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ABSTRACT

In this paper we introduce a probabilistic framework for
matching different music representations (score, MIDI,
audio) by incorporating models of how one musical rep-
resentation might be rendered from another. We propose
a dynamical hidden Markov model for the score pointer
as a prior, and two observation models, the first based on
matching spectrogram data to a trained template, the sec-
ond detecting damped sinusoids within a frame of audio
by subspace methods. The resulting Bayesian framework
is robust to local variations in tempo, and can be used for
a wide variety of applications. We evaluate both methods
in a score alignment context by inferring the posterior dis-
tribution of the current position in the score exactly. The
spectrogram method is shown to infer the score position
reliably with minimal computation, and the damped sinu-
soid model is able to pinpoint the positions of score events
in the audio with a high level of timing accuracy.

1 INTRODUCTION

Musical information is roughly represented in one of three
ways: a score, which is a symbolic representation, a MIDI
file, which represents discrete musical events with more
precise timing information, and sampled audio, which is
the most faithful representation of the sound produced.
There are many applications for which we would like to
match a number of pieces of music with different repre-
sentations together. For example, score alignment [14, 10,
9] is the matching of a score representation to the audio
representation of the same music. Often in practice, this
problem can be reformulated as matching a MIDI repre-
sentation to audio, assuming the MIDI is quantized to dis-
crete positions and accurately represents the score.

In all these applications, the underlying factor which is
responsible for causing mismatches between different rep-
resentations is an unknown tempo process. For example,
in the score alignment problem, the tempo of a MIDI rep-
resentation evolves independently from that of the audio,
hence dynamic time warping (DTW) strategies have been
popular [19, 4, 11]. Audio synchronization, where two au-
dio representations with different tempi are matched, can
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also be treated by these strategies [15].

Dynamic time warping (DTW) schemes rely on min-
imizing an explicit matching function by dynamic pro-
gramming and may encounter difficulties when unexpected
events occur, which are not captured in the matching cri-
teria, for example, mistakes made by a player when per-
forming a piece from a score, repeats made in a concert
but not during rehearsals, improvisation sections, pauses
and reruns, and so on. A complete probabilistic model
for music representation enables inclusion of such types
of events asa priori information and facilitates learning
from data, hence potentially a more robust matching per-
formance can be obtained. Moreover, modern and power-
ful inference techniques can be developed in cases where
the model size becomes large so as not to admit exact
computation.

In this paper we introduce a probabilistic framework
which will allow us to match different music represen-
tations in a Bayesian setting. We begin by considering
the fundamental representation of music as the score, and
construct a prior model of how this representation evolves
in time during a performance. One such approach has
been developed by Raphael [18], where a probabilistic dy-
namical model is applied to the tempo of the audio, with
the expected timing of events based on the score in a score
alignment context. Here we consider the evolution of the
position of a ‘score position pointer’ through time, adopt-
ing an approach similar to that of [8, 2, 20]. We define
the ‘score pointer’ as an unobserved random variable over
score positions evolving according to unknown velocities
(tempi). This model differs from previous approaches in
the way the tempi are represented. In Section 2 we de-
scribe this dynamical model for the score pointer, formu-
lated as a hidden Markov model [17]. Given the formu-
lation it is conceptually straightforward to develop online,
offline and fixed-lag applications using standard exact or
approximate inference methodology.

In the Bayesian setting, we also require an observation
model which assigns a likelihood value to observed data
from a different music representation given the current
state of the score position pointer. In Section 3 we present
two such probabilistic models for the generation of music
audio from a score, or where practically more appropriate,
MIDI. Our approach in this paper will be to constrain our
models to allow for exact inference of the posterior dis-
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Figure 1. State space of the score position pointerrk.

tributions, algorithms for which are provided in Section
4. In future work we will relax these constraints for more
elaborate and realistic models, thus requiring approximate
inference techniques. such as sequential Monte Carlo [5]
or variational Bayes [12]. In Section 5 we demonstrate
how to apply the Bayesian models to the score alignment
problem, and compare the two observation models on real
polyphonic piano audio extracts.

2 SCORE POINTER DYNAMICS

We define the score pointerrk ∈ [1, 2, . . . , R] as the posi-
tion in a musical score at timek, measured as the number
of eighth notes, sixteenth notes etc. from the beginning
of the score. For example, in the simple score in Figure.1
we haveR = 8 and the unit is an eighth note, the finest
score resolution. We represent tempotk ∈ T implicitly
by the probabilityπ(tk) that the score pointerrk moves to
the next state. Roughly, when the tempo is fast (slow) the
probability to move to the next position is higher (lower).
This leads to the following simple dynamics:

p(rk|rk−1, tk) =







π(tk) if rk = n + 1, rk−1 = n
1 − π(tk) if rk = n, rk−1 = n
0 otherwise

p(r1|t1) = 1/R ∀ n (1)

whereR is the overall length of the score. The uniform
prior (1) allows the performance to begin at any position
in the score, which is useful for practical applications.
Clearly, one can allow for more elaborate score transition
structures such as repeats, improvisation sections and mis-
takes.

The number of frames for a score pointer transition to
take place is a random variable with a geometric distri-
bution with probability of successπ(tk). The variance of
this distribution is(1 − π(tk))/π(tk)2 which in practice
is large enough to account for substantial deviations from
predicted score transitions, including the performance halt-
ing for some period of time. Hence we only need to con-
sider a small selection of coarse discrete set of tempo val-
ues such astk ∈ { ‘fast’, ‘medium’, ‘slow’ } to account
for a wide range of performance conditions.

3 FREQUENCY DOMAIN OBSERVATION
MODELS OF AUDIO

In this section, we describe two models to extract frequency-
domain features from audio frames.

3.1 Generative Spectrogram Model

Here we introduce a model for generating two-element
vectors corresponding to the real and imaginary parts of
the complex valuessν returned by the discrete Fourier
transform (DFT) in frequency binsν = 1, . . . , W , based
on the current score positionrk and a scaling parameterλk

which represents the overall energy in the signal at timek.
See [13] for an existing approach to a Bayesian model of
the spectrogram. In the sequel, we omit the time index for
simplicity, please refer to the graphical model in Figure 3.
We do this via latent scale parametersvν which describe
the energy in each frequency bin, as follows1

p(vν |r, λ) = IG(vν ; a/2, 2/(λσν(r)a)) (2)

p(sν |vν) = N (sν ; 0, vνI) (3)

The gain parameterλ scales a spectrogram templateσν to
matchsν , from which the scale parametersvν are drawn
according to (2) with ‘tightness’a. The spectrogram tem-
plates have unit energy, i.e.

W
∑

ν=1

σν = 1 (4)

See Figure 2 for an example, where high energy regions
correspond to the fundamental and partials of the note be-
ing played. The spectrogram values are then drawn from
a bivariate Gaussian (3) with covariancevνI which is in-
variant to phase.

One simple method of linking frames of audio together
is shown in Figure 3. Realistically the energy in frame
k will increase if there is a note onset in the score tran-
sition, hence we could add further dependenciesλk ∼
p(λk|λk−1, rk, rk−1), resulting in a changepoint model.
See [3] for a example of inference on changepoint models
in a music transcription setting. Further links could also
be added between the parametersvν in Figure 3 to reflect
that the energy in a frequency binvν,k depends onvν,k−1

in the previous frame and some damping coefficientρ. For
this paper however, Figure 3 represents a model for which
it will be possible to exactly infer the performance vari-
ablesrk, tk provided we have observed the energyλk for
each framek = 1, . . . , K. We can estimateλk from the
total energy in the frequency bins for framek, i.e.

1 Definitions of probability distributions used in this paper

IG(x; α, β) =
(1/β)α

Γ(α)
x−α−1 exp(−

1

βx
)

N (x;µ, Σ) =
1

|2πΣ|1/2
exp

„

−
1

2
(x − µ)T Σ−1(x − µ)

«
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Figure 2. Spectrogram templateσν of a piano playing
middle C (261.6 Hertz) with a sampling frequency of
8000Hz and a framelength of 400 samples (50ms)
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Figure 3. Generative spectrogram model. A directed arc
between nodes denotes that the second variable is condi-
tionally dependent on the first.

λk =

W
∑

ν=1

sT
ν,ksν,k (5)

As this is only an estimate, it would be possible to treat
λk as an unobserved variable, and use the spectrogram en-
ergy (5) as a proposal in an approximate inference scheme.
Here, as we will be performing exact inference, it will also
be useful to integrate out the latent scale parametersνk in
(2) and (3) resulting in a form of Student’st-distribution

p(sν |r, λ) =

∫

p(sν |vν)p(vν |r, λ)dvν

=
Γ((a + D)/2)

(πaλσν (r))D/2Γ(a/2)

(

1 +
1

a

sT
ν sν

λσν(r)

)− (a+D)
2

= Ta(sν ; 0, λσν(r))

In practice, we can train the spectrogram template for a
note by taking the spectrogram of a training sample, nor-
malizing each frame so that (4) holds, and computing the
mean value in each bin across frames.

3.2 Damped Sinusoidal Model

Subspace methods [1] allow high frequency resolution es-
timates of damped sinusoids present in a signal, by fitting
a parameterized model of the form

x(t) =

M
∑

m=1

ame−ρmt cos(2πωm + φm)

Hence for a frame of audio, we obtain estimates of the
frequenciesωm, amplitudesam, phasesφm and damping
coefficientsρm for a model ofM sinusoids.

In this paper we will define a model based on the ob-
served frequency valuesωm and amplitudesαm. Damp-
ing coefficientsρm could potentially be used to model in-
strument timbre, but will not be considered here. Given
the score positionr for the frame, we assume that the
frequency and amplitude values are drawn independently
from a distributionp(ωm, αm|r), i.e.

p(ω1:M , α1:M |r) =

M
∏

m=1

p(ωm, αm|r)

Figure 4 shows the frequency and amplitude data from
the ESPRIT subspace method, together with a Gaussian
mixture model (GMM) trained on the data. The parame-
ters of the GMM are determined by maximum a posteriori
(MAP) estimation, with priors placed on the covariance
of each Gaussian component so that the harmonic struc-
ture of the subspace data is captured. A uniform ‘clutter’
component is included to account for spurious detections.
To account for different note volumes, the amplitude data
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Figure 4. Subspace frequency-amplitude data of a piano
playing middle C with a sampling frequency of 8000Hz,
a framelength of 200 samples andM = 4 sinusoids.
The Gaussian mixture model trained on this data is indi-
cated by the positions of the means and contours of equal
probability. The covariance priors are diagonal and Gaus-
sian:σf ∼ N (σf ; 10−2, 10−4) is the log frequency prior,
σα ∼ N (σα; 100, 10−1) is the log amplitude prior.

in each frame is scaled so that the maximum sinusoid log
amplitude detected in a frame is zero.

A similar model, where the number of sinusoids de-
tected is Poisson rather than fixed atM has been applied to
polyphonic music transcription in [16], and is a mathemat-
ically sound method for avoiding data association between
partials of a musical note and the detected sinusoids.

4 INFERENCE

In our Bayesian framework, matching consists of inferring
the unknown score positionrk at timek, integrating out
the tempo valuetk. Typically we may wish to determine
the most likely score position at timek, given past ob-
servationsp(rk|y1:k), which is known as filtering and can
be carried out recursively online, or including all future
observationsp(rk|y1:K), which is known as smoothing
and must be carried out offline, or including some recent
observationsp(rk|y1:k+N ), which is known as fixed-lag
smoothing and is practical if a certain amount of latency
in the inference is acceptable. We may also wish to predict
future values of the score positionp(rk+N |y1:k) or infer
the most likely progression of score positionsp(r1:K |y1:K)
which is known as theViterbi path and is most suitable to
offline matching. The computations required for all these
related but distinct queries can be viewed in terms of mes-
sage passing algorithms, and will be described in this sec-
tion.

The observations areyk = {s1:W,k, λk} for the spec-
trogram model, andyk = {ω1:M , α1:M} for the damped
sinusoid model.

By Bayes’ theorem, the posterior distribution over the

unknown variablesH1:K ≡ {r1:K , t1:K} is given by

p(H1:K |y1:K) =
p(y1:K |H1:K)p(H1:K)

p(y1:K)

The marginal filtering densityp(Hk|y1:k) can be com-
puted by passingαk|k ≡ p(Hk|y1:k)p(y1:k) ‘alpha’ mes-
sages between neighbouring frames:

α0|0 = p(H0)

αk|k−1 =
∑

Hk−1

p(Hk|Hk−1)αk−1|k−1

αk|k = p(yk|Hk)αk|k−1

We then obtain the desired density up to a normalizing
constant by integrating over tempo valuestk ∈ T

p(rk|y1:k) =
∑

tk∈T

p(rk, tk|y1:k) ∝
∑

tk∈T

αk|k

The marginal smoothing densityp(Hk|y1:K) is com-
puted offline by passingβk|k ≡ p(yk+1:K |Hk) ‘beta’ mes-
sages as follows:

βK|K+1 = 1

βk|k = p(yk|Hk)βk|k+1

βk−1|k =
∑

Hk

p(Hk|Hk−1)βk|k

p(Hk|y1:K) ∝ αk|kβk|k+1

The Viterbi path is computed in an analogous manner,
where messages from neighbouring frames and observa-
tions are combined by taking the maximum rather than
summing, i.e.:

αk|k−1 = max
Hk−1

p(Hk|Hk−1)αk−1|k−1

βk−1|k = max
Hk

p(Hk|Hk−1)βk|k

argmax
H1:K

p(H1:K |y1:K) = argmax
k=1:K

αk|kβk|k+1

5 APPLICATIONS

The matching framework introduced in this paper is able
to address a wide range of known applications in music in-
formation retrieval. We have chosen here to demonstrate
score alignment using the observation models discussed
above. The aim of score alignment is to infer the score po-
sition in an audio extract. For purposes of evaluation we
sample an accurate MIDI transcription of the score over a
fine set of times, and train our observation models based
on the pitch content of the MIDI. Our training data was
obtained separately from test data by summing piano au-
dio samples (RWC-MDB-I-2001 No. 01) for each pitch,
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Figure 5. Score of an extract from Bach’s Well-Tempered
Klavier: Book 1 Fugue 2 in C minor. Audio source:
Daniel-Ben Pienaar
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Figure 6. Viterbi-path score matching using the spectro-
gram model,a = 10000. 25 ms frames. Evenly spaced
vertical bars in the spectrogram correspond to the score
positions marked on the MIDI data. The variation in
the spacing of the score positions illustrates the changing
tempo through the extract.

downsampled to 8 kHz, from the RWC Musical Instru-
ment Sound Database [7, 6]. The data in Figures 2 and
4 were obtained from these samples. We demonstrate of-
fline score matching on the extract in Figure 5. The mp3
audio was downsampled to 8 kHz and divided into non-
overlapping frames of 20ms length. Note that although
in the score extract there are only two parts playing at a
given time, when we sample the MIDI up to four simulta-
neous notes may be playing due neighboring notes over-
lapping in time. This is typical inlegato piano playing
and thus considering this overlap results in a robust score
alignment. A quantization model describing the render-
ing of MIDI from score would need to take this effect into
account. The score pointer transition probabilitiesπ(tk)
are chosen as{0.1, 0.3, 0.5} for the tempo values{ ‘fast’,
‘medium’, ‘slow’ } respectively.

Figures 6 and 7 are snapshots of the score alignment
system, showing the position of the score pointer in time
with respect to the observation data for the spectrogram
and damped sinusoid models respectively. Animations of
these figures are available on our website2 , with the audio

2 http://www-sigproc.eng.cam.ac.uk/∼php23/
publications/ISMIR/
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Figure 7. Viterbi-path score matching using the damped
sinusoid model,M = 7. 7.5 ms frames. Only the fre-
quency data from the subspace detector is shown.

signal playing simultaneously, from which it is clear that
score pointer is correctly aligned with the audio signal.
The damped sinusoid model gives better time-accuracy
than the spectrogram model, although this comes at a sig-
nificant computational overhead. This is because the sub-
space method gives high-resolution frequency estimates,
while the spectrogram method returns frequency estimates
in discrete bins, the resolution of which worsens with shorter
frames.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have considered a musical performance
as the evolution of a score pointer over time. We have
defined a simple dynamical model that governs the prob-
ability of the pointer transitioning from one position in
the score to another. We have introduced two models of
frequency-domain representations of musical audio given
the set of notes present at the current score position. The
first method is a generative model of spectrogram values,
which is computationally efficient and simple to train on
note samples, but has the usual time-frequency resolution
limitation associated with the spectrogram. The second
method models the output of a subspace detector, which
returns the frequencies and amplitudes of a chosen num-
ber damped sinusoids in a frame. This method has bet-
ter frequency resolution over shorter frame lengths, but
is computationally more intensive. We have demonstrated
these models in a score-alignment application, with promis-
ing results even for simple models linking frames together
so that exact inference is possible.

Based on our results we suggest two possible applica-
tions of interest to the music information retrieval com-
munity. The computation requirements of the generative
spectrogram model are sufficiently low to expect that a
real-time score-following system would be feasible with
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this model. The damped sinusoid model is capable of
matching a score to audio with high time precision. With
the training data and models used in this paper, we were
able to detect note onsets to a resolution of7.5 ms. This
method could potentially be used to automatically anno-
tate databases of audio where the score is known, with a
high level of accuracy. Such databases are invaluable to
researchers working on audio onset detection and music
transcription wishing to evaluate the performance of their
methods against ground truth.

We are also currently investigating other interesting ap-
plications that can be formulated in this framework such
as audio synchronization, score-guided source separation
or transcription.
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