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ABSTRACT 

A model for localized key finding from audio is 
proposed. Besides being able to estimate the key in 
which a piece starts, the model can also identify points 
of modulation and label multiple sections with their key 
names throughout a single piece. The front-end employs 
an adaptive tuning stage prior to spectral analysis and 
calculation of chroma features. The segmentation stage 
uses groups of contiguous chroma vectors as input and 
identifies sections that are candidates for unique local 
keys in relation to their neighboring key centers. Non-
negative matrix factorization with additional sparsity 
constraints and additive updates is used for 
segmentation. The use of segmentation is demonstrated 
for single and multiple key estimation problems. A 
correlational model of key finding is applied to the 
candidate segments to estimate the local keys. 
Evaluation is given on three different data sets and a 
range of analysis parameters. 

1. INTRODUCTION 

Music being bought on digital media, aired through 
radio broadcasts, streamed or downloaded from Internet 
sites is almost exclusively in audio format and generally 
not accompanied by metadata that would be useful for 
music information retrieval (MIR). On the other hand, 
many retrieval tasks require the acquisition, playback, 
browsing or content analysis to be in audio format. This 
emphasizes the importance of audio content analysis 
tools that operate at the front-end and become the eyes 
and ears of higher level and general MIR tools. Many 
categories in the MIREX competitions aim at extracting 
structural information from audio. In this regard, key 
finding is one of these areas that adds considerably to 
the structural knowledge that can be extracted from a 
musical piece. Being able to reliably detect the key of a 
tonal piece (in the context of Western music) remains an 
important step in content analysis for MIR. Tonal music 
constitutes a significant portion of the music consumed 
today. Hence, models of key finding are applicable to a 
wide range and large portion of available music. In the 

same vein, localized key finding is essential for other 
methods in MIR research to work reliably. 

Many audio key finding models exist in the literature. 
Most of these deal with identifying the main key in a 
musical piece. Although this is an important task, it 
does not provide useful information for structural 
analysis. That is, by knowing the main key of a piece 
we cannot infer any additional information regarding 
the time evolution of its harmonic structure. On the 
other hand, modulation through one or multiple keys is 
very common in classical music and is utilized in 
popular music quite often.  

From the listener’s viewpoint a musical fragment in a 
single key implies a most stable pitch, the tonic, and a 
musical scale associated with that key. Throughout this 
fragment, if the music has a well-formed tonal structure, 
a change in key center will not be sensed. Secondary 
functions and tonicizations are heard as short deviations 
from the well-grounded key in which they appear - 
although the boundary between modulation and 
tonicization is not clear cut. A modulation 
unambiguously instigates a shift in the key center. 

Structure discovery aims at providing high-level 
representations of music. It deals with problems such as 
similarity, repetition and thumbnailing. Segmentation is 
used for identifying points of structural change and it 
can be based on a multitude of features. In this paper, 
we investigate segmentation from a tonality perspective. 
The presented method aims to identify points of 
modulation, the names of the key centers and their 
corresponding modes without attempting to perform 
transcription or chord recognition. It also performs this 
in an unsupervised manner. 

In order to infer key from audio input, the music needs 
to be observed for a certain duration to ensure all 
necessary elements have been encountered. In other 
words, one might develop an initial estimate of the key 
after hearing the first chord of a piece. However, at this 
point there are multiple competing estimates and one 
cannot arrive at a reliable decision until subsequent 
musical events have been heard. Every new musical 
event works in the direction of weakening some 
estimates and disambiguating and strengthening others. 
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The optimal duration of key locality depends on musical 
context. The model presented here works on this 
premise and aims to group and segment an appropriate 
duration of music that belongs to and characterizes a 
key. This is done with non-negative matrix factorization 
with chroma features as input. This approach flies in the 
face of sliding window key center tracking techniques 
which need the window duration to be fixed and 
predetermined.  

2. RELATED WORK 

Symbolic and audio key finding differ in their methods 
and accuracy. On the symbolic end Chew [5] and 
Temperley [23] have addressed the problem of 
modulation. Shmulevic and Yli-Harja [21] employ 
sliding windows to find local key estimates. Although 
most researchers working on key finding allude to 
modulation detection, very little systematic research on 
performance of these algorithms has been reported.  On 
the audio end Purwins et al. [19] used a fuzzy distance 
measure between constant-Q profiles and reference 
constant-Q sets to track key centers. Operation of the 
method is demonstrated on a single piece of piano 
music. Chai and Vercoe [4] used a Hidden Markov 
Model to detect key changes from audio. They used 10 
classical pieces to test their method. Gómez [7] uses a 
specialized form of PCP feature and a sliding window 
method to track tonality. Izmirli [13] used symbolic 
representations to perform efficient comparisons of 
tonal evolution between different renditions of the same 
piece, in turn proposing a measure of similarity between 
entire pieces. Harte et al. [10] proposed a harmonic 
change detection function to detect transitions between 
tonal regions which were defined by chords in their 
case. Chord segmentation and recognition are akin to 
key finding in that common methods are employed for 
solutions to these problems. For example, among the 
many models, Sheh & Ellis [20] used a Hidden Markov 
Model to perform segmentation of chords and chord 
recognition on Beatles songs.   

Segmentation has been an active research topic in the 
field of MIR. We refer to recent work that relates to 
local key finding and tonality. Chai [3] proposed models 
for analysis of musical form and recurrent structure as 
well as harmony analysis. Ong [17] studied audio-based 
music structural analysis and used tonal features in 
measuring similarity of cover songs. 

Non-negative matrix factorization (NMF) was initially 
proposed by Lee and Seung [16] for part-based learning 
of images. Smaragdis and Brown [22] demonstrated the 
application of NMF to polyphonic music transcription. 
Abdallah and Plumbley [1] used a similar method for 
transcription and demonstrated its performance on piano 
music. Cont [6] used NMF to learn spectral note 
templates off line and then used NMF with sparsity 
constraints to perform real time note recognition.  

The reader is referred to Izmirli [14] for work in the 
field of audio key finding. 

3. TUNING FRONT END 

A tuning front end is used to adjust the frequency 
reference of the system to each input file. Factors such 
as transcoding effects and intentional tuning preferences 
may result in different tunings for each piece. For 
example, Peeters [18] and Harte and Sandler [9] have 
proposed methods for tuning adjustment. In order to 
find the reference tuning of the input audio file, our 
method analyzes the first 10-15 seconds of the music 
and compares it to synthetically generated spectral key 
templates. A detailed description of spectral templates 
from audio samples is given in [12, 14] and a summary 
for line spectra is provided below. The frequency that 
maximizes the integral of the product between the 
templates and the spectrum serves as the tuning 
frequency estimate of the input audio: 
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Y(f) represents the mean of the short-time amplitude 
spectra over the first 10-15 seconds of the piece. Xi,c(f) 
represents the line spectra  of note i (a Dirac comb with 
decaying weights) with its fundamental frequency 
calculated with respect to the reference frequency c. For 
example, c=442 Hz. would mean the fundamental 
frequency of note A4 is at that frequency and all other 
notes are determined according to equally tempered 
intervals. Each X is constructed using 20 harmonics 
with amplitudes decaying at 12 dB per octave. The 
limits on the integration are chosen to be in the range 55 
- 1250 Hz. R is the total number of notes used for the 
synthetic spectral templates, typically spanning 5 
octaves. Eq. 1 can be directly implemented with a high 
resolution FFT with zero padding applied to the input 
signal and a compatible discrete representation for the 
line spectra. 

Profiles are incorporated into the calculation of spectral 
templates to approximate the distribution of pitch 
classes in the spectrum. In Eq. 1 Fi,k are the composite 
profile weights rotated k steps for note i within each 
mode. 
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The composite profile P is given by the elementwise 
product of the diatonic (D) and Temperley (T) profiles: 
Pe(k)=De(k)Te(k). The index e is either M for major or 
m for the minor mode.  

Not surprisingly, the second index (k) over which the 
product is maximized in Eq. 1 gives an estimate of the 
key of the initial section of the piece. However, at this 
stage no segmentation has been done nor has any 



  
 
attempt been made to capture the most relevant parts of 
the music for key estimation. Therefore, this estimate is 
treated as a by product of the optimization. The results 
of this estimation are given in the evaluation section.  

4.   SEGMENTATION 

4.1. Non-negative Matrix Factorization 

Non-negative matrix factorization aims to decompose a 
matrix V with n rows and m columns into a product of 
two matrices W and H. An internal dimension p is 
chosen such that W has n rows and p columns and H 
has p rows and m columns. As implied in its name the 
main constraint that separates this decomposition from 
other similar ones is its non-negativity constraint on all 
three matrices. The usefulness of this method originates 
from its summarization property that when p is chosen 
to be smaller than n, the columns of V are summarized 
in columns of W. Hence, W can now be interpreted as a 
compressed collection of basis vectors that could be 
used to reconstruct an approximation to the original 
input in V. Due to the smaller internal dimension p the 
reconstruction WH will not be exact. Thus, a distance 
measure between WH and V is used as the cost function 
to be minimized during the factorization. 

NMF which was originally proposed for decomposition 
of images has also been applied to the problem of 
polyphonic transcription as mentioned above. This 
method is suitable for transcription because the method 
tries to find the sparse additive constituents, i.e. notes,  
of the observed polyphonic frequency spectrum. It also 
does not allow for negative contributions of components 
that would lead to reconstruction through cancellation. 
In this case, the basis functions in W represent 
approximations to note spectra and the corresponding 
weights (in H) can be viewed as the mixing matrix. 
Parallel to this, the problem of segmentation based on 
tonal features, the topic of this paper, aims to reveal 
additive contributions of tonal elements in the analyzed 
piece. 

In the original formulation of NMF by Lee and Seung 
[16] multiplicative updates were used for the 
factorization. Later, Hoyer [11] proposed a formulation 
that used additive updates with sparsity constraints that 
could be imposed independently on W and H. In this 
context, sparsity is a measure that quantifies the 
distribution of energy in a vector. By definition, if the 
total energy is in a single component the sparsity 
measure is equal to 1. Similarly, if the energy is spread 
equally among the components then the measure is 
equal to 0.  

4.2. Segmentation 

In this work, NMF is used for segmentation. The 
columns of V are composed of grouped chroma vectors 
obtained from the entire length of the musical piece. A 
group is found by taking the mean of consecutive 
chroma vectors. The calculation of chroma vectors 

comprises the following steps: the audio is 
downsampled to 11025 Hz. The spectrum is calculated 
with a Hann windowed 2048-point FFT. The 12-
element chroma vector is obtained from the spectrum in 
the range 50 Hz. to 2000 Hz. The tuning frequency, c, 
found in Section 3 is used as the frequency reference 
while calculating the chroma representation. The details 
regarding the calculation of the chroma vectors can be 
found in [12, 14]. The grouped chroma vectors are 
found by averaging the chroma vectors over a span of s 
seconds. The value of the parameter s is on the order of 
5-15 seconds. Groups are heavily overlapped. The 
factorization is performed using the Euclidean norm as 
the cost function. Finally, the maxima in columns of H 
are found and all existing segments are identified with 
each segment defined as a consecutive sequence of 
maxima with the same row index.  

The sparsity constraint is only imposed on the H matrix. 
Forcing the columns of H to be sparse affects the 
resultant structure of W. As a result, the input matrix is 
factored such that the basis vectors learned in W 
represent the best approximation to the specific clusters 
of chroma vectors where each cluster approximates a 
chroma pattern particular to one or a group of keys. This 
makes the factorization function similar to vector 
quantization because the columns of W will mimic 
global representations rather than capturing local 
features or sparse basis functions as in the case of 
transcription. The work reported here is part of ongoing 
research in optimal representations for tonality and key 
finding. In this context, NMF is preferred over other 
clustering methods to maintain the flexibility of global 
vs. local representations regarding chroma and as a 
means to explore the possibility of lower dimensional 
representations for tonality. 

The clustering behavior may need some more 
clarification. For example, if there is a single 
modulation in an input piece then it should suffice for H 
to have two rows. In order to minimize the cost 
function, the performed factorization will result in a 
summarization of the two keys in columns of W. An 
example of a factorization for a pop piece that contains 
three keys is shown in Figure 1.a. The horizontal axis is 
time and each column represents a grouped chroma 
vector. Figure 1.b. shows the W matrix with internal 
dimension p=2 and chroma group window of 
approximately 7 seconds. Figure 1.c. shows the H 
matrix factored with a sparseness value of 0.3. The 
ground truth is given at the bottom of the plot. This is an 
example where the number of keys was underestimated. 
It can be seen in part c that the first two key regions 
would be segmented such that they map to the same 
basis vector. This demonstrates an undesirable situation 
where a new segment boundary is missed. Nevertheless, 
the detection of the segment boundary would not be a 
problem if two closely related keys were interleaved by 
a distant key. A remedy to this situation would be to 
increase the internal dimension p to attain less 
summarization. Figure 2 shows W and H for p=3 using 



  
 
the same song. In this case, the three key regions are 
clearly detectable. The method gives satisfactory results 
for a simple case like this, however, in general, it is not 
realistic to assume that the number of modulations 
would be known a priori. Therefore, one approach 
might be to consistently overestimate the number of 
keys in the input. The down side of this is that there will 
be more jumps between smaller size segments. This idea 
is considered in the evaluation using the different data 
sets.  

 

 

 
Figure 1. (a) Top plot. The input matrix V for Shania 
Twain’s Come on Over. The summary chroma vectors 
are the columns of this matrix. (b) Middle plot. The W 
matrix (p=2). (c) Bottom plot. The H matrix (p=2).  

 

 
Figure 2. (a) Top plot. W with p=3. (b) Bottom plot. H 
with p=3. 

5. LOCALIZED KEY ESTIMATION 

Localized key finding is important for structural 
segmentation methods in MIR research. For example 
when using a method of chromagram matching to detect 

verse or chorus repetitions [2] it is desirable to detect 
the repetitions regardless of any modulation. Goto [8] 
addresses this problem by rotating the chroma in all 
possible keys to account for the possibility of 
modulation in repetitions of the music. Reliable 
localized key finding would be helpful in converting all 
single-key regions to a reference key enabling the 
existing similarity algorithms to be employed.  

5.1. Single Key Estimation 

Key finding is generally understood to be the estimation 
of the main key of a piece. Some models only look at 
the beginning of a piece. This was also part of the 
specification in the MIREX 2005 audio key finding 
competition in which our model ranked first, but only 
with a slight margin ahead of the other competing 
algorithms. Some other models look at different parts of 
entire pieces: beginning, middle and end. Given the 
performance of the model (model I) in [14] we maintain 
that analyzing approximately the first half minute of the 
piece suffices to produce a reliable key estimate of that 
section. The reason for this, in the case of common 
practice classical music, is that the main key of a piece 
is almost always introduced at the beginning of that 
piece. Furthermore, the key name is spelled out in the 
name of the piece conveniently saving the researcher 
some annotation time. 

Although this approach works fairly well, the question 
of optimal segment length for reliable estimation still 
remains open. A short segment may put too much focus 
on a particular chord and an excessively long segment 
may extend into a section where the piece modulates 
into another key. In [14] this issue was circumvented by 
using progressive overlapping windows, all pivoting off 
the starting point of the piece. For each window the key 
was estimated and an associated confidence was 
calculated. The final estimate was determined by 
selecting the key with the overall highest confidence. 

The approach presented here for single key estimation 
uses the segmentation step described in Section 4 to find 
the length of one segment at the beginning of the piece, 
on which a key estimation algorithm is run, and 
consequently render a key estimate. The correlational 
model in [12] is used to estimate the key.  

5.2. Multiple Key Estimation 

A key finding algorithm is applied to the entire span of 
every segment determined by the segmentation method 
discussed in the previous section. The key is estimated 
assuming that the optimal key locality has been 
correctly delineated by the segmentation step. Figure 
3.a. shows an example of key estimation on segments 
found in H for p=3 using a fragment of classical music. 
The dark letters at the bottom of the figure (above the 
time axis) are the ground truth and the light letters 
indicate the key estimates at the beginnings of the 



  
 
respective segments. The audio is taken from one of the 
data sets used in the evaluation. Figure 3.b. shows 
segmented key estimation on another pop piece. Note 
that the key estimates are correct but not continuous in 
the first section. This is fortunately not a problem for 
the frame based evaluation explained in the next 
section. If continuous segments were required a simple 
algorithm for stitching neighboring segments with the 
same key could be implemented.    

 

 
Figure 3. (a) Top plot. Segmented key estimation 
shown on H for audio from a Bach Choral. (b) Bottom 
plot. Segmented key estimation for Abba’s Money 
Money Money. 

 

6. EVALUATION 

Several types of evaluation were carried out to test the 
performance of the model. There were three data sets. 
The first set was a collection of 17 complete pop songs 
that contained at least one modulation. All pieces were 
carefully annotated with all keys and modulation points. 
The second set was the initial fragments of 152 classical 
music pieces from the Naxos set (www.naxos.com). The 
ground truth was obtained from the names of the pieces. 
The third set consisted of short fragments of classical 
music with modulations. The music was taken from the 
Tonal Harmony textbook by Kostka and Payne [15]. 
This data set (K&P) also had 17 short fragments. The 
recordings on the accompanying CDs were used. The 
ground truth was obtained from the accompanying 
instructor’s manual. 

In all evaluations a raw measure of accuracy was 
accompanied by a composite score. In order to partially 
reward closely related key estimates the following 
(MIREX) fractional allocations were used while 
calculating the composite score: correct key, 1 point; 
perfect fifth, 0.5; relative major/minor, 0.3; parallel 
major/minor, 0.2 points. In the following, the composite 
score follows the raw figure in parentheses. 

Initially, we report on the key finding accuracy of the 
front end tuning stage. As this stage generates a single 
estimate from the beginning of each piece, that value 

was compared to the first key in the annotation. The 
results were as follows: pop set 58.8 % (74.1%), Naxos 
set 51.3% (62.9%) and K&P set 76.5% (79.4%). Note 
however, that this method is not intended for key 
finding. 

Three different types of estimates were calculated for 
each data set with a chroma group window size of 7.4 
seconds. Note that a much smaller window size will 
focus the chromagram on individual chords and much 
larger window will degenerate the model to a sliding 
window implementation at the frame level – but even 
then, it will be useful at the global level and for 
visualization. Several window durations have been 
tested and this length has been determined to be a good 
compromise. It should also be noted that using longer 
windows will cause the segmentation boundaries to 
blur, however, simply picking the maximum element in 
H will suffice to identify the modulation point. Method 
‘I’ is an unweighted correlation estimate with elements 
of the chromagram raised to the power of 0.5. All 
frames within a segment are averaged and correlated to 
the 24 chroma templates. The index of the template with 
the highest correlation is the key estimate of that 
segment. The accuracy is calculated for all available 
frames in the input piece. Method I is a frame based 
multiple key estimation measure for the pop and K&P 
sets and a frame based single key estimation measure 
for the Naxos set as only the main key data is available 
as ground truth. It is the frame accuracy of the 
beginning section that ends on the earliest segment 
boundary between 10 and 30 seconds of each piece. 
Method ‘II’ denotes a single key estimation accuracy 
measure. It uses a confidence weighted estimate, as 
explained in Section 5.1, only for the first segment. 
Method ‘III’ denotes confidence weighted estimates for 
all segments in the piece. The accuracy for the three 
methods and three values of p are given in Table 1. 

 
 p=2  (%) p=3  (%) p=4  (%) 

Pop I  79.6 (83.9) 82.4 (87.0) 76.6 (83.5) 
Pop II 64.7 (72.6) 70.6 (78.2) 58.8 (70.6) 
Pop III 71.8 (76.0) 73.5 (79.2) 67.8 (75.6) 
Naxos I 75.1 (80.9) 78.8 (83.5) 72.8 (78.5) 
Naxos II 80.9 (85.8) 78.9 (84.1) 78.3 (83.5) 
Naxos III 77.1 (83.2) 74.2 (80.2) 74.0 (79.4) 
K&P I 69.7 (77.2) 71.5 (77.4) 72.5 (78.2) 
K&P II 94.1 (97.1) 94.1 (97.1) 82.4 (85.3) 
K&P III 67.6 (74.5) 64.2 (70.9) 68.0 (73.7) 

Table 1. Evaluation results for the three different 
data sets. 

 
These preliminary results are encouraging. It can be seen 
that the accuracy figures are relatively stable over values 
of p. This shows that the method is not too sensitive to 
the internal dimension parameter p, and overestimating 
the number of modulations does not drastically degrade 
the performance. For comparison, the results of two 
evaluations are given: the frame accuracies with 
unweighted key estimates using ground truth 



  
 
segmentation are 88.3% (92.8%) for the pop set and 
76.9% (84.1%) for the K&P set. The unsegmented frame 
accuracies are pop set 66.49% (75.6%); Naxos set 70.6% 
(77.1%); K&P set 71.3% (76.1%). This shows that 
segmentation has improved the frame accuracy for the 
pop and Naxos sets but not for the K&P set. This is 
mainly due to the short audio length in the K&P 
examples and particularly due to insufficient time span 
in the last modulated key in these recordings. The very 
high accuracy of model II on this set also supports this 
point. On the Naxos set, the unsegmented evaluation is 
done on the segmentation used in method I to make the 
number of frames equal. The actual difference is 
probably greater. The accuracy of the modulation points 
depend on the group window duration and the nature of 
the modulation.   Overall, the proposed method is able to 
identify modulations and estimate all local key labels in 
a given piece as seen by the evaluation.  

7. CONCLUSIONS 

A modulation detection and local key labeling model 
with a preprocessing stage for tuning adjustment and 
non-negative matrix factorization for segmentation has 
been proposed.  The model identifies segments that are 
candidates for unique local keys in relation to the 
neighboring key centers. A correlational key finding 
model is run on every segment in order to label each 
one with a key center. Encouraging results are obtained 
on three different data sets and it has been shown that 
the model does not necessarily have to be tuned to the 
number of keys for the piece of interest, although a 
slight drop in performance is experienced as a penalty 
for overestimating the number of keys.  
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