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ABSTRACT

An algorithm to efficiently determine an appropriate num-

ber of components for a Gaussian mixture model is pre-

sented. For determining the optimal model complexity

we do not use a classical iterative procedure, but use the

strong correlation between a simple clustering method

(BSAS [13]) and an MDL-based method [6]. This ap-

proach is computationally efficient and prevents the model

from representing statistically irrelevant data.

The performance of these variable size mixture mod-

els is evaluated with respect to hub occurrences, genre

classification and computational complexity. Our variable

size modelling approach marginally reduces the number

of hubs, yields 3-4% better genre classification precision

and is approximately 40% less computationally expen-

sive.

1 INTRODUCTION

In the current boom of web 2.0, the market for music

recommender systems seems to have taken off. Last.fm,

iLike, myStrands and others analyze a user’s listening be-

haviour and compare it with other user’s profiles. Music

can be tagged with personal tags which allows new ways

to explore music collections.

One of the major problems of these community based

recommender systems is their robustness in new databases

and dealing with underrepresented data. Once a song is

chosen as favourite, a loop mechanism can keep this song

as favourite for a long time. Community based recom-

menders can be sensitive to attacks that try to influence

a specific song’s rating. Two kinds of attack strategies

are shilling (promoting an item) and nuking (demoting an

item) [8].

Another approach for recommender systems that do

not suffer from loops, shilling or nuking is content-based

recommendation. The acoustical content of a song is ana-

lyzed, and songs found to be ‘similar’ to songs a user likes

are recommended. Audio similarity is multifaceted, so a

common approach to evaluate audio similarity measures is

to perform a genre classification task. Pampalk et al. [11]
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found that a combination of 70% timbral and 30% tempo-

ral features provide a good audio similarity measure.

Hubs, songs that are found to be very similar to a very

large number of other songs, are a major problem for

audio-based music recommender systems. Aucouturier

and Pachet [3] showed that in a purely timbre-based near-

est neighbor retrieval system, the number of hubs signifi-

cantly increases when discarding the 5% least significant

clusters from a Gaussian mixture model.

The computational complexity for calculating the dis-

tance between Gaussian mixture models scales linearly

with the number of clusters in a mixture model for most

distance measures. Reducing the number of clusters in a

model thus has great impact in computational complexity,

but influences performance.

We present a method to reduce the number of mixture

components without sacrificing retrieval performance.

The required number of Gaussians in a Gaussian mixture

model is estimated for each song individually. The num-

ber of clusters is then used by the Estimation Maximiza-

tion algorithm to model the song data. Using individual

song complexity estimation prevents overfitted models on

‘simple’ songs with too complex models, while still offer-

ing ‘complex’ songs an adequate model complexity.

The remainder of this paper is organized as follows:

In section 2 we present a short overview of related work.

Section 3 describes our feature modelling approach in de-

tail. This section is followed by a performance analysis

with respect to the effect of our algorithm on hubs and on

a genre classification task. In our last section we summa-

rize our results and give some recommendations for fur-

ther research.

2 RELATED WORK

Berenzweig et al. [4] compare anchor space based and

GMM based similarity measures with a similarity matrix

retrieved from a user survey. The anchor space method

performs very similarly to the GMM method.

Aucouturier and Pachet [2] systematically explore fea-

ture parameter space for timbre similarity experiments

and evaluate performance with a nearest neighbour re-

trieval task. Optimal R-precision was found with 20 di-

mensional MFCCs and a Gaussian mixture model with 50

components. The number of model components however



is of less influence than the number of feature dimensions.

Their conclusion is that ‘Everything performs the same’

and that there seems to be a glass ceiling in R-precision.

Flexer et al. [7] compare Hidden Markov Models

(HMMs) with Gaussian Mixture Models (GMM) describ-

ing spectral similarity of songs. It is shown that HMMs

are capable of representing the underlying data better than

GMMs, even if the GMM has more degrees of freedom. In

a genre classification task, both methods show very simi-

lar results.

3 FEATURE MODELLING

We calculate song similarity on 15 dimensional MFCC

vectors (without the 0th coefficient), modelled with a

Gaussian Mixture Model:

p (x,Θ) =

k
∑

i=1

αiG(x, µ,ΣX ) (1)

with x a single feature vector and Θ the model parame-

ters: cluster mean µ and cluster covariance Σ. The mix-

ture weights αi are nonnegative and add up to one.

3.1 Parameter Estimation

When the number of components in a mixture is known in

advance, the Expectation Maximization (EM) algorithm

[5] provides an efficient method to estimate the parameters

of the distribution of n data samples X = {x1, . . . , xn}.

The EM algorithm is an iterative procedure and is guar-

anteed to converge to a local maximum of the maximum

(log-)likelihood estimate of the mixture parameters:

Θ̂ML = argmax
Θ

(log p (X|Θ)) (2)

Each iteration consists of two steps:

• E-step: Assign each sample to the mixture compo-

nent that is most likely to have generated the sam-

ple, based on the current estimate of the model pa-

rameters.

• M-step: Recompute the model parameters based on

the current sample membership estimation.

These steps are repeated until the likelihood estimate con-

verges.

3.2 Complexity Estimation

During the training phase of the EM algorithm, the num-

ber of mixture components remains constant, even if the

model over- or underfits the data. When listening to var-

ious kinds of music, it is clear that there are broad varia-

tions in musical structure and sound. Mörchen et al. [9]

recognized this issue on a genre level and used different

feature sets for each genre for determining genre likeli-

hood.

Pampalk [10] allows variable-size models for each in-

dividual song. A k-means model is fitted to the song fea-

tures and a minimal distance between clusters is defined.

When two cluster centers are within this minimal distance,

they are merged.

We introduce a similar approach to Pampalk, and use it

to generate gaussian mixture models.

3.2.1 Optimal Models

Model selection algorithms try to find the number of com-

ponents k, that minimize the cost function C(Θ̂(k), k):

k̂ = arg min
k

{C(Θ̂(k), k)}, k = kmin, . . . , kmax (3)

The cost function C(Θ̂(k), k) consists of two parts:

• A part expressing the goodness of fit of a model

with k components. This function is a monotoni-

cally increasing function of k.

• A part penalizing models with higher k.

Figueiredo and Jain [6] presented an algorithm that op-

timizes a cost function based on the Minimum Description

Length (MDL) criterion. This criterion is based on the as-

sumption that if one can describe some observed data with

a short code, one has a good model of the source generat-

ing the data. Other algorithms optimizing a cost function

like in Equation 3 exist (eg. [12], based on the Bayesian

Information Criterion), but have not been investigated.

Figueiredo uses a modified version of the EM algo-

rithm for fitting a GMM in the dataset. The algorithm

starts with a high number of components and eliminates

components of the mixture in the M-step.

for i = 1, . . . , k :

α̂i(t + 1) =
max

{

0,
(

∑n

j=1 w
(j)
i

)

− N
2

}

∑k

i=1 max
{

0,
(

∑n

j=1 w
(j)
i

)

− N
2

} (4)

where w
(j)
i is the conditional expectation that sample j

belongs to mixture component i. When the EM algo-

rithm is converged and the number of components is still

larger than kmin, the component with the smallest sup-

port is forced to zero. This procedure is repeated until

k = kmin.

3.2.2 Optimal Model Approximation

As a consequence of using EM to iterate through the vari-

ous model sizes, Figueiredo’s algorithm is very slow. We

found that the number of clusters found by the much sim-

pler ‘Basic Sequential Algorithmic Scheme’ (BSAS, [13])

shows high correlation with the number of clusters as

found by Figueiredo. This algorithm only takes two pa-

rameters: the threshold θ for determining whether a new

cluster has to be formed, and NmaxClust, the maximum

number of clusters to be formed.

The basic algorithm in pseudocode consists of the fol-

lowing steps:



1: Nclust = 1
2: C1 = {x1}
3: for j = 2 to n do

4: find Ci: d(xj , Ci) = min∀k d(xj , Ck)
5: if (d(xj , Ck) > θ) and (Nclust < NmaxClust) then

6: Nclust = Nclust + 1
7: CNclust

= {xj}
8: else

9: Ck = Ck ∪ {xj}
10: end if

11: end for

This algorithm was modified to accept new clusters even

if the maximum number of clusters has already been

reached, but only if there is a cluster that was assigned

less than 1% of the data. This smallest cluster is then dis-

carded and replaced by the new cluster. After the algo-

rithm has finished, all clusters containing less than 1% of

the data are discarded. The cluster centers found by BSAS

are used as input for an EM algorithm to fit a GMM in the

data. The EM algorithm uses all samples, including those

in the clusters that were discarded in the BSAS algorithm.

Initializing the EM process with the clustering result of

BSAS significantly decreases the number of iterations the

EM algorithm needs to converge when we compare it with

methods that discard insignificant clusters in the training

phase of the algorithm.

We compared the number of components found by

Figueiredo with that of BSAS, on a subset of 234 songs

from the Magnatune dataset. This subset covers all mu-

sic genres available in the Magnatune data. The Pear-

son’s correlation coefficient between the number of clus-

ters found by both algorithms is 0.78.

4 EVALUATION

We selected a subset of 331 songs from the Magnatune

dataset, covering six genres. This dataset is modelled both

with fixed size GMMs with 20 clusters and with variable

size GMMs with a maximum 30 clusters. The number

of clusters in the variable size model case is determined

by the BSAS algorithm as presented in section 3.2.2. The

mean number of clusters over our dataset was 15. The EM

modelling complexity scales approximately linearly with

the number of clusters, we therefore obtained a 25% com-

puting time gain for the variable size models. We use the

Earth Mover’s Distance to determine the distance between

the GMMs [4]. Computation of the full song similarity

matrix was approximately 40% faster for the variable size

models.

4.1 Hub-analysis

Robustness of music similarity measures can be evalu-

ated by means of a hub-analysis. Aucouturier [3] uses

two methods to assess the hubness of various algorithms:

N-occurrences and Neighbour Angle. In this subsection

we evaluate the hubness of our dataset, modelled with

the variable and the fixed size models, using the N -

occurrence measure.

4.1.1 N -occurrences

The N -occurrence measure counts the number of times a

song occurs within the N nearest neighbours of all songs

in a data set. The measure is a constant-sum measure:

the mean N -occurrence is equal to N . When studying

hubs, we are interested in the amount of songs that occur

much more frequently in the N nearest neighbours than

the expected average value. In Figure 1 we show the N -

occurrence histograms for N = 50. The number of songs

that occur more than 150 times differs only marginally be-

tween the two model types: 11 for the variable size models

and 12 for the fixed size models. The use of variable size

models thus seems to have small positive impact on hub

occurrences.

Aucouturier [3] showed that discarding statistically ir-

relevant clusters (homogenization) caused a dramatic in-

crease in the number of hubs. With this experiment we

showed that reducing the number of mixture components

can be done without having negative influence on the

number of hubs. Apparently, not all songs require the

same number of mixture components.

4.2 Genre classification

The most common evaluation procedure for music simi-

larity measures is genre classification. Since we are only

interested in the comparison between fixed- and variable

size models, we do not apply an artist-filter as has been

suggested by Pampalk et al. in [11].

Aucouturier and Pachet [1] dispute the use of genre

classification for evaluating timbre similarity. Different

artists within one single genre may have a very broad ‘tim-

bral’ spectrum. Our data set only contains very few artists

per genre. As a consequence of this, and under the as-

sumption that each single artist only uses a narrow timbral

spectrum, we can generalize genre distance to timbral dis-

tance.

4.2.1 Classification results

We use a simple k-nearest neighbour classifier and clas-

sify with a leave one out cross validation procedure. In

Figure 2(a) we depict the classification accuracy for a

range of k, for variable-size models with 15 Gaussians on

average and for fixed-size models with 20 Gaussians. We

see that the variable-size models consequently outperform

0 100 200 300
0

50

N

#
o

cc
u

rr
en

ce
s

(a) Fixed size models, 20 Gaus-

sians

0 100 200 300
0

50

N

#
o

cc
u

rr
en

ce
s

(b) Variable size models

Figure 1. N -occurrence analysis



the fixed-size models, even with an average lower model

complexity.
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Figure 2. Genre classification performance

4.2.2 Inter- and intra genre distance

Aucouturier and Pachet [1] use the mean distance between

songs within a single genre and between different genres

to express the limited use of genre classification for tim-

bral similarity evaluations. Artists within a certain genre

without a ‘coherent’ sound make it difficult to find a direct

relationship between timbre similarity and genre similar-

ity.

Our database consists of few artists per genre and all

have a ‘coherent’ sound. We can thus use the measure to

compare timbre discrimination performance of the fixed

size Gaussian models with the variable size models to

each other. Both for the 20 Gaussians and the variable size

models we find a ratio of 1 : 1.32. Although the variable

size models have a lower mean number of components,

the timbre information seems to be captured just as well

as by the more complex fixed size models.

5 CONCLUSIONS

In this paper we presented an algorithm to estimate an op-

timal number of cluster components for each individual

song. We compared the number of hub occurrences be-

tween a 20-Gaussian model and our variable size mod-

elling approach with 15 clusters on average. Our variable

size modelling approach marginally reduces the number

of hubs.

We analyzed the timbral discrimination performance of

our measure with a genre classification task on a small

database with homogenous genres. Variable size models

outperformed fixed size models with respect to genre clas-

sification by 3-4% and shows the same mean inter- to intra

genre distance ratio at average lower model complexity.

Computation of a full song distance matrix using the

Earth Mover’s Distance is approximately 40% faster for

the variable size models.
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