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ABSTRACT

Although automatic chord recognition has generated a num-

ber of recent papers in MIR, nobody to date has done a

proper cross validation of their recognition results. Cross

validation is the most common way to establish baseline

standards and make comparisons, e.g., for MIREX com-

petitions, but a lack of labelled aligned training data has

rendered it impractical. In this paper, we present a com-

parison of several modelling strategies for chord recogni-

tion, hidden Markov models (HMMs) and conditional ran-

dom fields (CRFs), on a new set of aligned ground truth

for the Beatles data set of Sheh and Ellis (2003). Con-

sistent with previous work, our models use pitch class

profile (PCP) vectors for audio modelling. Our results

show improvement over previous literature, provide pre-

cise estimates of the performance of both old and new ap-

proaches to the problem, and suggest several avenues for

future work.

1 INTRODUCTION

The task of automatic, continuous chord recognition is an

area of active study in the MIR community. When work-

ing with audio, chord recognition is an especially diffi-

cult task because a chord represents such a wide range

of possible musical events. Recent studies have shown

the benefit of applying stochastic modelling to this task

[1, 7, 8, 11, 13]. The most commonly used model is the

hidden Markov model (HMM) [10], but more recent work

has also explored discriminative models [9] such as the

conditional random field (CRF) [14].

In this paper, we use the work of Sheh and Ellis as our

departure point [13]. These authors used HMMs to per-

form chord recognition on a set of 20 Beatles songs. Al-

though their recognition rates were poor, they laid a foun-

dation for future study. We use the same data set, but in

addition to their tests, we perform a 10-fold cross vali-

dation to verify the validity of our results, training on 18

songs for each run and testing on the remaining 2. Cross

validation is essential for obtaining unbiased estimates of

model performance when data is limited [5], but because
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it is so time-consuming to label audio files, no previous

studies of audio chord recognition have tried it. Cross-

validated recognition rates will be lower than the best pos-

sible test rate on a single song, e.g., the metric used in [7],

but they give a more realistic depiction of the state of the

art and are the only fair way to compare different models.

Another problem that is often encountered when build-

ing HMMs is a lack of aligned, labelled training data.

When the training data is not aligned, the model must

be initialised using a so-called flat start. In a flat start,

training audio is uniformly segmented based on an un-

aligned transcription. One hopes that enough of the uni-

formly segmented labels in the flat start will match the

correct alignment so that the model parameters will im-

prove during successive training iterations, but this is un-

likely in musical applications because chord lengths vary

so widely. Using a flat-start with this training data has

indeed been shown to result in poor recognition perfor-

mance [13], and so for our training, we avoided it.

Our results demonstrate the usefulness of stochastic

modelling and highlight the benefits of CRFs, which until

now have received very little attention in the MIR com-

munity.

2 PITCH CLASS PROFILE VECTORS

Pitch class profile (PCP) vectors, which were introduced

by Fujishima in 1999 [3], have been widely used in chord

recognition systems [1, 4, 6, 13]. In essence, PCP vec-

tors represent a logarithmically warped and wrapped ver-

sion of the short time frequency spectrum. The following

equations show the computation of a PCP vector:
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In equation 2, k is an FFT bin, fref is the reference pitch,

N is the FFT window size, fs is the sampling rate, and D

is the dimensionality of the PCP vector. The log2 opera-

tion warps the frequency spectrum to a logarithmic scale,

while the modulo operation wraps the frequency spec-

trum at integer multiples (octaves) of the reference fre-

quency. The frequency components in each of the warped



and wrapped frequency bands are then summed (equation

1). In this study, we used D = 12 and fref = 261.6 Hz

(C4). Thus, each PCP vector represents 12 semi-tones of a

chromatic scale under the same modulus as most Western

music theorists as well as the MIDI note number specifi-

cation.

2.1 Gaussian Distributions

The choice of parameters used to model a PCP vector is

not trivial. Each dimension in the normalised PCP vec-

tor has a continuous output and thus can be modelled as a

probability distribution. In [13], Sheh and Ellis modelled

PCP vectors using single Gaussians. Using our labelled

training data, it is possible to show that single Gaussians

do not provide an adequate model of the PCP vectors.

Figure 1 shows 3 examples of a single Gaussian superim-

posed on 1 dimension of an A-minor PCP vector. Clearly

a mixture of Gaussians would be more suitable to accu-

rately model the shape of these distributions. In this paper,

we used a mixture of Gaussians to model the probability

distributions of the PCP vectors, and as can be seen from

the results, the models trained using a mixture of Gaus-

sians outperform those using single Gaussians.

2.2 Dirichlet Distributions

Because all values in a normalised PCP vector must be

non-negative and sum to one, one may think of them as

the parameters to a hypothetical multinomial distribution.

Although mixtures of Gaussians can theoretically be used

to model any probability distribution, for multinomials,

there is another common model known as the Dirichlet

distribution. This distribution is the so-called conjugate

prior of the multinomial distribution, i.e., given a set of pa-

rameters that represent an archetypal multinomial distri-

bution, it represents the probability that any other multino-

mial distribution might arise instead. Unlike mixtures of

Gaussians, Dirichlets enforce the constraint that the output

distributions be valid multinomial distributions, which is

equivalent to the constraints on valid normalised PCP vec-

tors. Moreover, they require fewer parameters to train:

Dir(p,u) ,
1

Z(u)

D
∏

i=1

pui−1
i (3)

The pi correspond to the bins of the multinomial distri-

bution, which are the 12 values of the PCP vector in our

case. The parameter vector u = {u1, u2, . . . , uD}, where

D is the number of bins in the multinomial, determines

both the mean and the variance of the distribution. The

normalisation term Z(u) is beyond the scope of this pa-

per, but more information can be found in [2], an earlier

application of Dirichlet distributions to chord recognition.

3 CHORD SEQUENCE MODELS

3.1 Hidden Markov Models

HMMs are generative stochastic models that attempt to

model a hidden first-order Markov process based on a set

of observable outputs. Nonetheless, it should be noted

that in reality chord progressions are high-order Markov

processes, and so the first-order Markov assumption may

result in model deficiencies.

HMMs for chord recognition have been used with two

different approaches. Sheh and Ellis [13] have experi-

mented with a model-discriminant (MD) approach, which

means that every potential chord is modelled by its own

left-right, single-state HMM. Each model is trained ei-

ther individually or by using an embedded version of the

Baum-Welch algorithm that concatenates the HMMs. In

order to perform this step, one needs labelled—but not

necessarily aligned—training data. Chord recognition is

performed using the Viterbi algorithm on the network of

component HMMs to yield the most likely sequence of

component models. Bello and Pickens [1] and Lee and

Slaney [6], on the other hand, have experimented with a

path-discriminant (PD) approach, in which every chord is

modelled by one state in a larger, fully connected HMM,

which can be trained with the expectation-maximisation

(EM) algorithm and does not require labelled data. Chord

recognition with the PD approach uses the standard Viterbi

algorithm to obtain the most likely sequence of states.

3.2 Conditional Random Fields

Given a sequence of observations X , HMMs seek to max-

imise the joint probability P (X,Y ) for a hidden state se-

quence Y . This method works well in practise, but from

a theoretical perspective, it is not quite the question that

one ought to be asking at recognition time. During recog-

nition, the observation sequence is always fixed, and so it

may make more sense to model only the conditional prob-

ability distribution P (Y |X). This frees the recogniser

from needing to enforce any particular model P (X) of the

data, and thus it is no longer necessary for the components

of the observation vectors to be conditionally independent,

as they must be for HMMs. Such a model may include

thousands or even millions of observation features.

The closest analogue to the HMM that uses this mod-

elling technique is known as the linear-chain CRF, one

of the most commonly used member of the larger CRF

family [14]. Besides the probabilistic characteristics men-

tioned above, CRFs differ from the HMMs in that each

hidden state depends not just on the current observation

but on the complete observation sequence. At decoding

time, linear-chain CRFs are quite similar to HMMs, us-

ing a variant of the Viterbi algorithm. Unlike an HMM,

however, in order to train a linear-chain CRF, one must

have access to fully labelled and aligned training data.

Training is considerably slower for CRFs than it is for an

HMMs regardless of whether one uses a path-discriminant

or model-discriminant approach, but fortunately, there are



Figure 1. Single Gaussian (smooth curve) plotted over three different dimensions of a PCP vector (histogram).

Roots: A, A♭, B, B♭, C, D, D♭, E, E♭, F, F♯, G

Families: maj, min, aug, dim

Examples: A, Bm, E+, Fdim

Table 1. List of chords used in recognition experiments.

optimisation techniques to improve the training speed. We

chose the limited-memory Broyden–Fletcher–Goldfarb–

Shanno method, a variant of Newton’s method [12].

4 EXPERIMENTS AND RESULTS

The Beatles recordings in our data set were filtered and re-

sampled at 11 025 Hz to remove the high-frequency con-

tent. An STFT was calculated on each song using an

FFT size of 2048 samples and a hop size of 1024 samples

(92 ms). From the STFT, 12-dimensional PCP vectors

were calculated (for simplicity, we did not attempt the tun-

ing adjustments used in [1] or [4]), and given knowledge

about the original key of each song, a second set of PCP

vectors was was generated by transposing (rotating) the

first set to C major so as to reduce the chances of learning

key-dependent harmonic relationships. (In a large-scale

application, an automatic key-finding algorithm could be

used for this purpose.) Each song was hand-transcribed

with chord labels, and these labels were then simplified to

triads only: major, minor, augmented, and diminished (see

table 1). These labels are a departure from Sheh and Ellis,

who attempted to recognise 7th chords as well, but we felt

that the data set was insufficient to estimate so many mod-

els properly. When used with the rotated PCP vectors,

the labels were also transposed to C major. After sim-

plification, both the rotated and unrotated sets of chord

labels contained 24 distinct chord symbols out of the 48

that would have been theoretically possible.

The HMM-MD model was implemented using the Hid-

den Markov Model Toolkit (HTK) 1 with single-state com-

ponent models and 1, 6, or 12 Gaussians to model each

PCP bin. For the HMM-PD, an ergodic (fully-connected)

HMM with one state for each chord of the list was trained

1 http://htk.eng.cam.ac.uk/

Model Gau.
Recognition rate (%)

Rotated Unrotated

HMM-PD 1 24.2 28.8

HMM-PD 6 31.9 34.1

HMM-PD 12 37.9 36.1

HMM-PD 20 45.1 40.5

HMM-MD 1 37.1 39.7

HMM-MD 6 48.8 45.5

HMM-MD 12 48.8 47.1

HMM-PD 24 48.7 31.6

CRF-D – 39.5 45.3

CRF-G 1 34.7 29.9

CRF-DG 1 39.9 42.4

Table 2. Frame-by-frame recognition results for all mod-

els with varying numbers of Gaussians.

using the Torch machine learning library. 2 During ini-

tialisation, every portion of the labelled data was assigned

to its corresponding state. We experimented using 1, 6,

12 and 20 Gaussians per state. Training took a couple of

seconds on a 2.7 GHz PowerPC G5 processor.

The linear-chain CRFs 3 were trained with transition

features between all chords in the training sets and special

features denoting starting and ending symbols. We tried

three versions of the emission features, the first equivalent

to a single Gaussian (CRF-G), the second equivalent to a

Dirichlet distribution (CRF-D), and the third a combina-

tion of both sets of emission features (CRF-GD), taking

advantage of the fact that the features in CRFs need not be

independent for the model to run properly. The L-BFGS

optimisation routine was allowed to run for 250 iterations

with a constraint on the parameters that their standard de-

viation be no more than 10. The purpose of these limits

was to avoid over-training, which is a particular risk with

CRFs. It took four to six hours to train each run of each

model on a 2.7 GHz PowerPC G5 processor.

Our results are summarised in table 2. Our evaluation

was done by carrying out a frame-by-frame comparison

2 http://www.torch.ch/
3 http://crf.sourceforge.net/



of the recognised labels with the hand marked labels. The

number of correct frames overall was divided by the total

number of frames overall in order to give a percentage

score to the recognition. Unlike some other papers, e.g.,

[7], we did not allow for any fuzziness in recognition at

the boundaries, and so the figures represented here will be

lower but more precise. Results are presented for several

mixture sizes of Gaussians.

The simplest model here, the path-discriminant HMM

(HMM-PD), also performs the worst. When PCP bins are

modelled as single Gaussians, its best performance is 28.8

percent. The model-discriminant HMM (HMM-MD), in

contrast, performs much better, at 39.7 percent even with a

single Gaussian and reaching 48.8 percent with 12 Gaus-

sians. At 24 Gaussians, over-training starts to reduce per-

formance, especially for the unrotated vectors. This model

is the same as in [13], but our best recognition rates are

a more than twofold improvement over theirs using the

same training set and evaluation script. We speculate that

the large difference is due to the inclusion of a mixture

of Gaussians, the exclusion of a flat-start during model

training, and a reduction of the classification set to triads.

For both HMM-PD and -MD, the unrotated PCP vectors

perform better with smaller numbers of Gaussians and the

rotated PCP vectors become slightly better as the the num-

ber of Gaussians increases. Although the differences be-

tween performance on the two PCP sets is never more than

five percentage points for the HMMs, this pattern warrants

further investigation.

At the single-Gaussian level (CRF-G), CRFs perform

better than the PD HMMs but do not quite match the per-

formance of the MD HMMs, perhaps on account of over-

training; unlike the HMMs, the single-Gaussian CRFs per-

form much better on rotated PCPs than unrotated. The

most interesting feature of the CRF results, however, is

the large improvement in performance when using Dirich-

let distributions (CRF-D and CRF-DG). Although CRF-D

is not quite able to match HMM-MD performance at its

maximal number of Gaussians, it comes very close to it

while using a factor of 40 fewer model parameters. There

is no question that these distributions warrant further study

for chord recognition.

5 SUMMARY AND FUTURE WORK

We presented a comparison of both traditional and new

approaches, HMMs and CRFs, to audio chord recognition

using PCP vectors. Overall, our results compare favourably

with previous research for this task, but they also suggest

that on their own, PCP vectors may not be sufficient for

reliable discrimination. Moreover, we were able to per-

form our experiments with a fully annotated training set

of live recordings, which is rare for the field. These anno-

tations allowed us to cross-validate our results for a more

accurate representation of the state of the art.

Our results suggest that further research is needed in

modelling audio features for chord recognition. One ap-

proach would be to incorporate Dirichlet distributions more

widely, e.g., in the HMM-based models we used. An-

other would be to investigate alternatives or supplements

to PCP vectors, e.g., [6]. Both should be explored as au-

dio chord recognition enters the MIREX competitions in

coming years.
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