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ABSTRACT

We describe a new approach to the “desoloing” prob-
lem, in which one tries to isolate the accompanying in-
struments from a monaural recording of a soloist with ac-
companiment. Our approach is based on explicit knowl-
edge of the audio in the form of a score match – a corre-
spondence between a symbolic score and the music audio,
giving the times of all musical events. We employ the fa-
miliar idea of masking the short time Fourier transform
to eliminate the solo part. The ideal mask is estimated
by fitting a model to the data, whose note-based compo-
nents are derived from the score match. The parameters
for our probabilistic model are estimated using the EM al-
gorithm.

1 INTRODUCTION

We focus here on the problem of isolating an accompany-
ing instruments from a monaural recording of music for
soloist and accompaniment. We call this problem “des-
oloing.” The primary application for desoloing, at least
in terms of numbers, would likely be karaoke. Desoloing
would produce an accompaniment for any song of interest,
thus increasing the range of music on which both singers
and listeners could enjoy karaoke.

Our interest in this problem, however, stems from our
work with musical accompaniment systems. The idea here
seems, at first, painfully close to karaoke, except that the
accompanying instruments must follow the soloist, rather
than the other way around. This change adds a great deal
of complexity to the problem, while also making it attrac-
tive to “classical” musicians. Our preferred method of or-
chestral resynthesis is from actual audio. While commer-
cial orchestral accompaniments are available for some of
the solo literature, they tend to be poorly recorded with
variable playing. A successful desoloing algorithm would
harvest a wide world of beautifully played and expertly
recorded orchestras for the accompaniment system. Des-
oloing serves an MIR need by allowing one to access the
“sources” of an audio file independently.

The desoloing problem takes an asymmetric view of
the familiar source separation idea, which has received
much attention in the signal processing community over
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Figure 1. Spectrogram of opening of Samuel Barber Vio-
lin Concerto. Vertical lines mark the solo note onset.

the last decade. Much of this work is called “blind” source
separation, meaning that one tries to separate the sources
with little or no knowledge of their contents [1] [2], [3],
[4]. The general area of blind source separation includes
several efforts that are explicitly devoted to music audio
[5] and [6]. Our framing of the problem is distinct from
most work in source separation due to the explicit knowl-
edge we have of the audio — we assume that we are given
a symbolic score to the piece of music, giving the pitches
and instruments of all notes in the music, as well as a score
match, giving a precise correspondence between these notes
and the audio file. The present work is enabled by our pre-
vious work in orchestral score following with very minor
adjustment done manually in case of mismatch. Figure 1
demonstrates this correspondence between score and au-
dio that forms the basis of our approach. A similar prob-
lem statement was defined in [7].

While this problem is, no doubt, highly challenging,
our particular needs make the goal somewhat more attain-
able. Any desoloing procedure will almost certainly re-
sult in the loss or disfigurement of certain aspects of the
orchestral audio we wish to isolate. However, in our ac-
companiment application, the live soloist will be playing
at the precise time-frequency regions where our desoloing
procedure does the most damage. Thus, much of the harm
done by desoloing will be masked by the live soloist. This
brings our desoloing into the realm of tractable problems.

2 MASKING IN A TIME-FREQUENCY DOMAIN

Our approach operates on the short time Fourier transform
(STFT) X of the audio signal x in the time domain [8].
We use binary masking to decompose X into X = X̂s +



X̂a. X̂s and X̂s are our estimates for the solo and the
accompaniment. We denote this by

X̂s ≈ 1SX

X̂a ≈ 1AX

where

1C(t, k) =
{

1 if (t, k) ∈ C
0 otherwise

We define Â to be the complement of Ŝ.
Convincing audio signals x̂s and x̂a in the time do-

main are reconstructed by STFT−1X̂s and STFT−1X̂s.
We include Hann window in STFT with L = N/H = 4
hops per FFT length, as it fulfills the constant overlap-add
(COLA) constraint for perfect recovery of x from X [13].

It is well-known that perceptually good results can be
constructed using the ideal mask that can be computed
when the sets, S and A are known, as when x is artificially
constructed by adding together two known signals xs and
xa. For instance, see [9].

Moreover, with known x, xs and xa, we can derive a
percentage that describes how much binary masking we
can estimate correctly. This will serve as a quantitative
evaluation other than the audible result.

Roweis [14] described the idea of binary masking from
a filter bank point of view.

3 MODEL-BASED DECOMPOSITION

3.1 Note-based models

Similar to that of [11], our approach to desoloing relies
on a note-based probabilistic model for the magnitude of
the STFT, |X(t, k)|. Through this model, we decompose
the magnitude into two components, one for the soloist
and one for the orchestra, via parameter estimation for the
model. We then move easily to the classification of each
time-frequency point using our decomposition.

Suppose we have a collection of models, M , that de-
scribes all of the known contributions to our data |X(t, k)|.
Each model is described by a “template” function qm, sup-
ported on a subset of time-frequency space, Dm, with

∑

(t,k)∈Dm

q(t, k) = 1

The note models will describe the contribution of a given
note over a range of frames t, in which the associated qm

would be supported on the frequency bins, k, near the har-
monics of the note over the relevant range of frames, t.
One could also create models for various other contribu-
tions such as the attack and reverberation of a note, etc.

3.2 Statistical assumptions for EM

To employ the expectation-maximization(EM) algorithm,
we assume that the magnitude contribution to the spec-
trogram for each model is given by a collection of inde-
pendent Poisson random variables {Zm(t, k)} for (t, k) ∈

Dm, as the hidden variable in [12], with means αmqm(t, k)
for some αm ≥ 0. Thus, αm describes the extent to which
the contributing event is active, while the average contri-
bution profile, qm(t, k), is fixed for the model. Further-
more, we assume that

|X(t, k)| =
∑

m∈M

Zm(t, k) (1)

For this model to make sense, the units of |X(t, k)| are
scaled so that no significant loss is incurred by regard-
ing the |X(t, k)| as integers, which is consistent with the
Poisson assumptions. Strictly speaking, Eqn. 1 cannot be
completely correct since, for complex numbers, the sum
of the magnitudes is not equal to the magnitude of the
sum. However, the assumption is approximately true in
the very common case in which one magnitude is much
greater than all others. Ellis [10] gives a discussion of this
assumption.

3.3 EM algorithm

With the assumptions above, we decompose our spectrum
|X(t,m)| by estimating the αm and qm parameters using
the EM. This algorithm is based on estimating the col-
lection of hidden variables, {Zm(t, k)}, using the current
parameter configuration, and re-estimating the parameters
using these estimates. Suppose that αr

m and qr
m are the

estimates we have after the rth iteration of the algorithm.
The E-step of the EM algorithm computes

Cr
m(t, k) = E[Zm(t, k) | |X| ]

=
αr

mqr
m(t, k)|X(t, k)|∑

µ∈M αr
µqr

µ(t, k)

Cr
m(t, k) is the estimated contribution to time-frequency

point (t, k) given by model m, using our current parame-
ters.

The M-step of the EM algorithm will vary depending
on the parameters we are estimating. For the αm parame-
ters, the M-step would be

αr+1
m =

∑

(t,k)∈Dm

Cr
m(t, k)

This is not surprising, since αm represents our estimate of
the total spectral magnitude contribution of model m.

Some of our model templates, qm, are fixed through the
EM iterations. For those that are re-estimated, the M-step
will depend on the parametric form of the model.

3.4 Parameters to be estimated

We have experimented with a variety of different models,
but, at present, get the best results with a relatively sim-
ple configuration. For each note, m in the score, we let
I(m) be the range of frames that span the inter-onset in-
terval beginning with the onset of note m and ending with
the onset of the following note. This information follows
directly from our score match. For each note b, in both



solo and orchestra, we create a model, m, for each frame
t ∈ Ib with domain Dm = {(t, 0) . . . , (t,N − 1)}

qm(t, k) =
∑

h

phN(k; µh, σ2
h)

where
∑

h ph = 1 and

N(k; µ, σ2) = P (k − 1/2 < Y < k + 1/2)

where Y is a normally distributed random variable with
mean µ and variance σ2. For our note models we couple
all of the mean values by µh = hµ1(m) where µ1(m)
is the not-necessarily-integral frequency bin for the fun-
damental frequency of note m. While the peak widths
appear to be constant over harmonic number, we achieved
better results by allowing the variances σ2

h to increase some-
what with frequency. Finally, the ph constants were taken
to be representative of the characteristic frequency profile
for the particular instruments.

We have tried to estimate different combinations of these
parameters, sharing the parameters in different ways across
the entire collection of models. At present, the best as-
sumptions involve estimating only the µ1 parameter of a
solo note for each individual frame in the M-step

µr+1
1 (m) =

∑
(t,k)∈Dm

k
hm(k)C

r
m(t, k)∑

(t,k)∈Dm
Cr

m(t, k)

where hm(k) is the harmonic number in {1, 2, . . . , } as-
sociated with bin k and the pitch of model m. We do
not estimate any parameters for the orchestra note models
other than the {αm}.

The other events we capture are the reverberation of
each solo note. The domain of reverberation model m is

Dm = {(t, k) : t ∈ tend . . . , tend+Lreverb, k ∈ 0, . . . , N−1}

where tend denotes the last frame of the solo note, with

qm(t, k) =
∑

h

phN(k; µh, σ2
h)eλ(t−tend)

We only estimate the αm parameter for these models.

4 EXPERIMENTS

Before the work of this paper, the attack or transient phase
of a note that distributes spectral energy widely is captured
and removed by our ad hoc recognizer.

As described in the previous section, a note model, m,
can be viewed as a combination of h harmonic compo-
nents, each of which has its mean and variance. The coef-
ficient ph is the normalized weight associated with the hth
harmonic component of note m. It is not surprising that
the configuration of ph depends on the instrumentation,
pitch, and dynamic level of the note. Failure to specify the
ph configuration accordingly leads to a dubious descrip-
tion of the magnitude contribution of the various harmon-
ics. In our experiments, we initialize the configuration of

Figure 2. Harmonic weight distribution.

the solo model from an instrument spectrum library using
templates trained from a subset of the University of Iowa
musical instrument samples. See 4.

In the case that the reverberation of a previous solo
note contributes, but does not mask the following note, we
approximate the decay pattern of the reverberating solo
note with an exponential over time. Without knowing
the acoustic conditions of the recording, we have cho-
sen the parameters experimentally through trial and error.
The essence of the “desoloing” problem dictates that we
should be generous in our labeling of solo points, since
contributions from the solo instrument are readily appar-
ent and undesirable in our results To effect this bias, we
employ the following 3 mechanisms:

Initialization The EM algorithm will converge to a lo-
cal maximum that splits the magnitude of the STFT,
X(t, k), into solo and orchestra contributions. We
initialize the EM algorithm to expect significantly
larger contributions from the solo note s (a ratio of
3:1). Similarly, since the solo reverberation model
is longer than the other models in terms of frames,
we expect it to consume more spectral energy and
assign a larger initial contribution value accordingly.

Harmonic pre-masking Most often when there is a “col-
lision” between a solo harmonic and an orchestra
harmonic, most of the spectral data will be due to
the solo. In such a case the orchestra model ends
up using its free parameters mostly to explain solo
energy. To avoid this problem, we identify such col-
lisions using our score and omit the orchestra model
for these harmonics.

Masking bias With the final results from the EM algo-
rithm α∗m and q∗m. Denote the solo and orchestra



Figure 3. Top: The original spectrogram after transient
removal. Bot: spectrogram after desoloing.

models by Ms and Ma. Our solo and orchestra pro-
file estimates are then

|X̂s(t, k)| =
∑

m∈Ms

α∗mq∗m(t, k)

|X̂a(t, k)| =
∑

m∈Ma

α∗mq∗m(t, k)

We then estimate S by

Ŝ = {(t, k) : |X̂s(t, k)| ≥ B|X̂a(t, k)|} (2)

where B (0 < B < 1) is the constant describing our
“generosity” in labling points as solo points, and Â
is the complement of Ŝ.

Our experiments focus on an excerpt from the 2nd move-
ment of Oboe Concerto in C major, K. 314, by Mozart. A
desoloed spectrogram is presented in contrast to the orig-
inal one in Figure 3. The blackened area is corresponding
to S = {(t, k) : |Xs(t, k)| ≥ B|Xa(t, k)|}. This audio
can be heard at http://xavier.informatics.indiana.
edu/˜yushan/desolo_examples.html in contrast
to the original. (A cutoff frequency of 5000Hz is set in or-
der to accelerate the processing.)

A record of a live soloist playing on top of the ”des-
oloed” orchestra is present to demonstrate how the solo
will mask the damage done by desoloing.
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