AUTOMATIC TRANSCRIPTION OF MUSIC AUDIO THROUGH
CONTINUOUS PARAMETER TRACKING

Eric Nichols
Dept. of Computer Science
Indiana Univ.
epnichol @indiana.edu

ABSTRACT

We present a method for transcribing arbitrary pitched
music into a piano-roll-like representation that also tracks
the amplitudes of the notes over time. We develop a proba-
bilistic model that gives the likelihood of a frame of audio
data given a vector of amplitudes for the possible notes.
Using an approximation of the log likelihood function, we
develop an objective function that is quadratic in the time-
varying amplitude variables, while also depending on the
discrete piano-roll variables. We optimize this function
using a variant of dynamic programming, by repeatedly
growing and pruning our histories. We present results on
a variety of different examples using several measures of
performance including an edit-distance measure as well as
a frame-by-frame measure.

1 INTRODUCTION

Polyphonic audio transcription has received considerable
attention in recent years and is holds promise in MIR
for its potential for automatically creating symbolic mu-
sic representations from audio. Research in this area has
produced a wide variety of approaches [1], [3]-[11] with
significant contributions, though the problem is deeply
challenging and remains open. A recurring theme in this
work is that of representing a music spectrogram as a su-
perposition of fixed (but trainable) templates modeling
various note aspects. Examples of such template-based
approaches are non-negative matrix representations for
frames over notes [1], [10] or fundamental frequencies
[6], or note-based models involving time-extent as well
[7]. Our approach shares some methodology with [11], al-
though that work uses peak detection instead of templates.

While these local model-fitting problems are difficult,
perhaps even more challenging is the problem of assem-
bling a global interpretation of the data, beyond the frame
or note level. Such full transcription problems [3], [8],
require the integration of more global musical knowledge.

Our work is in this latter category. In addition to at-
tempting polyphonic transcription from unknown sources,
we simultaneously estimate the time-varying note ampli-
tude parameters, hoping their knowledge will lead to more

© 2007 Austrian Computer Society (OCG).

Christopher Raphael
School of Informatics
Indiana Univ.
craphael @indiana.edu

discriminating models. This work has overlap with [4],
though our approach is note-based, rather than harmonic-
based. The amplitude envelopes themselves may be of
primary interest for some applications.

2 A PROBABILISTIC MODEL

We present here a probabilistic model describing the like-
lihood of a frequency spectrum given an assumed config-
uration of sounding pitches.

We denote our sampled time signal as z(m) for m =
0,...M — 1. Our entire analysis is based on the spectro-
gram of the time data which we define as

N-1
si(k) = Z x(tL + n)w(n)e%&kn
n=0

where IV is the frame length, L is the “hop size,” w is
an N-point window function, and k¥ = 0,...,N/2,t =
0,....,7—1,whereT =1+ |(M — N)/L|.

We probabilistically model the “time slices” of the
spectrogram, s;(-), as follows. Suppose that we begin
with an idealized template spectrum, ¢(%, -), for each pos-
sible note indexed by 7+ = 1,...I. Here we assume that
q(%,-) is a probability distribution so that ¢(%, k) > 0 and
> s q(i,k) = 1. These note models can either be esti-
mated from actual data, as discussed in a later section, or
simply fixed according to a predetermined model. In this
latter case we have used the mixture of discrete Gaussians
model

H
q(i, k) = ZP’LN(k5ﬂ(iv h)’UQ(ivh)) (D
h=1

where N (k;p,0?) = P(k—1/2 < X < k + 1/2) for
normally distributed X with mean (i, h) = hwq(i) and
variance 02 (i, h) = ahwo(i) + b. Here >, pp, = 1 and
wo(1) is the fundamental frequency of the ith pitch.

Let (i) > 0 denote the contribution of pitch ¢ during
frame ¢, so that «;(7) = 0 if the note is absent and

Go, (k) = Z oy (i)q(i, k))

denotes the idealized template for frame . We model
the data likelihood at frame ¢, given qq, (), by assum-
ing that the {s;(k)} are independent and that s;(k) ~

Poisson(qq, (k)). For this assumption to make sense, we
scale to a point where the truncation to integral values pro-
duces no significant loss. The log likelihood can then be
written as

log P (s(t,-)]ga, () 3)
N/2

= ¢+ Z s(t, k)log ga, (k) — ga, (k) (@)
k=0

N/2

I
= c+ Z St(k) log (Z at(i)q(i’ k))
k=0 =1

where c is a constant not depending on q,,. Thus we have
a parametric probability model with parameters {cv(7)}.

3 BUILDING THE LATTICE

Our immediate goal is to create a collection of hypothe-
ses for the notes that sound in each frame. For simplicity,
we will call these collections “chords” while acknowledg-
ing that they are not exactly the same as the usual musical
meaning of the word. The collections of chord hypothe-
ses, indexed by the frame ¢, can be thought of as a lattice.
Our audio recognition will be phrased as a search for the
best path through this lattice. Since a hypothesis that is
missing from this lattice will never be considered during
recognition, we wish to err on the side of inclusion by ad-
mitting any hypothesis that seems plausible.

Our search for candidate hypotheses is made easier by
the tractable nature of our log likelihood function. Com-
puting derivatives of the log likelihood with respect to the
« parameters shows that the negative of the Hessian of the
log likelihood is nonnegative definite. Thus the log like-
lihood is convex in the v parameters. The virtue here is
that the numerical optimization of the log likelihood over
the o parameters is relatively easy to perform while we
are assured of finding a global optimum due to convex-
ity. The only minor difficulty is handling the positivity
constraints on the o parameters. We have accomplished
this using the barrier method, [2], which approximates the
constrained optimization by a series of unconstrained op-
timization problems.

Let o (i) be the optimal parameters found by maxi-
mizing the log likelihood for frame t. We create our ini-
tial set of chord hypotheses for frame ¢ by taking up to R
notes whose contribution to the overall spectrum exceeds
a threshold.

S(t) = {i € I a;(i) = max(Timin, @; (i(r)) }

where o (i(g)) is the Rth highest of the {a} (i)} (R =5
in our experiments). Our initial chord hypotheses for
frame ¢ are then taken to be the power set, or set of all
possible 2/°(®) subsets, of S(t). We denote this initial
collection of hypotheses by L(t) = P(S(t)). As men-
tioned before, we hope not to miss possible hypotheses

at this stage so we try to be as liberal as possible in the
construction of our initial lattice. To this end, we form an
expanded lattice including all chords detected in nearby
frames as well.

4 A SIMPLE RECOGNITION SCHEME

We wish to label each frame, ¢, with a chord label, C'(¢) €
L(t) such that the data support each chord label and the
horizontal evolution of the chords makes a certain mini-
mal musical sense. To this end, each sequence of frames
C = (Cy,...Cp_q)isscored as S(C') = D(C) + E(C)
where the data score, D(C'), and the penalty term, E(C'),
measure these two aspects of the hypothesis C'

The data score is defined by

T—

D(C) = log P(st|ac,)

t=0

—

where

ac, (i) = { SpoB)/ICl i€ C

otherwise

In other words, we use a template created by equal con-
tributions of the hypothesized notes such that the total en-
ergy explained by the template is equal to the total energy
in the spectrum. The penalty term is given by

T-1

E(C) = —Lenter »_ {i € C(t) :i ¢ C(t—1)}|

t=1

where Lpter gives the penalty for each “entering” note.

With this penalty function it is a simple matter to find
the globally optimal path through the lattice using dy-
namic programming.

5 SIMULTANEOUS RECOGNITION AND
AMPLITUDE TRACKING

The recognition scheme presented in Section 4 suffers
from some weaknesses. For one, it is not possible to
recognize rearticulations (repeated pitches) since the data
term is identical for both held and rearticulated hypothe-
ses, while the penalty term will always prefer the hypoth-
esis with fewer notes. In addition, the model assumes that
the amplitudes («’s) of all of the notes in a “chord” are
the same. Given no other information, this seems as rea-
sonable as any assumption, but is certain to be far from
reality. We introduce in this section a method for simul-
taneous recognition of the chord sequence and tracking of
the amplitude parameters. The method has much the same
flavor as Rao-Blackwellized particle filtering, though we
seek a most-likely path, rather than a filtered solution.
Our essential approach performs dynamic program-
ming to find the best chord sequence, as before. However,
each chord hypothesis is “scored” not by a number, but
by a function that measures the goodness of the hypoth-
esis as a function of the unknown amplitude parameters.

This function is represented parametrically, so that we can
update the parameters as the hypothesis ages — as in the
Kalman filter. This method overcomes some weaknesses
of the previous approach by representing the data likeli-
hood as a function of the amplitude parameters — clearly
a desirable trait for the data model.

A complete hypothesis for our data is now given as
a sequence of chords, C' = (Cy,...,Cr_1), along with
the amplitude vectors, « = («g,...,ar—1), and a bi-
nary breakpoint vector b = (bg,...,br—1) with by = 0
and by_; = 0. We require the chord to be constant be-
tween breakpoints: C; = Cy_; for by # 0, though we
do not require the chord to change after a breakpoint.
In this way we represent something like a rearticulation,
though we do not distinguish between the rearticulating
and sustaining chord members. Each amplitude vector de-
scribes the amplitudes of the notes in the current chord
with the non-chord members constrained to have 0 ampli-
tude: (i) = 0 fori ¢ Cy. In representing the “good-
ness” of a hypothesis we penalize both hypotheses that
don’t agree with the data and hypotheses that are not mu-
sically plausible.

In our new version, the data score depends on the
unknown amplitude parameters (the a; parameters of
Eqn. 3). Since this log likelihood function was shown
to be convex in the amplitude parameters in Section 3, it
seems reasonable to approximate it by a quadratic func-
tion in the {«(t)} parameters. We parameterize this by

1
log P(stlqa,) =~ hi + §(Oét - mt)tQt(at —my)

where (h¢, ms, Q) are found by completing the square
on the Taylor series approximation of the data log likeli-
hood expanded around our optimizing point, ;. We don’t
know about the non-local quality of the quadratic approxi-
mation, but this approximation is quite useful for the com-
putations that follow. For instance, if we want to approx-
imate the data log likelihood for a specific chord, C}, as
a function of the amplitude parameters, we need only re-
strict to zero the (i) parameters where i ¢ C;. We will
denote this restriction by (h¢,, mc,,Qc,). Here Qc¢, is
obtained simply by zeroing out the rows and columns of
Q: not contained in C(t), while h¢(t) and me(t) are ob-
tained as simple linear functions of the original parameters
(as in the Gaussian conditional mean). The data score of
a hypotheses is then

T-1
D(Ca) = Y Di(Cion)
t=0
def T-1 1
é Z §(Oét - mCt)tQCt (O(t - mct)

t=0

We modify our previous penalty term by adding in a
component that favors o, vectors that vary smoothly over
the duration of a chord, as would be expected. That is

T-1
E(C,b,a) = > Ei(Ci1,Cpby, 1, 1)
=0

ef
d: - Z Lenter‘ct - CV1571|

b(t)=1

- Z ey —Oftlez

b(£)=0

for some constant » > 0. Note that we have no reason-
able priors on the parameters «; necessary for a Bayesian
formulation of this problem; instead, we prefer the frame-
work of maximum likelihood, with the penalty term pro-
viding smoothing. Our goal is now to maximize our total
hypothesis score, S(C,b,) = D(C,a) + E(C, b, @).

5.1 Performing the Optimization

Our score function is more difficult to optimize than that
of Section 4 due to the combination of discrete (C, b) and
continuous («) parameters. Still, our basic approach is
to perform dynamic programming just as before. To that
end we use the vector notation a, = (ao, ..., a;) for any
vector a, and define

t
St(087b67a6) = ZDT(CTaaT)
7=0
+ET(C‘I’7 C‘f‘fla bT; 047'717&7')

which can be written more compactly with the notation
Tt = (Ct7 bt,Oét) as

t

Si(xh) =D Dr(wr) + Er(w,-1,2,)

7=0

Our dynamic programming recursion is then

St(x) = max Si_1(xi—1)+Dy(x) + Ee(xi—1,) (5)

where S (z;) is the score of the optimal partial hypothesis
ending in z;.

Unfortunately, the dynamic recursion cannot be com-
puted in the usual way, due to the continuous parameters
in Eqn. 5. However, we can approximate these calcula-
tions. Our approach is to grow a tree of partial hypotheses
where a node in the tree at depth ¢ has associated discrete
variables b;, C; where C; € L(t). After the tth iteration
our algorithm, the terminal nodes are all at depth ¢, so each
path from the root to the terminal node corresponds to a
possible history of the discrete variables. Rather than scor-
ing each terminal node with a single number, we score the
terminal nodes with a function that measures the “good-
ness” of a history as a function of the unknown continuous
variables at frame ¢. We will alternately grow and prune
the tree in an effort to approximate the dynamic program-
ming recursion.

Suppose that C¢, bl is a possible discrete history. The
function describing the quality of this hypothesis is

Scyu(ar) = maxS(CE,bh, ap) ©)
g
= oy)

+(ar —mep) Qg vt (r — me e)

where the maximum is over oy ! such that o, (i) = 0
when i & C, (i) forT = 0,...,¢t— 1. This function can be
computed recursively, using the usual dynamic program-
ming idea, due to the quadratic dependence on the contin-
uous parameters.

Thus, each hypothesis concerning the first ¢ frames cor-
responds to a terminal node in our tree at level ¢, corre-
sponding to the discrete history C§, b and the parametri-
cally represented score function of Eqns. 6,7.

5.2 Pruning the Hypotheses

Our tree construction will not be feasible without some
pruning of the histories. Our approach to pruning is based
on the following observation. Suppose we have two dis-
crete histories, Cf, bl and C{,b§ where C; = C; and
bt = Bt. If SCS,b(t) (at) > Séctwgg (O[t) for all legal Qg
— that is, «; with non-negative coordinates such that
a(i) = 0 when ¢ ¢ C; — then any continuation of
C?, bt will always score worse then the same continuation
of C, bl. Thus, the history C, b% may be pruned with no
possibility of losing the optimal history in our tree con-
struction. We call such a pruning a “dp cutoff.” This idea
extends to the case in which a collection of hypotheses
“dominate” another hypothesis, though the determination
of such a collection is computationally challenging.

We approximate this idea by performing dp cutoffs
when a discrete hypothesis seems unlikely to be optimal
for any legal value of ;. We do this by approximating,
for each surviving hypothesis, C¢, b, the legal point af
where SC”S’E?) is maximum. If, for this point

Sce v (7)) > Seg g (o)

for any of the surviving C{, by we conclude that, having
failed to be maximal at its maximizing point o, SC‘éaEB
is unlikely to be maximal at any legal point a;. Thus, we
prune C}, bh.

Our tree construction then proceeds as follows. After
each iteration, ¢, we have a collection of histories, H;,
each with a quadratic score function as in Eqns. 6,7. In
the ¢ 4 1 iteration, we produce the set

H(t+1) = {(Cgtbg™) « (Co,bp) € Ht),

Crir € Lt +1),
bip1 =0if Cipq # Cy}

Thus every surviving history can be continued by any pos-
sible frame hypothesis in L(¢ + 1), while we only allow
the possibility of rearticulation b;y; = 1 for a continued
chord. For each new history in H (¢ + 1) we compute the
optimal score function SCé+17bg+l (ct¢41). On these histo-
ries we first prune according to the procedure described
above for dynamic programming cutoffs. This phase ap-
proximates the process of pruning histories that could not
be part of the eventual optimal history. A second prun-
ing phase further discards histories until we are left with
a fixed number of possibilities. In this phase the histories
are sorted according to our approximation of the best score

they could produce on the legal space. We then retain the
M best histories and denote this set by H; .

6 TRAINING THE MODEL

Some of our experiments have been performed using the
reasonable, but somewhat arbitrary, probability model for
the audio spectrum given in Eqn. 1. The advantage of such
an approach is that it can be applied to any music audio,
without prior knowledge of the many factors leading to
the presentation of a note spectrum. However, given such
prior knowledge, we should be able to improve our model
to better capture reality.

We assume that our audio training data is accompanied
with both a symbolic representation of the audio, as in a
MIDI file, as well as a score match, giving a correspon-
dence between the symbolic representation and the audio.
We assume only one model for every possible pitch, as
would be appropriate for piano music.

As discussed in section 2, we model the {s:(k)} as re-
alizations of independent Poisson random variables with

Esi(k) = qu, (k) = Z i (i)q(i, k)

i€Cy

where, during the training phase, C is known due to the
score match. This assumption can be viewed as a conse-
quence of the assumption that s;(k) = >, Zi(i, k)
where the {Z;(i,k)} are independent Poisson random
variables with EZ;(i, k) = «.(i)q(i, k). We view the
training process as maximum likelihood estimation of the
{at(i)} and {q(i, k)} parameters. Though we must esti-
mate both of these together, we are only interested in the
“template” spectra ¢(4,-) where we continue to assume
that), (i, k) = 1. These template spectra and o (i) pa-
rameters are estimated using a straightforward application
of the EM algorithm in which the Z; (i, k) are regarded as
the hidden variables while s;(k) is observable.

7 EXPERIMENTS

We implemented and tested the two algorithms described
above on several diverse musical examples:

e Bach WTC I, C minor fugue (performed on piano)
* Beethoven Duet No. 3 for Clarinet and Bassoon

e Brahms Symphony 2, Mvt. 1

* Copland Fanfare for the Common Man

* Haydn String Quartet No. 62 (“Emperor”)

We chose minute-long excerpts from recordings of each
piece and sampled down to 8 kHz mono audio. The frame
size was fixed to 512 samples with a hop size of 256 sam-
ples for all experiments.

Evaluation of transcription results is itself a nontriv-
ial task. Here we adopt a dual strategy of providing both
quantitative accuracy results and a qualitative discussion
of the algorithm output.

Lenter Mean Correct | Mean Expected | Percent | Mean Extra | Edit Dist %

Lenter / v | Notes/Frame Notes/Frame Correct | Notes/Frame | cor-ins—del
Bach simple 0.1 1.6/1.9/1.5 2.4/2.2/2.1 70/85/73 1.7/1.2/0.7 59-41-41
simple EM 0.1 1.8/1.8/1.5 "M 78/83/71 1.0/0.7/0.5 64-36-21
continuous 0.1/100 1.4/1.5/1.4 "M 58/70/68 1.6/1.2/0.9 42-58-14
Beethoven simple 0.5 1.4/1.4/1.2 2.0/1.8/1.8 70/79/64 1.1/0.7/0.5 51-49-42
continuous 0.2/50 0.1/0.3/0.1 "M 6/16/63 2.8/2.2/1.2 20-80-68
Brahms simple 0.4 1.8/2.5/1.3 5.6/3.5/2.1 33/73/62 1.3/0.8/0.6 18-82-15
continuous 0.4/200 0.8/1.4/0.9 "M 14/40/44 | 2.0/1.3/0.9 17-83-13
Copland simple 1.0 1.2/1.3/0.8 2.2/1.9/1.9 55/67/43 | 0.4/0.2/0.1 41-59-5
simple EM 1.0 1.3/1.3/0.9 "M 58/70/49 | 0.6/0.4/0.3 36-64-23
continuous 0.7/200 1.1/1.3/1.0 "M 48/65/52 1.0/0.5/0.4 28-72-38
Haydn simple 0.5 2.0/2.2/1.6 3.5/2.9/2.5 55/77/65 1.1/0.7/0.5 39-61-20
continuous 0.3/100 1.7/1.9/1.3 "M 48/64/54 | 0.9/0.5/0.3 32-68-23

Table 1. Results: each entry is computed with three different scoring metrics: exact/pitch class/min. homonym.

7.1 Quantitative Evaluation

To evaluate the algorithms numerically, we first convert
the computed optimal paths into MIDI files. For the sim-
ple recognition scheme (Section 4) we traverse the optimal
path and generate a MIDI ‘note on’ message at any frame
where a new note appears. A ‘note off’ is generated at
the first frame where the note does not appear. We gener-
ate MIDI for the continuous tracking algorithm (Section
5) in a similar manner, but with the added condition that a
note must have an amplitude greater than a small positive
cutoff before being considered ‘on’.

Comparing the MIDI files to the score match, we col-
lected the accuracy results shown in Table 1.

Parameter values The values for L., ., used in each ex-
periment. r is given for continuous tracking experiments.
Mean correct notes per frame The average number of
correct notes generated for each audio frame. The three
values in each cell correspond to three different evalua-
tion metrics (see below).

Mean expected notes per frame The total number of
notes in the target score divided by the number of frames.
Percent correct The total number of correct notes di-
vided by expected notes, ignoring extra notes.

Mean extra notes per frame These are incorrect notes;
i.e., any notes generated by the algorithm that were not
listed in the target score for each frame.

Edit distance We compute a version of edit distance
adapted to polyphonic music. Unlike the other metrics
in the table, edit distance is unconcerned with note dura-
tions and audio frames. The three numbers in each cell are
the number of correct matches, insertions, and deletions,
expressed as percentages of the number of target notes.
Note that due to the large number of insertions and dele-
tions, we report these values separately for clarity instead
of combining all three into a single score.

For cells with multiple metrics computed, the first entry
corresponds to the natural (exact) metric: a note is cor-
rect if it appears in the target score; otherwise it is labeled

as ‘extra’. The second metric reported is based on pitch
class: for each frame, the output chord and target chord
are both reduced to a set of pitch classes (i.e. octave errors
are ignored). The final metric is similar, but each chord is
reduced to a ‘minimal homonym’ by ignoring notes that
are harmonics of notes lower in pitch.

7.2 Parameter Selection and Audio Output

Both algorithms include a set of parameters that can be
tuned to improve performance. The values of Leyter and
r shown above were selected by trial and error. Values of
Lenter between 0.1 and 1.5 typically seemed best, as did
values of r ranging between 10 and 200. Other crucial
parameters that remained fixed included:

Maximum number of notes per frame Fixed to five
(simple algorithm) or four (continuous).

Maximum number of histories Fixed to 150; the tree of
best paths was pruned to this size at each iteration.
Minimum amplitude Notes with energy less than this
cutoff were ignored in the lattice generation phase. Set

to 0.01 (simple) or 0.05 (continuous).

The algorithm to generate MIDI files described above has
two main weaknesses. First, in cases where the same note
is rearticulated without an intervening rest, no additional
MIDI ‘note on’ will be generated. Repeated notes are
thus be combined into single long MIDI notes, eliminating
rearticulations from the output. Second, the MIDI files do
not take advantage of the continually varying amplitude
data captured by the continuous model.

We generated audio output files! from the continuous
algorithm by superimposing sine waves. For each note in
each frame of audio, we generated the fundamental fre-
quency with its computed amplitude and added in five
overtones with amplitudes decreasing as 1/n.

U Audio files in .wav format are available online at
http://xavier.informatics.indiana.edu/
“craphael/ismir07/transcription/

7.3 Discussion

Both algorithms begin by generating a hypothesis lattice.
For most experiments, the correct hypothesis appears in
about 90% of the lattice frames, giving us an upper bound
on the accuracy we can expect from later stages. Our best
result was the Bach excerpt, with 78% notes exactly cor-
rect when using the simple algorithm with trained note
templates. Without EM training performance drops to
70%. This excerpt is perhaps the simplest in terms of tim-
bre for our model, because it only involves one instrument.
Even when trained, our model assigns only one probabil-
ity distribution to each MIDI note. In a more complex
piece such as the Brahms symphony, the different timbres
of multiple instruments may confound the pitch model.

Results of the pitch class and homonym metrics also
point to problems related to instrument timbre: there is
generally a significant jump in the percent correct when
we consider the pitch class (octave equivalence) metric.
For example, in the simple algorithm result for Bach, there
is a 15% increase in accuracy if we ignore octave mis-
takes. Octave errors arise from misinterpreting the funda-
mental frequency, which can happen easily if the model
misrepresents the true distribution of energy across differ-
ent harmonics. In the Bach case, training the model re-
duces the disparity between the exact and pitch class met-
rics, suggesting a timbre problem before training.

Table 1 shows that there are often as many extra notes
as correct notes. This may be the most glaring weakness
of the results. However, the homonym metric sheds some
light: there are far fewer extra notes per frame when we
discount notes that are members of the overtone series of
correct notes. Listening to the results suggests another
source of errors: some notes last too long and overlap suc-
cessive notes. Due to reverberation and resonance, notes
persist longer than notated in a musical score. Determin-
ing the perceived cutoff time of a note, as opposed to the
acoustic decay time, is a difficult open question.

Surprisingly, the simple algorithm always scored bet-
ter than the continuous tracking version. However, recall
that the continuous results are based on comparison of the
generated MIDI file with the target output. Indeed, the
audio synthesized from the continuous algorithm sounded
consistently better than the MIDI output from the simple
algorithm. The lifelike quality of the results suggests that
continually-tracked amplitudes capture more performance
details than simple note onset events. The output recalls
the dynamic range of a piece, balance between instru-
ments, and crescendos/decrescendos within a single note.

While there is no standardized collection of audio data
and associated evaluation metrics in the field of poly-
phonic audio recognition, our results subjectively appear
not to be as good as some other work cited in the intro-
duction. However, our approach solves the slightly differ-
ent problem of simultaneous note and amplitude tracking.
The continuous amplitude values output by our algorithm
may be useful in a transcription system that aims to cap-
ture dynamics as well as pitches, or, similarly, in a system
for analysis of expressive musical performance.

8 REFERENCES

[1] Abdallah S., Plumbley M., “Polyphonic Transcrip-
tion by Non-Negative Sparse Coding of Power Spec-
tra,” Proceedings of the Fifth International Confer-
ence on Music Information Retrieval, ISMIR 2004
pp- 318-325, Barcelona, Spain, 2004.

[2] Boyd S. P, Vandenberghe L. 2004. Convex Op-
timization. Cambridge, UK: Cambridge University
Press.

[3] Cemgil A. T., Kappen H. J. , Barber D. “A Gener-
ative Model for Music Transcription,” IEEE Trans-
actions on Audio, Speech and Language Processing
14(2), March 2006.

[4] Dubois C., and Davy M., “Joint Detection and
Tracking of Time-Varying Harmonic Components: a
General Bayesian Framework,” IEEE Transactions
on Audio, Speech and Language Processing to ap-
pear.

[5] Godsill S., and Davy M., “Bayesian Harmonic Mod-
els for Musical Pitch Estimation and Analysis,”
Proc. IEEE International Conf. on Acoustics Speech,
and Signal Processing (ICASSP2002), pp. 1769-
1772.

[6] Goto M., “A Real-Time Music Scene-Description
System: Predominant-FO Estimation for Detecting
Melody and Bass Lines in Real-World Audio Sig-
nals,” ISCA Journal, 43(4):311-329,2004.

[7] Kameoka H., Nishimoto Y., Sagayama S., “‘Au-
dio Stream Segregation of Multi-Pitch Music Sig-
nal Based on Time-Space Clustering Using Gaussian
Kernel 2-Dimensional Model,” Proc. IEEE Interna-
tional Conf. on Acoustics Speech, and Signal Pro-
cessing (ICASSP2005).

[8] Kapanci E., Pfeffer A., “Signal-to-Score Music
Transcription Using Graphical Models,” Proc. 19th
Int. Joint Conf. on Artif. Intel. (IJCAI), Edinburgh,
UK, August 2005.

[9] Klapuri A., “Multiple Fundamental Frequency Esti-
mation by Harmonicity and Spectral Smoothness,”
IEEE Trans. Speech and Audio Processing, 11(6),
804-816, 2003.

[10] Klapuri A., “Multiple Fundamental Frequency Es-
timation by Summing Harmonic Amplitudes,” Pro-
ceedings of the Seventh International Conference on
Music Information Retrieval, ISMIR 2006 pp. 216-
221, Victoria, BC, Canada, USA, 2006.

[11] Peeling P., Li C., Godsill S., “Poisson point process
modeling for polyphonic music transcription,” Jour-
nal of the Acoustical Society of America Express Let-
ters 121(4):EL168-EL175, April 2007.

