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ABSTRACT

We present an approach to phrase segmentation that starts
with an expressive music performance. Previous research
has shown that phrases are delineated by tempo speedups
and slowdowns. We propose a dynamic programming al-
gorithm for extracting phrases from tempo information.
We test two hypotheses for modeling phrase tempo shapes:
a quadratic model, and a spline curve. We test the two
models on phrase extraction from performances of en-
tire classical romantic pieces namely, Chopin’sPreludes
Nos. 1 and7. The algorithms determined 21 of the 26
phrase boundaries correctly from Arthur Rubinstein’s and
Evgeny Kissin’s performances. We observe that not all
tempo slowdowns signify a boundary (some are agogic
accents), and multiple levels of phrasing strategies should
be considered for detailed interpretation analyses.

1 INTRODUCTION

Musical phrasing in expressive performance groups the
notes in a piece so as to present a coherent interpretation
of its ideas. A performer’s tasks include the determining
of some viable groupings of the piece that make musical
sense, and the communication of this grouping in perfor-
mance through the manipulation of expressive parameters
such as tempo and loudness. The problem we are con-
cerned with is the automatic extraction of phrases− the
groupings of notes in a piece.

Phrase structure analysis can begin with the score, or
from a performance of a piece. The first focuses on fea-
tures such as motives, melodies and chord progressions.
The latter begins with an expressive performance of a piece.
The interpretation is manifested as a set of grouping strate-
gies inherent in the performance. A goal of this paper
is to propose a computational approach to automatically
extract phrase boundaries from expressive performances
based on tempo variations. Our approach finds the best fit
sequence of phrase tempo curves using dynamic program-
ming (DP). This paper also explores the relation between
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tempo variation and phrase structure.
The phrase extraction steps consist of: tempo extrac-

tion from audio recordings, tempo smoothing to obtain
trajectories, and determination of phrase boundaries from
tempo information. We present a Java program for ex-
tracting tempo from manually tapping to beat-level onsets.
We introduce a DP algorithm for determining the phrase
boundaries by curve fitting. We test two quadratic curve
types for modeling phrase-level tempo variations: asym-
metric concave curves, and splines.

2 RELATED WORK

Most researchers focus on three dimensions of expressive
musical performance: tempo, dynamics, and articulation.
Gabrielsson [2], Kendall & Carterette [3], Todd [7, 8],
and Palmer [5] have found that performers tend to indi-
cate phrase boundaries by lengthening note values at these
boundaries, and by increasing the time between succes-
sive tones. Similarly, Palmer & Hutchins [6] noted that
the phrase is a musical unit that is often demarcated by
prosodic cues. Large & Palmer [4] used oscillator models
and the product of the probabilities that an onset deviates
from expected and that it is late as a measure of phrase
boundary likelihood. The oscillator models require initial
phase and period information. Cheng & Chew [1] used lo-
cal maxima in the loudness time series to detect phrases.
Our present approach uses DP to fit tempo trajectories
using a sequence of quadratic curves so as to determine
phrase boundaries. No prior information is required in the
latter two techniques.

3 SYSTEM DESCRIPTION

The system consists of two parts: tempo extraction and
phrase boundary determination. Figure 1 shows the sys-
tem diagram. We describe each part in this section.

3.1 Tempo Extraction

We develop a Java program (the tapper in Figure 1) to
record the time of a user’s tapping for generating the
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Figure 1. Phrase extraction system diagram

tempo time series from an expressive performance. Fig-
ure 2 shows a screenshot of the program. The interface
contains three panels, showing a representation of the
score with pitch height and onsets (from MIDI input), the
amplitude (from the audio signal), and the tempo (calcu-
lated from the user’s tapping) respectively.

Figure 2. Screenshot of the tapper program

To extract tempo information, one of the authors
(Chuan) taps the beat along with the audio recording while
reading the score; she taps each performance five times,
and we use the average of the five as the beat onset time
series. Note that tapping at the beat level performs a first
level smoothing of the data. The tempo at each beat is cal-
culated as the inverse of the inter-onset-interval between
between the current and the previous beat. The program
checks for taps every millisecond.

3.2 Phrase Boundary Determination

This section describes three of our considerations in the
phrase boundary determination stage.

3.2.1 Data Smoothing

A consideration in the phrase boundary determination
stage is data smoothing. The raw tempo data generated by
the process described in Section 3.1 can be noisy. We use
a non-causal moving average to smooth the data. Figure 3
shows the tempo data from Evgeny Kissin’s performance
of Chopin’sPrelude No. 1, before and after smoothing.
We used a window size of 2 bars, i.e., 4 beats in 2/8 time.

0 5 10 15 20 25 30
30

40

50

60

70

80

90

100

Bar

T
e
m

p
o
 (

b
p
m

)

before smoothing
110

after smoothing

Figure 3. Tempo time series: before and after smoothing

3.2.2 Curve Fitting

We consider two types of curves for modeling the shape of
the tempo variation in a phrase. Based on previous find-
ings of tempo slowdowns at phrase boundaries, the curve
should consist of two lower ends at the boundaries, with
higher values in between. We tested the use of asymmetric
concave quadratic curves, and quadratic splines, to model
the phrase tempo variations.

The first model, the quadratic curve, possesses four
characteristics: (1) it is defined by a degree two polyno-
mial function; (2) the curve is concave, with values in the
middle higher than the two ends; (3) the two sides can be
asymmetric; and, (4) the peak does not need not to be ex-
actly in the middle. The best-fit curve is determined by the
least mean square error (LMSE), a commonly employed
measure, between the fitted curve and the original data
points. We use quadratic programming to solve the con-
strained least-squares problem to find the best-fit curve.

Suppose we have the following onset times and tempo
values for a phrase, given byX = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , yn} respectively. We use two quadratic
functions to model the two asymmetric sides of the curve:

ŷ = a1x
2 + b1x + c1; ŷ = a2x

2 + b2x + c2, (1)

wherea1, a2 ≤ 0 (concavity constraint). The two curves
peak and meet at a specificx value,xp. We iterate through
all candidate values,xp ∈ X , to find the best fit curve.
We prune the search space by restricting each equation to
descend on only one side of the curve:

b2

2a2
≤ xp ≤

b1

2a1
. (2)

The second model uses the quadratic spline, a piece-
wise polynomial function with one continuous derivative.
A local minimum search determines the boundaries after
curve fitting.

3.2.3 Determining Boundaries

We use DP to determine the phrase boundaries from the
expressive performance tempo graph. The objective of
the DP algorithm is to minimize the sum of LMSE when
approximating the tempo time series by a sequence of
quadratic curves (or spline curves); in the process, it seg-
ments the entire data stream into a sequence of phrases.

The DP algorithm is based on the observation that
the optimal objective value (minimum error) for beats 1



throughi is the sum of the error of the optimal solutions
for beats 1 throughj and the curve fit error for beatsj
throughi, for 1 ≤ j < i, as shown in Equation 3:

Opt(1, i) = min
j

[Opt(1, j) + Err(j, i)], (3)

wherej = 1, . . . , i − 1. In implementation, the initial
optimal costs for beats 1 and 2 are set to zero,Opt(1, 1) =
Opt(1, 2) = 0, because at least three points are needed for
defining a quadratic curve. The smallest interval between
two boundaries is set at two bars. The DP algorithm is
shown in Table 1.

Table 1. DP algorithm for phrase boundary determination

n = length of piece; % in beats
p = two bars; % minimum phrase size
Opt(1, a) = 0 ∀ a ∈ [1, 2]; % initialization
Pre(b) = 1 ∀ b ∈ [p, n]; % initialization
for i = p + 1 : n

for j = 1 : i − p

Optj(1, i) = Opt(1, j) + Err(j, i);
end
Opt(1, i) = minj∈[1,i−p] Optj(1, i);
Pre(i) = argminj∈[1,i−p] Optj(1, i);

end
returnPre(n), P re(Pre(n)), . . . , 1;

For the spline model, some of the best-fit curves gener-
ated by the DP algorithm may be convex due to a lack of
shape constraints. In such cases, we search for the local
minima to find the phrase boundaries.

4 EMPIRICAL RESULTS AND DISCUSSIONS

We test the algorithms using the performances of Chopin’s
Preludes Nos. 1 and 7 by Evgeny Kissin and Arthur Ru-
binstein− RCA CD recordings− ASIN: B00002DE5F
(Kissin) and ASIN: B000031WBN (Rubinstein, 1946).

Figures 4 through 7 show the extracted phrase bound-
aries for Kissin’s and Rubinstein’s performances ofPre-
ludes Nos. 1 and 7, modeled by quadratic curves and
splines respectively. We refer to the two settings of the
DP algorithms as DP(quadratic) and DP(spline). The ver-
tical dashed lines emanating down from the smooth curves
represent the boundaries determined by the system. The
vertical dashed lines cutting across the entire plane are
the highest level (several layers of phrasings were la-
beled) phrase boundaries annotated according to the per-
formances by one of the authors, an expert pianist (Chew).

We observe that the algorithms, both DP(quadratic)
and DP(spline), retrieve most of the phrase boundaries in-
dicated by the expert. We discover different tempo strate-
gies employed by the two performers on the same piece,
for example, slowdowns at the ends of phrases versus slow

starts at the beginnings. Some other challenges of deter-
mining phrase boundaries from only tempo information
are discussed in the following sections.

4.1 Kissin’s Chopin Prelude No. 1

Figure 4 shows the results for Kissin’s performance of
Chopin’s Prelude No. 1. The DP(quadratic) algorithm
successfully finds two, and DP(splines) three, of the four
annotated boundaries (bars 8, 16, 24, and 28). In the final
phrase, beginning in bar 29, Kissin employs a slow-start
strategy in this performance: the start of this final phrase
is as slow as the end of the previous phrase. We consider
detected boundaries a bar off from the ground truth due to
such slow start strategies as correct.
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Figure 4. Kissin’s ChopinPrelude 1 boundaries
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Figure 5. Rubinstein’s ChopinPrelude 1 boundaries

4.2 Rubinstein’s Chopin Prelude No. 1

Rubinstein’s performance of Chopin’sPrelude No. 1,
shown in Figure 5, exhibits two distinct characteristics in
contrast to Kissin’s performance. The slowdown at bar 22,
before the bar 24 phrase boundary, functions as an agogic
accent, an emphasis. This performance also uses multiple



levels of groupings, for example, four two-bar sub-phrases
within an eight-bar phrase in bars 1 through 8.

4.3 Kissin’s Chopin Prelude No. 7

Figure 6 shows the results for Kissin’s performance of
Chopin’sPrelude No. 7. The results, both quadratic and
spline, match two of the three annotated boundaries.
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Figure 6. Kissin’s ChopinPrelude 7 boundaries
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Figure 7. Rubinstein’s ChopinPrelude 7 boundaries

4.4 Rubinstein’s Chopin Prelude No. 7

Figure 7 shows the results of Rubinstein’s performance of
Chopin’sPrelude No. 7. Comparing Kissin’s and Rubin-
stein’s performances, we observe two radically different
tempo strategies. In Kissin’s performance, two sweeping
concave curves are observed in bars (1, 8) and (8, 12) re-
spectively, followed by a relatively level slowdown. In
Rubinstein’s performance, the tempo shows a predomi-
nantly decreasing slope from start to end.

5 CONCLUSIONS AND FUTURE WORK

We have proposed a DP approach for determining phrase
boundaries from tempo graphs extracted from expressive

performances. The algorithm accurately determined most
of the boundaries annotated by an expert in the test data.
We discover widely differing tempo strategies. We also
uncover some challenges in the determining of phrase
boundaries based only on tempo variations: performers
sometimes employ multiple levels of grouping strategies,
increasing the complexity of phrase boundary analysis;
tempo variation alone is sometimes inadequate for deter-
mining phrase boundaries (for example, a slow-start strat-
egy can obfuscate the true boundary); and, tempo slow-
downs are not always used for segmenting phrases, it is
sometimes used for emphasis.

Future work will explore methods for extracting mul-
tiple levels of phrase structure and disambiguating slow-
down functions in expressive performances. It will also
incorporate other features such as dynamics (loudness) in
phrase analysis. More manually annotated performances
will be tested.
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