to clusters that are very
close to optimal clusters for neighborhood sizes of 20 and
30 most similar peers. The results of the validation indi-
cate that the technique performs with increasing quality
the larger the dataset it is applied on is.

5 CONCLUSION

In this paper we presented a technique to cluster users ac-
cording to their explicitly or implicitly stated music pref-
erences. In addition to dealing with the highly compact
nature of the graphs of similar peers it also respects and
uses the intrinsic topology of those graphs to build com-
munities. It did so with convincing results, consistently
assigning at least 85% of all peers to optimal communi-
ties, and assigning remaining users to communities that
are almost as suitable as their optimal community. The
graph of peers created using the Pearson correlation mea-
sure showed to be highly robust to random node removal.
Graphs with such properties are well suited to be used in
peer-to-peer networks.

Future work we are planning includes investigating
how the proposed solution performs in dynamic envi-
ronments with many rapidly joining and parting network
members, and in which user preferences change over time.
We also intend to examine the influence of different simi-
larity measures on the graph structure, and to evaluate the

performance and applicability of different similarity mea-
sures in peer-to-peer networks.
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