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ABSTRACT

We consider an instance of the Earth Mover’s Distance

(EMD) useful for comparing rhythmical patterns. To make

searches for r-near neighbours efficient, we decompose our

search space into disjoint metric subspaces, in each of which

the EMD reduces to the l1 norm. We then use a combined

approach of two methods, one for searching within the sub-

spaces, the other for searching between them. For the for-

mer, we show how one can use vantage indexing without

false positives nor false negatives for solving the exact r-

near neighbour problem, and find an optimum number and

placement of vantage objects for this result. For searching

between subspaces, where the EMD is not a metric, we show

how one can guarantee that still no false negatives occur, and

the percentage of false positives is reduced as the search ra-

dius is increased.

1 INTRODUCTION

Searching a database for a melody or rhythm is often equiv-

alent to a special version of the nearest neighbour problem:

one wants to find items which are similar, but not necessar-

ily identical to a given query, and be sure to retrieve all such

items up to a certain level of dissimilarity. With a distance

measure which adequately captures similarity, this amounts

to retrieving all items which lie inside a ball around the

query, where the radius of the ball is the dissimilarity thresh-

old up to which retrieval results are considered relevant. We

will call this search radius r, and items whose distance from

a query is at most r will be called r-near neighbours.

If the database is large, one needs a data structure which

makes it possible to retrieve the r-near neighbours without

comparing the query to each point in the database. For high

numbers of dimensions, where exact methods such as kd-

trees do not offer much improvement over a linear search, a

number of approximate methods have been suggested. An-

doni and Indyk [2] point to many approximate methods and

describe one of the most popular among them, locality sen-
sitive hashing (LSH), in detail. With LSH, one applies a

hash function to every data point. The hash function must be

chosen so that there is a high probability for points which are

close to each other to be hashed into the same bin. To search

for nearest neighbours, one then applies the hash function

1R. Typke gratefully acknowledges support by the Austrian Research

Fund (FWF), Project Number M1027-N15.

to the query and searches the bin into which the query was

hashed. However, LSH relies on the distance measure being

a metric.

We describe a method which combines vantage indexing
with tunneling, an approach applicable to certain non-metric

distance measures. Our specific distance measure is non-

metric; however, we can decompose our search space into

disjoint metric subspaces. Within the metric subspaces, the

non-metric reduces to the l1 norm. We use a new variant of

the vantage indexing method which can be used for solving

the exact r-near neighbour problem (i. e., without resort-

ing to approximation) for the l1 norm in moderately high

dimensional spaces (no more than about 9 dimensions). It

guarantees to retrieve exactly the items within the ball of in-

terest, without any false positives or false negatives, with a

time complexity of essentially O(log n) (n=number of data

points), but at the cost of using O(n2j−1) storage space

(j=number of dimensions). It is possible to use less stor-

age space, but at a cost: false positives can occur.

For certain locality sensitive hash functions, LSH is sim-

ilar to vantage indexing. Andoni and Indyk propose hash

functions for the l1 and l2 norms which involve calculat-

ing the distances to an arbitrary number of randomly chosen

vantage objects and then putting all data points into the same

bin whose distances to the vantage objects lie in a certain

range. We, on the other hand, use exactly as many vantage

objects as needed, placed in the space so that we are guar-

anteed to retrieve all data points we should retrieve, and no

others. Also, we avoid the need to pick a bin size which

might not fit very well with the actual search radius.

While our method for vantage indexing is specific to in-

stances where the EMD reduces to metric subspaces with

regular ball shapes, the second part of our combined method

is more generally applicable to prametric spaces that can be

decomposed into metric subspaces. By “tunneling”, we can

efficiently search between metric subspaces, still without in-

troducing false negatives. False positives can occur, but their

percentage among the retrieved items shrinks as the search

radius grows, making them tolerable.

2 MEASURING MELODIC OR RHYTHMIC
SIMILARITY WITH THE EMD

2.1 The Earth Mover’s Distance

The distance measure discussed in this paper measures the

distance between weighted point sets. Intuitively speaking,
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a weighted point set ai can be imagined as an array of piles

of dirt each equal to wi units, situated at position xi. The

role of the supplier is arbitrarily assigned to one array and

that of the receiver to the other one, and the arrays of piles

are made to look as similar as possible by shifting dirt from

piles in the supplier array to piles in the receiver array. The

Earth Mover’s Distance (EMD) then measures the minimum

amount of work needed to make two arrays of piles as sim-

ilar as possible in this way. See [3] for a more detailed de-

scription of the EMD. We now define the EMD formally:

Definition. Fix a ground distance d on R
k. The ground

distance can, but need not be, a metric.

Let A = {a1, a2, . . . , am}, B = {b1, b2, . . . , bn} be

weighted point sets such that ai = {(xi, wi)}, i = 1, . . . , m,

bj = {(yj , vj)}, j = 1, . . . , n, where xi, yj ∈ R
k with

wi, vj ∈ R
+ ∪ {0} being the respective weights.

Let WA =
∑n

j=1 wi be the total weight of set A; the total

weight WB of the set B is defined analogously.

Let dij = d(xi, yj) denote the ground distance between

individual coordinates in A and B, without regard to their

weight.

A flow matrix F = (fij) between A and B is an m ×
n matrix of non-negative real numbers, such that for each

1 � i � m,
∑n

j=1 fij � wi, and for each 1 � j � n,∑m
i=1 fij � vj . Furthermore, we require that

∑
i

∑
j fij =

min(WA, WB). Denote by F the collection of all possible

flow matrices between A and B.

The Earth Mover’s Distance, EMDd(A, B), between A
and B is defined as

EMDd(A, B) =
minF∈F

∑m
i=1

∑n
j=1 fijdij

min(WA, WB)
.

For the remainder of this paper, we will assume that the

ground distance for the EMD is the Euclidean metric l2.

With this assumption in mind, we drop the subscript re-

ferring to the ground distance from our formulas, writing

EMD(A, B) instead of EMDl2(A, B).
The EMD is a useful measure for music similarity, as was

demonstrated at the annual MIREX comparison of music re-

trieval algorithms in 2006. Useful properties of the EMD

include its continuity, its ability to support partial match-

ing, and its robustness against distortions of tempo and pitch

when measuring melodic similarity for symbolically encoded

music. For doing so, one can represent every note by a point

in the two-dimensional space of onset time and pitch. The

weights of points can be used to encode the importance of

notes. See [6] for details.

The EMD has one major disadvantage which can cause

technical difficulties: it is in general not a metric. Specif-

ically, the triangle inequality does not hold, and while the

EMD of a point to itself is 0, there can exist distinct points

that are also EMD 0 from one another. While there is no

universally accepted terminology in the mathematical liter-

ature for weak distance measures, there is some precedent

for calling weak distance measures with properties like the

EMD symmetric prametrics.

It should be emphasized that the EMD does behave as a

metric if one restricts the domain of the EMD to point sets

having a given weight, assuming that the ground distance is

a metric [3]. One can take advantage of this property when

working with an EMD which is a prametric by decomposing

the space of possible point sets into subspaces each contain-

ing only point sets having a given weight. We will refer to

such subspaces as metric subspaces of the EMD space.

2.2 Comparing symbolic rhythmic patterns: a nice spe-
cial case

The instance of the EMD described in this subsection is

of particular interest for searching rhythmic patterns. We

call this EMD the Manhattan EMD, and note that it is well-

behaved from a geometric point of view.

Rhythmic patterns can naturally be represented as se-

quences of onset times. See Figure 1 for an illustration.

To render irrelevant a musical segment’s tempo and location

within a piece of music, we scale their numeric representa-

tions to a fixed duration (say, 60) and translate them so that

they start at position 0.

Figure 1. Comparing rhythms using sequences of onset

times. Top: Ferruccio Busoni: Sonatina No.6: Chamber

Fantasia on Bizet’s Opera Carmen (3rd theme); bottom:
Georges Bizet: Carmen: Habanera; middle: two sequences

of onset times representing the incipits at the top and bot-

tom. A possible numeric representation of the two series of

onset times: Busoni: (0, 3, 6, 8, 10, 12, 15, 18, 20, 22, 24,

27, 30, 31.5, 33, 34.5, 36, 39, 42); Bizet: (0, 3, 6, 8, 10, 12,

15, 18, 21, 22.5, 24, 27, 30, 31, 32, 33, 34.5, 36, 39, 42).

When comparing normalized sequences of onsets con-

taining the same number of onsets, the Manhattan EMD

equals the sum of the absolute differences between corre-

sponding onsets ai and bi in onset sequences A = a1 . . . an

and B = b1 . . . bn, divided by the number of onsets:

EMD(A, B) =
Pn

i=1 |ai−bi|
n . Thus, if we restrict ourselves

to point sets of a certain given length, the Manhattan EMD

(with l2 as ground distance) is a metric and is equal to the l1
norm (also known as “Manhattan norm”).

Since every normalized segment starts with 0 and ends

with 60, we omit these two numbers and view n-onset seg-

ments as points in an (n − 2)-dimensional space. All seg-
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ments lie in the subset of R
n−2 where the coordinates are

strictly increasing.

3 VANTAGE INDEXING FOR MANHATTAN EMD

Vantage indexing (introduced by Vleugels and Veltkamp [7])

is an approach to the retrieval of objects from a large database

which are similar to a given query. The search is restricted

to items whose pre-calculated distances to a small set of pre-

chosen vantage objects are similar to the query’s distances

to the same vantage objects.

3.1 Ball shapes

If one works with the l1 norm, a ball (the set of all points

whose distance lies within a certain radius around a point of

interest) has the shape of a cross-polytope. A one-dimensio-

nal cross-polytope is a line segment, a two-dimensional cross-

polytope is a square, for three dimentions, an octahedron,

and so forth.

3.2 Creating a ball by intersecting “onion layers”

V1

QQ

V2

Figure 2. In this two-dimensional example, only the light

gray area is inhabited by database objects since only there

the second coordinate is greater than the first. The dark

gray ball around Q with a given radius can be created by

intersecting onion layers around V1 and V2 whose thickness

equals the radius.

We call the area between the surfaces of two balls of dif-

fering radii around a vantage object an “onion layer”. 1 An

onion layer contains all items in the database whose distance

from the vantage object lies within a certain range. Search-

ing an onion layer can be done efficiently if one has built

an index (for example, a range tree) for the database column

that contains the distance to a vantage object. By building an

index for multiple columns containing distances to different

vantage objects (for example, a nested range tree), one can

also search intersections of onion layers efficiently.

If one can cover the ball around the query object whose

radius equals the search radius by using intersections of on-

ion layers in a way that the intersection of onion layers equals

exactly the ball of interest, neither false negatives nor false

positives will occur. Since the intersection of onion layers

can be searched efficiently, the ball of interest can as well.

See Figure 2 for an illustration.

Certain metric spaces have the property that there exists a

finite number of points x1, . . . , xn such that
⋂

i(B(xi, R +

1 Inspiration has many sources, and onions have other good uses [5].

r) \B(xi, R)) = B(y, r) for some point y (here we denote

the ball with radius r around a point x with B(x, r)). In

other terms, some spaces have the property that one needs

only finitely many vantage objects so that the intersection of

onion layers is exactly that of a ball. The l1 space has this

property, as do other spaces whose balls are regular objects

with finitely many faces. An example of a metric space that

does not have this property is Euclidean space.

3.3 Optimum placement and number of vantage objects
necessary for optimum indexing

In the case of one dimension, one vantage object is enough

to always achieve the desired effect of perfectly covering

only the interesting ball with onion layers. However, one

has to place the vantage object correctly. See Figure 3 for

good and bad examples.

0 60

V Q

0 15 60

V Q

0 60

Q

0 15 60

Q V1

Figure 3. Of interest is the ball around Q (at 15) with radius

10, shown as a grey bar. Left: This ball is identical to the

intersection of an onion layer around V with distance range

of 5 to 25 and the inhabited part of the space. Right: If

the vantage object is not put either to the left or to the right

of inhabited space, corresponding onion layers can intersect

with the inhabited space in two disjoint places (shown as

dotted lines) – one would need to use another vantage object

for the intersection of onion layers to be identical to the ball

of interest.

For two dimensions, two vantage objects are necessary,

and they are sufficient if they are placed, for example, like

in Figure 2. Here, the onion layers intersect in two square-

shaped regions, but only one of them (the one in the gray

area) can ever contain data points. Therefore, no false posi-

tives can occur.

One can cover exactly the ball of interest and no other

region (except for regions outside the inhabited space) by

using 2j−1 vantage objects (j is the number of dimensions

of the space) and placing them as follows:

• Let m be some number which is larger than any co-

ordinate that can ever occur in the inhabited subspace

(in the Bizet and Busoni example from Section 2.2,

we could let m = 60).

• For one dimension, place one vantage object at the

coordinate (0) (as illustrated in Fig. 3, left).

• For j dimensions, use twice as many vantage objects

as for j − 1 dimensions. The coordinates of the van-

tage objects for j dimensions are based on those for

j − 1 dimensions: for each vantage object position in

j − 1 dimensions, create two new lists of coordinates

for j dimensions by appending 0 or m, respectively,
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to the list of coordinates for j − 1 dimensions.

We need at least 2j−1 vantage objects because a cross-

polytope has 2j facets (a facet is a (j−1)-dimensional struc-

ture). For the intersection of onion layers to equal the ball

of interest, every facet of the ball needs to coincide with

the surface of an onion layer. One can use as few vantage

objects as possible if one covers opposite facets of the cross-

polytope with the surfaces of an onion layer around the same

vantage object. This is exactly what happens if one uses

2j−1 vantage objects and places them as above.

4 PARTIAL MATCHING BY TUNNELING
BETWEEN METRIC SUBSPACES

When searching sequences of onsets that were detected in

audio files, there are two problems: the detection is not

always completely reliable, producing both false negatives

and false positives, and often there will be multiple voices

with onsets, while a user might want to search for rhythmic

patterns which occur only in one voice. Therefore, for suc-

cessfully searching sequences of onsets from audio data, one

should be able to ignore a certain number of onsets and still

find matching subsequences or supersequences. In this sec-

tion, we will show how one can use tunnels between metric

subspaces to achieve partial matching while still benefiting

from the optimum vantage indexing within the subspaces of

sequences with equal numbers of onsets.

The EMD provides partial matching as described above

for point sets whose weight sums are unequal. Unfortu-

nately, the EMD does not obey the triangle inequality in

such a case. This makes it impractical to directly apply van-

tage indexing since there would be no way of controlling

the number of false negatives. Also, the locality sensitive

hashing method, which also relies on the triangle inequality,

becomes unusable.

Our approach is inspired by the case of the Manhattan

EMD, which is rather easy to visualize. In particular, one

can precisely visualize the neighbourhood, or “ball” of r-

near neighbours in the n-dimensional metric subspace for an

m-dimensional query point: assume that (q1, q2, . . . , qm) is

a query, where the initial 0 and final 60 are dropped, so that

the query is an m-dimensional object.

First, we visualize the neighbourhoods in higher-dimen-

sional metric subspaces, say of dimension m+i. In this case,

the set of points which are of distance 0 from the query com-

prise
(
m+i

i

)
many i-dimensional hyperplanes which are par-

allel to axes, and pass through the points that are the various

possible completions of the query vector to m + i dimen-

sional space using i-many zeros. Then, the r-near neigh-

bours of the query are found in the union of the r-balls, as

calculated in the m+i-dimensional metric subspace, around

each of the points of distance 0. The shape of these neigh-

bourhoods is rather awkward, and is no longer a ball, but

rather the cartesian product of a ball and a hyperplane. This

shape is difficult to search efficiently. The reader may wish

to think about the case of m = 2 and i = 1.

The neighbourhoods in lower-dimensional metric sub-

spaces are a easier to describe. The points of distance 0
from the query in the m − i-dimensional metric subspace

are simply the
(
m
i

)
many points obtained by reducing the

query to an m− i-dimensional point. The neighbourhood is

then the union of the r-balls around these points.

Our intuition is that a given point can be somehow con-

nected with “tunnels” to the points in other metric subspaces

which are of distance 0, and then take advantage of the

triangle inequality in the metric subspaces to use vantage

indexing. However, the points in the database can possi-

bly not include any such points of distance 0, so we have

to modify this simplistic idea of a tunnel by instead link-

ing to nearest neighbours. We precalculate, for every point

set in all spaces except for that with the lowest dimension-

ality, links to its nearest neighbours in lower-dimensional

spaces. If such links exist, one can efficiently retrieve not

only the nearest neighbours in the same space as the query

(e.g. as described in Section 3), but also the nearest neigh-

bours in higher-dimensional and lower-dimensional spaces

which are linked to the retrieved items from the space with

the same dimensionality as the query. This yields almost the

same result as an exhaustive linear search, but requires only

logarithmic complexity.

One needs, however, to limit the number of connections

per high-dimensional object by limiting the range of dimen-

sionalities across which one wants to search. By introducing

such a constant bound, one ensures that the number of con-

nections grows only linearly with the number of items in the

database. For the application of searching for rhythmic and

melodic patterns, this means that one should limit the par-

tial matching to a certain maximum number of missing or

extra notes which may be ignored when the dissimilarity is

calculated. Such a limit is probably desirable: without it, a

short (low-dimensional) pattern could become very similar

to very different long (high-dimensional) patterns.

4.1 Efficiently building tunnels

By projecting high-dimensional objects onto lower-dimen-

sional subspaces and then using vantage indexing as de-

scribed in Section 3 for finding the nearest neighbour of the

projection, one can benefit from the logarithmic search com-

plexity of vantage indexing for the purpose of building con-

nections between nearest neighbours in metric subspaces of

differing dimensionality.

Algorithm 1 can be used for building connections be-

tween objects of different dimensionality. Note that its run-

time lies in O(n log n) since we limit the number of dimen-

sionalities to cross (the number of notes to ignore) to a con-

stant t. The outermost loop is executed O(n) times. The
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Algorithm 1 Build connections between nearest neighbours

in subspaces of different dimensionality.

for all point sets p do
for i := 1 to max. number of dimensions to cross do

for all subspaces s with i dimensions less than p do
project point set p onto subspace s
use the vantage index of subspace s for finding p’s

nearest neighbours in s
create a connection between p and its nearest

neighbour in s (or all of them if they have equal

distances).

end for
end for

end for

two inner loops each are executed only a constant number of

times. Each point set p with j dimensions can be projected

onto (j − i)-dimensional space in
(
j
i

)
many ways, and this

is bounded by a constant as long as the maximum possible

number of dimensions and the number of subspaces to cross

are bounded. Using the vantage index within the subspace

onto which p is projected takes O(log n) steps, which leads

to an overall runtime of O(n log n).
The space complexity can be expected to lie in O(n)

since the number of connections to create should be bounded

by
(
j
i

)
. There is one exception: if there are many nearest

neighbours in the subspace which all have the same distance

from the projected point, we might store more than
(
j
i

)
con-

nections for one projected point.

4.2 Using tunnels for retrieving items from higher di-
mensions than the query

To find rhythmic patterns which are similar to a given query,

but contain up to t additional notes (which should be ignored

when calculating dissimilarity), one can tunnel into higher

dimensions by using the connections previously described.

Given a query Q, search radius r, and a database with a

vantage index for each metric subspace and connections be-

tween items and the nearest neighbours of their projections

in subspaces with up to t fewer dimensions, one can retrieve

Q’s r-near neighbours with the same dimensionality as Q or

up to t dimensions higher as follows:

Retrieve Q’s nearest neighbours n within radius r with as

many dimensions as Q, using the vantage index for this

subspace.

for all r-near neighbours n do
Retrieve every item which is connected to n and has a

dimensionality higher than that of Q.

end for
This will retrieve exactly the desired objects from the

subspace where the query Q resides, but for the higher-

dimensional objects, both false positives and false negatives

may occur.

P1

P2

P3

P4 P5 Q P6

r

Figure 4. False negatives and false positives resulting from

tunneling, and how to avoid them.

The database shown in Figure 4 contains 6 point sets

P1, . . . , P6. Three, P1, . . . , P3, are two-dimensional, the

others, one-dimensional. The query Q is one-dimensional.

The area of interest within the search radius r around Q is

marked grey.

False positives: It is conceivable that the projection of a

higher-dimensional object onto Q’s subspace lies just out-

side the search radius, but its nearest neighbour in Q’s sub-

space happens to lie within the search radius. An example is

P1, whose projection onto the subspace (shown as a circle)

has a nearest neighbour beyond the border of the grey area.

False negatives: It is also possible that while the pro-

jection of a higher-dimensional object onto Q’s subspace

lies inside the search radius, the closest object in Q’s sub-

space lies outside the search radius. In this case, illustrated

with P3 and P6, the higher-dimensional object will not be

retrieved. In the extreme case that there is no single ob-

ject inside the search radius in Q’s subspace, no higher-

dimensional objects whatsoever will be retrieved.

Controlling false negatives and false positives. To avoid

all false negatives and limit the badness of false positives

to a threshold e, one can add the projections as additional

“ghost points” to the database if their nearest neighbour in

the subspace is further away than e/2, and extend the search

radius by e/2.

The distance of false positives to the query will be at most

e higher than desired because in the worst case, the nearest

neighbour of the projection will lie on the line connecting

the projection with the query. The nearest neighbour can be

up to r + e/2 away from the query, while the projection can

be another e/2 away from the nearest neighbour, leading to

a total maximum distance of r + e for false positives.

Such additional ghost points would be added as part of

the task of building the index, and so would not slow down

the search process. It would also not increase the compu-

tational complexity of building the index – the only price

is some extra space for storing ghost points wherever some

point from higher dimensions gets projected into a sparsely

populated area in a subspace. There is a tradeoff between

the required additional space and the maximum possible dis-

tance error for false positives.
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4.3 Using tunnels for retrieving items from lower dimen-
sions than the query

As we have seen in Algorithm 1, subspaces can be searched

efficiently for a query even without using the pre-computed

connections. Since these connections are already there, they

can be used instead of projecting the query onto each pos-

sible subspace. To avoid false negatives, one still needs to

search the area around the nearest neighbour in the subspace

with the search radius r + a, using the vantage index of the

subspace, where a is the distance between the projection of

Q onto the subspace and its nearest neighbour in that sub-

space. Whenever a is greater than zero, the possibility of

false positives gets introduced. If such false positives can-

not be tolerated, one can resort to not using the connections

but instead projecting the query onto all possible subspaces.

5 EXPERIMENTAL EVALUATION OF VANTAGE
INDEXING WITH TUNNELING

For an experimental evaluation, we used Dixon’s onset de-

tector from his “BeatRoot” system [4] for extracting onsets

from various recordings with piano music (piano concertos

and solo works by Beethoven, Liszt, and Schumann). We

used piano music because piano onsets are relatively easy

to detect correctly. The detected onsets were grouped into

overlapping sequences of 5 to 8 onsets. 40, 000 of these se-

quences were put into a database and indexed for optimum

retrieval within subspaces as described in Section 3. We also

added connections between subspaces as described in Sec-

tion 4, with connections spanning up to 3 dimensionalities,

thus allowing for ignoring up to 3 extra or missing notes.

Figure 5. Recall �, precision � (left scale), ratio of re-

trieved items 	, and ratio of true positives 
 (right scale)

for the tunneling method and different search radii, averaged

over 20 queries.

For every search radius in a range from 0 to 2, we ran-

domly picked 20 items from the database as queries and

used the index to retrieve the most similar items according

to the EMD. To calculate precision and recall, we also did

exhaustive searches for each of these queries (by calculating

the EMD between the query and each of the 40, 000 items

in the database) and counted false positives and false nega-

tives.

With this experiment, we verified that it is indeed possi-

ble to reduce the number of false negatives to zero and limit

the distance error of false positives to e by adding the pro-

jections of high-dimensional points to the database in cases

where their nearest lower-dimensional neighbour is further

away than e/2, and by increasing the search radius by e/2.

Figure 5 shows that our index works well: for example, with

a search radius of 1.9, we need to retrieve 1.3% of the whole

database (curve: 
), but we actually retrieve 1.95% (	 Ex-

amined = 0.0195), which still relieves us from looking at

98.05% of the database. For this experiment, the value of

e was 1, i.e., we inserted ghost points only if the projection

and its nearest neighbour were more than 0.5 apart. With

this threshold, we needed about as many ghost points as real

points. The nested range tree we used for the vantage table

[1] has a space complexity of O(n log n).
The larger our search radius, and thus the more important

it is that we do not get swamped with false positives, the

lower their percentage in the search results. This is probably

due to the fact that false positives can only occur near the

surfaces of searched balls, and when the search radius is

increased, one expects an ever larger percentage of objects

inside the ball rather than near its surface. Although the

precision is not very good for very low search radii, this

does not matter much since for low search radii, very few

items are retrieved at all from the database. As the number

of retrieved database items grows with the search radius, the

pain resulting from false positives is relieved by the fact that

at the same time, the percentage of false positives among the

retrieved items shrinks.
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