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ABSTRACT

Significant digitization efforts have resulted in large multi-

modal music collections comprising visual (scanned sheet

music) as well as acoustic material (audio recordings).

In this paper, we present a novel procedure for mapping

scanned pages of sheet music to a given collection of au-

dio recordings by identifying musically corresponding au-

dio clips. To this end, both the scanned images as well as the

audio recordings are first transformed into a common feature

representation using optical music recognition (OMR) and

methods from digital signal processing, respectively. Based

on this common representation, a direct comparison of the

two different types of data is facilitated. This allows for a

search of scan-based queries in the audio collection. We re-

port on systematic experiments conducted on the corpus of

Beethoven’s piano sonatas showing that our mapping pro-

cedure works with high precision across the two types of

music data in the case that there are no severe OMR errors.

The proposed mapping procedure is relevant in a real-world

application scenario at the Bavarian State Library for auto-

matically identifying and annotating scanned sheet music by

means of already available annotated audio material.

1 INTRODUCTION

The last years have seen increasing efforts in building up

large digital music collections. These collections typically

contain various types of data ranging from audio data such

as CD recordings to image data such as scanned sheet music,

thus concerning both the auditorial and the visual modal-

ities. In view of multimodal searching, navigation, and

browsing applications across the various types of data, one

requires powerful tools that support the process of analyz-

ing, correlating, and annotating the available material. In the

case of digitized audio recordings, first services have been

established to automate the annotation process by identify-

ing each recording and assigning available metadata such as

title, artist, or lyrics. Here, the metadata is drawn from spe-

cialized annotation databases provided by commercial ser-

vices such as Gracenote [6] or DE-PARCON [9].

Opposed to acoustic music data, which is increasingly

available in digital formats, most sheet music is still pro-

duced and sold in printed form. In the last years, dig-

ital music libraries have started to systematically digitize

their holdings of sheet music resulting in a large number

of scanned raster images. To make the raw image data

available to content-based retrieval and browsing, meth-

ods for automatically extracting and annotating semanti-

cally meaningful entities contained in the scanned docu-

ments are needed. In this context, optical music recogni-

tion (OMR) [3] is a key task. Here, the goal is to convert

scanned sheet music into a computer readable symbolic mu-

sic format such as MIDI or MusicXML [13]. Even though

significant progress has been made in the last years, cur-

rent OMR algorithms are substantially error-prone, resulting

in systematic errors that require subsequent correction [2].

Similarly, there is still a high demand for reliable solutions

for the more general task of automatic sheet music annota-

tion in the digital library community.

In this paper, we present a novel approach for automat-

ically annotating scanned pages of sheet music with meta-

data. Our approach is based on a new procedure for mapping

the scanned sheet music pages to an existing collection of

annotated audio recordings. The mapping allows for iden-

tifying and subsequently annotating the scans based on the

metadata and annotations that are already available for the

audio recordings. In particular, as it is the case in the spe-

cific application scenario at the Bavarian State Library, we

assume the existence of an audio collection containing an-

notated digitized audio recordings for all pieces to be con-

sidered in the sheet music digitization process. The con-

version of both the audio recordings (by employing filtering

methods) and the scanned images (by employing OMR) to

a common feature representation allows for a direct com-

parison of the two different types of data. Using the feature

sequence obtained from a few consecutive staves or an en-

tire page of the scanned sheet music as query, we compute

the top match within the documents of the audio database.

The top match typically lies within a musically correspond-

ing audio recording, which then allows for identifying the

scanned page and for transferring all available audio anno-
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Figure 1. Overview of the mapping procedure for automatic identification and annotation of scanned sheet music using an annotated audio

database. The first page of the second movement of Beethoven’s piano sonata Op. 2 No. 1 and the resulting scan chromagram are shown.

tations to the scanned sheet music domain. This procedure

is described in Sect. 2 and illustrated by Fig. 1. We have

tested and analyzed our mapping procedure by means of a

real-world application scenario using the corpus of the 32
piano sonatas by Ludwig van Beethoven. In Sect. 3, we

discuss the outcome of our experiments showing that the

mapping across the two music domains is robust even in the

presence of local OMR errors, but suffers in the presence of

severe global OMR errors. We also describe a postprocess-

ing procedure that allows for detecting most of the misclas-

sifications and automatically reveals most of the passages

within the scanned pages where the severe OMR errors oc-

curred. In Sect. 4, we conclude this paper with prospects on

future work and indicate how to improve the identification

rate by correcting and compensating for severe OMR errors

prior to the mapping stage.

2 MAPPING PROCEDURE

One key strategy of our mapping procedure is to reduce the

two different types of music data, the audio recordings as

well as the scanned sheet music, to the same type of feature

representation, which then allows for a direct comparison

across the two domains. In this context, chroma-based fea-

tures have turned out to be a powerful mid-level music rep-

resentation [1, 7, 12]. Here, the chroma correspond to the

twelve traditional pitch classes of the equal-tempered scale

and are commonly indicated by the twelve pitch spelling at-

tributes C, C♯, D, . . .,B as used in Western music notation.

In the case of audio recordings, normalized chroma-based

features indicate the short-time energy distribution among

the twelve chroma and closely correlate to the harmonic pro-

gression of the underlying piece. Based on signal processing

techniques, the transformation of an audio recording into a

chroma representation (or chromagram) may be performed

either by using short-time Fourier transforms in combina-

tion with binning strategies [1] or by employing suitable

multirate filter banks [12]. In our implementation, we use

a quantized and smoothed version of chroma features, re-

ferred to as CENS features, see [12]. The transformation

of scanned sheet music into a corresponding chromagram

requires several steps, see [11]. First, each scanned page

is analyzed using optical music recognition (OMR) [2, 3].

In our system, we use the commercially available Sharp-

Eye software [8] to extract musical note parameters (onset

times, pitches, durations) along with 2D position parame-

ters as well as bar line information from the scanned im-

age. Assuming a fixed tempo of 100 BPM, the explicit

pitch and timing information can be used to derive a chro-

magram essentially by identifying pitches that belong to the

same chroma class. A similar approach has been proposed

in [7] for transforming MIDI data into a chroma represen-

tation. Fig. 1 shows a resulting scan chromagram obtained

for the first page of the second movement of Beethoven’s pi-

ano sonata Op. 2 No. 1. Note that the tempo assumption (of

always choosing 100 BPM) is not a severe restriction since

the mapping algorithm to be described next can handle local

and global tempo variations anyway.

For the actual scan-audio mapping, we use a match-

ing procedure similar to the one described in [10]. First,

in a preprocessing step, all recordings of the given audio

database are converted into sequences of CENS vectors. (In

our implementation, we use a feature sampling rate of 1

Hz.) While keeping book on document boundaries, all these

CENS sequences are concatenated into a single audio fea-

ture sequence. Then, each scanned page of sheet music to

be identified is also converted into a sequence of CENS fea-

tures. The resulting scan feature sequence is then compared

to the audio feature sequence using subsequence dynamic

time warping (DTW). For a detailed account on this variant

of DTW we refer to [12]. In our experiments, it turned out

that the DTW step sizes (2, 1), (1, 2), (1, 1) (instead of the

classical step sizes (1, 0), (0, 1), (1, 1)) lead to more robust

matching results, and are hence used in the remainder of

this paper. As a result of the DTW computation, one obtains

a matching curve. The ith position of the matching curve

contains the costs for matching the scan feature sequence to

the most similar subsequence of the audio feature sequence

ending at position i. Therefore, the curve’s local minima

close to zero correspond to audio feature subsequences sim-

ilar to the scan feature sequence. These subsequences are

referred to as matches. Because of the book-keeping, doc-
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ument numbers and positions of matches within each au-

dio document can be recovered easily. Note that DTW can

compensate for possible temporal differences between scan

feature sequences and corresponding audio feature subse-

quences thus also relativizing the above tempo assumption.

3 EXPERIMENTS AND EVALUATION

The basic identification and annotation procedure of a given

scanned page of sheet music can be summarized as follows.

First, map a given scanned page against the audio database

and derive the top match of lowest cost. Then determine the

audio recording that contains the top match and transfer all

annotations available for the audio recording to the image

domain. Note that in the ideal case the top match not only

identifies the scanned page but also indicates the time posi-

tion within the audio recording where the music notated on

the page is actually played.

We now show to which extent this approach also works

in practice by discussing a real-world application scenario

using the musically relevant corpus of Beethoven’s piano

sonatas. Our test database and some technical details are

described in Sect. 3.1. In Sect. 3.2, we discuss a baseline

experiment using MIDI versions instead of extracted OMR

data. This experiment indicates which identification rates

one may expect in the optimal (but unrealistic) case where

no OMR extraction errors have occurred. Then, in Sect. 3.3,

we describe several experiments performed on the actual

OMR data. Here, we also discuss various types of OMR er-

rors that significantly degrade the mapping quality. Finally,

in Sect. 3.4, we describe a postprocessing strategy that au-

tomatically reveals most of the misclassifications.

3.1 Test Database

Our experiments have been conducted on the basis of the 32
piano sonatas by Ludwig van Beethoven, which play a key

role in the evolution of the sonata form and are considered as

one of the greatest treasures in the music literature. Because

of its outstanding musical significance and the large number

of available digitized audio recordings, the automated anal-

ysis and organization of the corpus of Beethoven’s piano

sonatas is highly relevant to musicologists and librarians.

Our audio database consists of a complete recording of

the 32 piano sonatas conducted by Daniel Barenboim, com-

prising 101 audio documents (basically corresponding to the

movements) and 11 hours of audio material. Furthermore,

we have a scanned version of the corresponding sheet music

(Volume 1 & 2, G. Henle Verlag) at our disposal amount-

ing to a total number of 604 digitized pages (3693 two-stave

systems). In the following, dealing with piano music, the

term line is used to denote a two-stave system consisting

of a stave for the right and a stave for the left hand. The

scanned pages, which are available as 600dpi b/w images in

the TIFF format, have been processed by the OMR Engine

of SharpEye 2.68 and saved in the MusicXML file format

as one file per page. Finally, each of the 604 MusicXML

files was transformed into a sequence of CENS vectors (one

feature per second) assuming a fixed tempo of 100 BPM.

Subsequently, using the extracted OMR information on the

notated systems, the CENS sequences were segmented into

3693 subsequences corresponding to the lines.

3.2 Baseline Experiment: MIDI-Audio Mapping

In a baseline experiment, we investigated what identifica-

tion rates one may expect in the case that there are no se-

vere OMR extraction errors. To this end, we used a com-

plete set of MIDI files for the 32 Beethoven sonatas and ran-

domly generated a large number of MIDI fragments of vari-

ous lengths, which were used instead of the OMR extraction

results. Then, for each of these MIDI fragments we com-

puted a matching curve with respect to the audio database

and determined the topmost audio match. Recall that in the

identification scenario the objective is to determine the piece

of music underlying the respective MIDI fragment by using

the audio recordings of the database as an identifier. There-

fore, we consider a match as correct if it lies within the au-

dio document that corresponds to the same movement as the

MIDI document from which the respective query is taken.

Otherwise the match is considered as incorrect.

In particular, we investigated the dependence of the num-

ber of correct audio matches subject to the length L (given

in seconds) of the MIDI query. To this end, we randomly

generated 1000 MIDI queries for each of the seven param-

eters L ∈ {10, 20, 30, . . . , 70}. Each of the queries lies

within a single MIDI file and therefore has a unique cor-

rect assignment to one of the 101 movements. The second

column of Table 1 shows the number of correct matches. As

an example, consider the case L = 10, where 823 of the

1000 matches were correct. Note that the number of correct

matches increases significantly with the query length. For

example, for L = 40 only 3 of the 1000 queries were mis-

classified. To give a more detailed picture of the matching

quality, Table 1 additionally provides various cost and con-

fidence values. The third, fourth, and fifth column show the

average cost values, the standard deviations, and the maxi-

mal cost values for the correct top matches. For example,

in the case L = 10, the average cost value (standard de-

viation/maximal cost value) for the 823 correct matches is

0.059 (0.024/0.223). The latter cost values are with respect

to a range from 0 (no costs) to 1 (maximum costs). Increas-

ing L leads to slightly higher cost values stabilizing around

the value 0.07 even for long queries.

Similarly, the sixth, seventh, and eighth columns of Ta-

ble 1 show the corresponding values for the incorrect top

matches. For example, in the case L = 10, the average cost

of the 177 incorrect top matches is 0.084 with a standard de-
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Length #(Cor.) Cost (correct) Cost (incorrect) Gap

(in sec.) (in %) av. std. max. av. std. max. av.

10 82.3 0.059 0.024 0.223 0.084 0.034 0.207 0.044

20 96.7 0.068 0.026 0.206 0.102 0.031 0.196 0.070

30 99.2 0.070 0.024 0.189 0.139 0.040 0.214 0.093

40 99.7 0.071 0.024 0.218 0.177 0.027 0.198 0.106

50 99.9 0.072 0.023 0.204 0.117 0.000 0.117 0.118

60 99.9 0.071 0.021 0.193 0.159 0.000 0.159 0.128

70 99.9 0.071 0.022 0.196 0.229 0.000 0.229 0.135

Table 1. Results for the baseline experiment of mapping MIDI

fragments of various lengths L ∈ {10, 20, . . . , 70} (given in sec-

onds) to the audio database. Each line shows the length L, the

percentage of correct matches for the 1000 MIDI fragments of the

respective length, the average values (av.), the standard deviations

(std.), and the maximum values (max.) of the correct matches and

incorrect matches, and the average confidence gap.

viation of 0.034. Note that in the case of incorrect matches,

when increasing the query length, the average cost increases

at a much higher rate than in the case of correct matches.

We also investigated how well the correct matches were

separated by successive matches that do not lie in the respec-

tive correct audio document. To this end, we computed for

each query the minimal cost value of a restricted matching

curve, where the correct audio document had been removed.

Then, for all correctly identified queries, we computed the

difference of this minimal value and the cost of the correct

top match. This difference value, which we refer to as con-

fidence gap, indicates the identification reliability based on

the top match. The average confidence value is shown in the

last column of Table 1. For example, in the case L = 10
the average confidence gap amounts to the value 0.044. In-

creasing L leads to a significant increase of the confidence

gap up to the value of 0.135 for L = 70. In conclusion, one

may say that one obtains very good identification rates (with

an error rate of less than 1%) for MIDI fragments of at least

30 seconds of duration.

3.3 OMR-Audio Mapping

Next, we describe a similar experiment, now using the

(potentially flawed) OMR extraction results instead of the

“clean” MIDI data. For each of the 604 scanned pages, we

computed a CENS feature sequence as explained in Sect. 2.

Then, from these sequences, we randomly generated 1000
subsequences of length L for each of the length parameters

L ∈ {10, 20, . . . , 70}. Table 2 summarizes the OMR-audio

mapping results. Obviously, the identification rate drops

significantly compared to the pure MIDI case. For exam-

ple, in the case L = 10 only 484 out of the 1000 OMR

query fragments appear as top match in the correct audio

document (opposed to the 823 correct matches in the MIDI

case). The identification rate increases to roughly 87% for

OMR feature sequences that correspond to a duration of 50

Length #(Cor.) Cost (correct) Cost (incorrect) Gap

(in sec.) (in %) av. std. max. av. std. max. av.

10 48.4 0.080 0.033 0.198 0.104 0.040 0.247 0.034

20 67.9 0.103 0.039 0.261 0.147 0.051 0.285 0.050

30 78.4 0.114 0.044 0.292 0.173 0.049 0.317 0.062

40 84.9 0.120 0.043 0.356 0.192 0.051 0.340 0.072

50 87.1 0.132 0.043 0.305 0.208 0.051 0.367 0.080

60 87.0 0.143 0.050 0.304 0.232 0.044 0.356 0.080

70 87.1 0.153 0.052 0.316 0.247 0.049 0.373 0.078

Table 2. Experimental results mapping OMR fragments of var-

ious lengths (given in seconds) to the audio database. For each

length parameter L ∈ {10, 20, . . . , 70} we randomly generated

1000 OMR chroma subsequences, each corresponding to a sub-

part of exactly one of the scanned pages. The table has the same

interpretation as Table 1.

seconds and above. A comparison with Table 1 shows that,

in the OMR case, the average costs of the correct matches

are much higher than the ones in the MIDI case. Further-

more, the confidence gap is much smaller.

All these numbers indicate that the OMR-audio map-

ping procedure significantly suffers from the artifacts that

are mainly caused by OMR extraction errors. In particu-

lar, a manual investigation of samples of the OMR extrac-

tion results revealed that there are two prominent types of

OMR errors that significantly degrade the quality of the

CENS feature sequences. First, for roughly 7% of the lines

(two-stave systems) the key signature was extracted incor-

rectly. In particular, one or even more accidentals notated

at the beginning of each stave were missing. Such an er-

ror generally distorts the CENS subsequence for an entire

line, since a missing accidental causes all notes of a spe-

cific pitch class to be shifted upwards or downwards by

one semitone, which may significantly corrupt the chroma

distribution. Second, in almost 5% of the measures there

were some note or beam extraction errors that resulted in

inconsistencies with respect to the notated time signature.

In such cases, the conversion tool of our OMR software,

which transforms the OMR extraction parameters into a Mu-

sicXML file, simply discards all voices within those mea-

sures that reveal such inconsistencies. This also results in

a significant corruption of the chroma distribution. Obvi-

ously, the automated detection and correction of such OMR

extraction errors would overcome these problems resulting

in significantly improved identification rates. These issues

are left for future work and are further discussed in Sect. 4.

We continue the analysis of our OMR-audio mapping

procedure based on the raw OMR material. Instead of using

randomly chosen OMR fragments of a specific duration, we

now investigate the mapping quality based on musical units

such as pages or lines. Using entire pages in the OMR-audio

mapping leads to an identification rate of roughly 82.5%.

The average length of the corresponding CENS sequences
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Lines Length k = 1 k = 2 k = 5 k = 10 k = 20 k = 50

(in sec.) (in %) (in %) (in %) (in %) (in %) (in %)

1 9.133 44.57 52.97 65.77 76.20 84.59 92.26

3 27.099 71.30 76.66 83.62 88.06 92.45 96.13

5 45.053 77.04 81.23 86.41 90.12 93.37 96.86

7 62.995 77.74 81.83 86.84 90.85 93.83 96.89

Table 3. Identification rates depending on the number of lines

used in the OMR-audio mapping. The columns indicate the re-

call percentage (out of 3693 mappings, respectively) of the correct

audio document within the top k matches.

amounts to 55 seconds yielding robust mappings if there are

no severe OMR errors. Another problem that often leads

to misclassifications is that a single scanned page may re-

fer to more than one pieces of music. In particular for our

Beethoven corpus, a single page may contain both the end

and the beginning of two consecutive movements. To over-

come this problem, one may use single lines in the mapping

process instead of entire pages. This also yields the advan-

tage of having several identifiers per page. On the downside,

the average length of the CENS sequences corresponding to

the lines lies below a duration of 10 seconds yielding an

identification rate of only 44.57%, see Table 3. To improve

the identification rate of the line-based mapping strategy, we

query each line in the context of ℓ preceding and ℓ subse-

quent lines. In other words, instead of using a single line

we use a block of 2ℓ + 1 subsequent lines with the refer-

ence line positioned in the middle. Here, we assume that

all pages belonging to one movement are in the correct or-

der, hence allowing us to consider blocks of lines ranging

across two consecutive pages. To systematically investigate

the identification rate depending on the number of lines used

in the OMR-audio mapping, for each of the 3693 lines of our

scanned Beethoven material, we generated CENS query se-

quences corresponding to 1, 3, 5, and 7 lines. Table 3 shows

both the resulting identification rates based on the top match

(k = 1) and the recall values for the correct audio document

for the top k matches with k ∈ {1, 2, 5, 10, 20, 50}. For ex-

ample, using three lines, the top match (k = 1) was correct

in 71.30% of the 3693 OMR-audio mappings. Considering

the top 5 matches (k = 5), at least one of these matches was

correct in 83.62% of the mappings.

3.4 Postprocessing

We now show how the additional information of consider-

ing the k top matches (instead of considering only the top

match) can be used to detect most of the incorrect identi-

fications. The only assumption we use is that the scanned

pages that correspond to a specific movement are given as

a sequence of consecutive pages, i. e., pages of different

movements are not interleaved. We explain our postprocess-

ing procedure by means of our Beethoven scenario using

Q = 3693 OMR queries each consisting of 7 subsequent

lines and considering the k = 5 top matches. Recall that the

objective is to map each of the queries to one of the P = 101
audio documents (representing the pieces or movements).

We construct a P × Q mapping matrix M , where the rows

correspond to the pieces and the columns to the queries.

Then an entry M(p, q), 1 ≤ p ≤ P , 1 ≤ q ≤ Q, is non-

zero if and only if the pth audio document appears among

the top k matches for the qth query. In this case M(p, q) is

set to 1 − c, where c ∈ [0, 1] denotes the cost of the corre-

sponding match. In case there are several matches for the

entry (p, q) among the top k matches, we define c to be the

minimal cost value over these matches. Note that M(p, q)
expresses a kind of confidence that the qth query belongs the

pth piece. Furthermore, M indicates the kind of confusion

that occurred in the identification procedure. Fig. 2 shows

the mapping matrix for the Beethoven scenario.

For our Beethoven corpus, both the audio recordings and

the scanned pages are sorted with respect to increasing opus

and movement numbers. Therefore, a correct mapping of

all queries corresponds to a diagonal staircase-like structure

in M . In the following, we do not assume that the scanned

pages are given in the same order (on the piece and move-

ment level) as the audio recordings, since this assumption

is often violated in real-world digitization applications. For

example, many music books contain a more or less unsorted

mixture of various pieces and movements. Therefore, we

only make the assumption that the pages that correspond to a

specific audio document (referring to a specific movement)

are given in the correct order. Then, in case of a correct

identification of the OMR queries, the matrix M reveals a

structure of horizontal line segments, where each such seg-

ment corresponds to an audio document.

In the following, a tuple (p, q) is referred to as positive

if the entry M(p, q) is non-zero. Furthermore, a positive

tuple (p, q) is referred to as true positive if the qth query

semantically corresponds to the pth audio document, other-

wise (p, q) is called false positive. Now, the idea is that pos-

itive tuples included in long horizontal line segments within

M are likely to be true, whereas isolated positive tuples are

likely to be false. Intuitively, our procedure classifies the

positive tuples by looking for groups of tuples included in

long horizontal line segments (these tuples are classified as

true) and discards isolated positives tuples (these tuples are

classified as false). Due to space limitations, we do not give

technical details and refer to Fig. 2 for an illustration.

We have applied this postprocessing procedure to the

Beethoven scenario using Q = 3693 queries each consisting

of 7 subsequent lines and considering the top match only.

As a result, 78.42% of the queries were mapped correctly

and 17.17% of the queries were not mapped (by discarding

false positives). The remaining 4.41% are incorrect map-

pings. Note that the result of this type of postprocessing is

the detection rather than the correction of incorrect identifi-
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Figure 2. (a) Mapping matrix M for the Beethoven scenario. The rows correspond to the audio documents (P = 101) and the columns to

the OMR queries (Q = 3693). (b) Enlargement of the marked region of M . (c) The same region after applying the postprocessing procedure.

cations. Having identified incorrect mappings allows to both

further improve the identification process and to automati-

cally reveal passages within the sheet music where severe

OMR errors have occurred.

Rather than identifying incorrect mappings, one may also

increase the number of correct identifications. For this, cer-

tain tuples are specified as true positives by “filling” small

gaps within horizontal line segments. Thus, OMR queries

are assigned to a specific audio document if neighboring

OMR queries are consistently assigned to the same audio

document. Using k = 3 in our example increases the num-

ber of correct identifications to 86.70% (instead of 77.74%
without postprocessing). Note that there is a natural trade-

off between eliminating the incorrect identifications and

boosting the correct identifications.

4 CONCLUSIONS

In this paper, we have introduced the problem of mapping

sheet music to audio recordings. Based on an automated

mapping procedure, we have presented a novel approach for

automatically identifying scanned pages of sheet music by

means of a given audio collection. Such a procedure, which

constitutes an important component in the digitization and

annotation process of multimodal music material, is needed

for building up the Probado music repository [4] currently

set up at Bavarian State Library in Munich, Germany. This

music repository, which contains digitized sheet music and

audio data for a large collection of classical and romantic

piano sonatas (Haydn, Mozart, Beethoven, Schubert, Schu-

mann, Chopin, Liszt, Brahms) as well as German 19th cen-

turies piano songs, is continuously expanded requiring au-

tomated procedures for music processing and annotation.

As our experiments show, the proposed procedure for

mapping scanned sheet music and audio material works well

in the case that there are no severe OMR extraction errors.

Our postprocessing procedure allows for automatically re-

vealing most of the critical passages containing these OMR

errors. In the future, we will use various heuristics to correct

typical OMR errors prior to the mapping step. For exam-

ple, in the case of piano music, different key signatures for

the left and right hand staves can be assumed to be invalid

and easily corrected by considering neighboring stave lines.

Furthermore, similar to the strategy suggested in [2], one

can simultaneously employ various OMR extraction results

obtained from different OMR software packages to stabilize

the mapping result. Based on these strategies, we expect to

achieve a significant improvement of the identification rates

reaching the ones reported in our MIDI baseline experiment.
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