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ABSTRACT 

Music boundary detection is a fundamental step of music 
analysis and summarization. Existing works use either 
unsupervised or supervised methodologies to detect 
boundary. In this paper, we propose an integrated 
approach that takes advantage of both methodologies. In 
particular, a graph-theoretic approach is proposed to fuse 
the results of an unsupervised model and a supervised one 
by the knowledge of the typical length of a music section. 
To further improve accuracy, a number of novel 
mid-level features are developed and incorporated to the 
boundary detection framework. Evaluation result on the 
RWC dataset shows the effectiveness of the proposed 
approach. 

1. INTRODUCTION 

Popular songs usually comprise several music sections 
such as intro, verse, chorus, bridge and outro. A music 
boundary is the time point where a section transits to 
another. Identifying such boundaries is important because 
it allows us to divide a song into semantically meaningful 
sections. This information can also be applied to music 
summarization [1] and thumbnailing [2] to facilitate 
music browsing and structure-aware playback [3]. 
Boundary detection also serves as a front-end processor 
for music content analysis since it provides a local 
description of each section rather than a global but coarse 
representation of the whole song [5]. 

Although there is a rich literature in music theory about 
music structure analysis for symbolic music (e.g. [20]), 
music boundary detection for music signals is still a 
challenging task because precise pitch detection in poly- 
phonic music is not yet achievable. Under this condition, 
most work on music boundary detection utilizes the 
similarity between short-term (e.g., 23ms) audio frames 
within a song to identify the repetitive parts and divide a 
song into a number of sections [1–3, 6–8]. A more recent 
work formulates boundary detection as a clustering 
problem and considers that the audio frames of each 
cluster belong to the same music section [9]. 

The accuracy of this unsupervised approach, however, 
may be limited because only the information of a song 
itself is exploited. For example, identifying repetitive 
parts cannot correctly identify the boundary between two 
adjacent music sections that always occur successively in 

 
a song. On the other hand, clustering-based methods tend 
to produce over-segmented results if the acoustic property 
of the frames in a music section varies greatly. Using 
histograms to gather statistic of spectral characteristics of 
neighboring audio frames [9] does not necessarily solve 
the problem because the histograms of two adjacent 
frames are usually similar, making boundary detection 
even more difficult. 

To address the aforementioned drawbacks, Turnbull et 
al formulate music boundary detection as a supervised 
problem and train a binary classifier to classify whether a 
time point is a boundary or not [10]. In this way, we can 
mine more information from a large number of training 
songs and identify features that are relevant to boundary 
detection. 

However, because a supervised system is pre-trained 
by using the training data and fixed afterwards, it is not as 
adaptive to test songs as its unsupervised counterpart. The 
detection accuracy may significantly degrade when the 
characteristics of the training data and a test song are 
considerably different. For instance, if the system detects 
boundary according to the energy level in a certain 
frequency range, the system may not work for a song 
whose energy in that frequency range maintains high 
throughout the song. 

Based on the above observations, we propose to take 
advantage of both methodologies by aggregating the 
results of an unsupervised model and a supervised one. In 
this way, we can exploit the discriminative information 
provided by the training data and the song-specific 

Figure 1. A schematic diagram of the proposed music 
boundary detection system. 
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information of a test song at the same time. Moreover, to 
better capture the discriminative characteristics of a 
boundary, we further propose a number of novel 
mid-level features, including novelty score, dissonance 
level and vocal occurrence. Comparing to low-level 
features such as the spectral properties, these mid-level 
features carry more semantic meaning that improves 
music boundary detection. 

A schematic diagram of the proposed system is shown 
in Fig. 1. An input song is partitioned by the beat onsets 
and represented by a set of low-level and mid-level 
features. The probability of each beat onset of being a 
boundary is then computed by both supervised and 
unsupervised methods with the features extracted from 
the subsequent beat interval. We then model the beat 
onsets as the vertices of a directed graph, with the vertex 
weights determined by the probability of being a 
boundary and the edge weights determined based on the 
music knowledge of the typical length of a music section 
[7, 11]. Finally, we formulate music boundary detection 
as a shortest path problem and identify the true 
boundaries by the Viterbi algorithm [18]. 

The paper is organized as follows. Section 2 describes 
the feature representation of music, including low-level 
and mid-level features. Section 3 elaborates on the system 
framework and the adopted supervised and unsupervised 
approaches. Experimental result is presented in Section 4. 
Section 5 concludes the paper. 

2. MUSICAL REPRESENTATION 

Before feature extraction, each song is converted to a 
standard format (mono channel and 22,050 Hz sampling 
rate) and partitioned into several beat intervals by the beat 
onset detection algorithm BeatRoot [12]. We adopt beat 
interval instead of frame as the basic time unit because 
the characteristics of a song are more likely to be 
consistent within a beat interval and because a music 
boundary tends to occur at a beat onset [7]. 

2.1 Low-level Features  
For low-level local features, we use 40-dim Mel-scale 
cepstral coefficients (MFCCs), 24-dim chromagram, and 
52-dim fluctuation patterns (FPs) [19] to represent the 
timbre, harmony, and rhythm aspects of music. We 
extract MFCCs and chromagram with a 40ms and 
non-overlapping sliding window and aggregate the 
frame-level features within each beat interval by taking 
the mean and the standard deviation. FPs are computed 
directly for each beat interval. These features have been 
found useful for music boundary detection [10]. Note 
these features only capture the local property of music. 

2.2 Mid-level Features 
Below we describe three mid-level features: novelty score, 
dissonance level, and vocal occurrence. While the first 
one is originally proposed by Cooper et al in [4], it has 
been used in an unsupervised setting rather than as a 
mid-level feature in a supervised one. On the other hand, 
though the latter two features have been studied in the 
context of music theory [21], few attempts have been 

made to incorporate them to the task of music boundary 
detection for raw audio signals. 

2.2.1 Novelty Score  
The novelty score is computed by two steps [4]. First, a 
similarity matrix is constructed by measuring the 
similarity of the low-level feature vectors of every two 
beats in a song. In this matrix, the two segments beside 
the boundary produce two adjacent square regions of high 
within-segment similarity along the main diagonal and 
two rectangular regions of low between-segment 
similarity off the main diagonal. As a result, each 
boundary produces a checkerboard pattern in the matrix 
and the beat interval that boundary occurs is the crux of 
this checkerboard. To identify these patterns, we correlate 
a Gaussian-tapered checkerboard kernel along the main 
diagonal of the similarity matrix to compute the so-called 
novelty scores, which measures both the dissimilarity 
between two different adjacent segments beside each 
potential boundary as well as the similarity within these 
segments. We define the term segment here to represent a 
set of consecutive beat intervals and the term section as a 
segment which is semantically meaningful (such as verse, 
chorus or bridge).1 

In this work, we compute three novelty scores based on 
the three low-level features. Because the novelty scores 
of adjacent beats tend to be similar,2 we also divide the 
novelty score of a certain beat interval by the sum of the 
novelty scores of neighboring beat intervals and use the 
normalized score as additional feature, resulting in a total 
of 6 features for each beat interval. 

2.2.2 Dissonance Level  
It is known in musicology that the relaxation or release of 
tension plays an important role in the transition of music 
sections. Because changes in tension often occur when 
dissonance giving way to consonance [13], we develop a 
novel feature based on the dissonance level of music. We 
first define the dissonant intervals according to the 
relationship between the pitches of two notes that cause 
tension (e.g., Tritone and Minor Second [14]), and then 
compute the dissonance level as the weighted sum of the 
corresponding dissonant intervals from the unwrapped 
chromagram of a beat, 
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where yt denotes the dissonance level of a beat t, q 
denotes the interval that has q semitones between the two 
notes, D is the set of dissonant intervals, cm is the mth bin 
of the chromagram, and kq is a constant corresponding to 
q, which is empirically set according to the ratio of 
frequencies of the two pitches in q. The denominator is a 
normalization term. 

                                                           
1 While a segment can be of arbitrary length, the length of a 
section often follows a typical pattern, see Section 3.3. 
2 The novelty scores of adjacent beats are similar because the 
submatrices of the similarity matrix of these beats overlap a lot. 
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We compute the dissonance level for each beat interval 

and obtain a sequence of dissonance levels. We compute 
the derivative from the resulting sequence as the 
dissonant features to capture the changes in tension,  
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where p denotes the window size. In this work, we set p 
to 1 and 2 and generate a two dimensional dissonance 
level feature. Fig. 2 illustrates the relationship between 
music boundary and dissonance level; clearly the music 
boundaries occur right after peaks of dissonance level 
(the rise and relax of tension). 

2.2.3 Vocal Occurrence 
In pop/rock songs, the time points that a vocalist sings 
often correspond to the music boundaries. For example, if 
a beat onset falls in the middle of a segment with pure 
instrument and another segment with singing voice, it is 
very likely a music boundary. Furthermore, because a 
music section is comprised of several music phrases,3 a 
transition of music sections must also be a transition of 
music phrases. Therefore, if a beat onset falls in a short 
instrumental interval between two vocal music phrases, it 
is more likely to be a music boundary. 

In light of the above observation, we train a 
vocal/non-vocal classifier by support vector machine 
(SVM) [15], with MFCC as the feature representation, to 
estimate the probability of the vocal occurrence for each 
beat interval. If the sum of these probabilities from the 
beat intervals in a segment exceeds a threshold, we regard 
the segment as a vocal segment. More specifically, the 
vocal occurrence feature of a certain beat interval is 
computed as follows. For a beat interval, if both of its 
neighboring segments are non-vocal, the vocal occur- 
ence is set to 0; if only one of the neighboring segments 
is non-vocal, the vocal occurrence is set to 1. When both 
neighboring segments are vocal, we set the vocal 
occurrence according to the following formula:                                  
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where zt is the vocal occurrence feature of beat interval t, 
                                                           
3 Several music phrases constitute a music section. 

vt is the probability estimate of beat interval t generated 
by the vocal/non-vocal SVM classifier, and ω is the 
window size that represents the length of the segment. 
We vary the value of ω and generate a multi-dimensional 
feature vector. In this work we set the value of ω to 8 and 
12. An illustrative example is shown in Fig. 3. The first 
red line labels a transition from a non-vocal section (intro) 
to a vocal section (verse). The green circles label two 
obvious transition points of music phrases, while the 
latter one is in fact a transition point of music sections. 
We can see the corresponding vocal occurrence feature is 
highly correlated to music boundaries. A pitfall of this 
feature is that it may regard every phrase boundary as a 
section boundary and result in over segmentation. The 
use of other features may offset this mistake. 

Representing the acoustic properties of music by these 
low-level and mid-level features, we then employ the 
system described below to detect boundaries. 

3. SYSTEM DESCRIPTION 

In this section, we first introduce the supervised and 
unsupervised approaches adopted in our system. Both 
approaches estimate the possibility of each beat onset of 
being a music boundary. Second, we describe how we 
integrate these two estimations with the music knowledge 
of typical section length. 

3.1 Supervised Estimation 
We train a SVM classifier with polynomial kernel and 
probability estimates to obtain the possibility of a beat 
onset being a music boundary. The label for a beat 
interval is marked 1 if a boundary occurs at that beat 
onset and 0 otherwise. Besides mid-level features, we 
also use the low-level features to train the classifier 
because low-level features also contain some relevant 
information. For example, a drum-fill is usually played 
when a music section ends; this characteristic can be 
detected by FP. For a test song, the SVM model 

Figure 3. Top: the possibility of vocal estimated by SVM 
for a part of Billie Jean by Michael Jackson. The two red 
lines label a transition from intro to verse and a transition 
from verse to bridge. The green circles label two obvious 
transition points of music phrases. Bottom: corresponding 
vocal occurrence feature. 

 

Figure 2. The dissonance level of a part of Billie Jean by 
Michael Jackson. The two red lines label a transition from 
verse to bridge and a transition from bridge to chorus. 
These boundaries occur right after high dissonance levels.
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computes the probability of the occurrence of a boundary 
at every beat onset. We utilize this probability as the 
output of the supervised approach. 

3.2 Unsupervised Estimation 
As for the unsupervised part, we construct three similarity 
matrices based on the kinds of low-level features and 
detect the peaks of the mean of the novelty scores from 
these matrices. We then use these peaks to divide the test 
song into a number of segments [4]. The low-level 
features of a segment are integrated to one vector by 
taking the mean and the standard deviation and a distance 
matrix among the segments is constructed by computing 
the pairwise distance between these vectors. The 
normalized cut algorithm [16] is then performed on the 
distance matrix to group these segments into acoustic 
similar clusters. At each beat interval, we further count 
the cluster indices of neighboring beat intervals within a 
predefined window size and establish two histograms: 
one for the beat intervals preceding to the beat onset, and 
the other for the subsequent beat intervals. The Euclidean 
distance of the resulting histograms can represent the 
possibility of a music boundary occurs at the designated 
beat onset, and the ratio of this possibility value of a beat 
onset to the sum of the possibility values of its 
neighboring ones is regarded as the estimation of the 
unsupervised approach. 

3.3 Integration 
Because music sections tend to have some typical length 
(e.g., 8 or 16 bars) [7, 11], it should be beneficial to 
incorporate this knowledge to the music boundary 
detection framework. As Fig. 4 illustrates, we construct a 
directed graph G = (V, E) to integrate the estimates of 
supervised and unsupervised models and to take 
advantages of this music knowledge. In this graph, a 
vertex represents a beat onset, with the weight of it 
determined by the weighted sum of the estimates of 
supervised and unsupervised models 

1i i iv u sw p k p= + ,    (4) 

where wvi denotes the weight of a vertex i, pui and psi are 
the probability estimates produced by an unsupervised 
model and a supervised one respectively, and k1 is a 
parameter balancing the effect of the two models. The 
music knowledge of section length is incorporated as 
follows. If there exists the possibility that vertices vi and 
vj are two successive music boundaries, we form an edge 
between these two vertices. The weight of the edge is 
determined by the music knowledge of the length of a 
music section. We gather the statistics from training data 
to obtain the probability of two beats with specific 
temporal distance being music boundaries. That is, the 
weight of eij equals to the weight of emn if j–i equals to 
n–m. To achieve this goal, a histogram is constructed by 
simply counting the number of beats of each music 
section from the training data. 

Therefore, a path in this constructed graph can be 
regarded as a set of music boundaries. We further define 
the weight of a path B as the sum of the weights of its 
constituent edges and vertices, 

 

2B v ev B e B
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where wv and we are the weights of a vertex and an edge 
in B, and k2 is a constant to balance the effects of vertices 
and edges. We regard wB as the probability of the 
associated beat onsets being correct music boundaries. 

Because the path with maximum wB consists of 
vertices that are most likely the music boundaries, we 
formulate the problem as a shortest path problem and 
employ the Viterbi algorithm [18] to solve it,  

* arg max BB
B w= ,   (6) 

where B* denotes the optimal solution. In practice, we 
only apply Viterbi to a feasible number of paths to reduce 
the complexity.  

4. EXPERIMENT 

4.1  Experimental Setup 
We conduct an empirical evaluation on the RWC music 
dataset [17], which contains 100 pieces of song that are 
originally produced for experiment; most of the pieces 
(80%) are recorded according to 1990s Japanese chart 
music, while the rest resemble the 1980s American chart 
music. RWC dataset provides clear annotations of music 
boundaries and is adopted in many literatures in music 
boundary detection [6, 10].  

We evaluate the performance in terms of precision (the 
proportion of true boundaries among the detected ones), 
recall (the proportion of true boundaries in the ground 
truth that are detected by the system), and f-score (the 
harmonic average of precision and recall). A detected 
boundary is considered correct if it falls within 1.5 
seconds of the ground-truth, which is stricter than the one 
used in prior work [9] and should be reasonable for 
real-world applications. 

For the unsupervised methods, we process each of the 
100 songs independently and take the average result. For 
the supervised methods, we evaluate the system with 

Figure 4. The directed graph G of a song, which has n 
beat onsets (vertices) and k—1 possible section lengths 
(possible jumps). The vertex weights are determined by 
the probability of being a boundary and the edge weights 
are determined based on the music knowledge of the 
typical length of a music section [7, 11]. We assume that 
every music section contains at least one beat interval.  
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stratified five-fold cross validation: 20 random songs are 
held out as test data and the rest are used for training. The 
evaluation is iterated five times to get the average result. 

4.2 Results 
We first evaluate the supervised approach with different 
feature representations, including low-level and mid-level 
features. To compare the performance against previous 
work, we also implement the difference feature and its 
derivative proposed in [10]. The difference feature is 
computed by sliding a window along the audio signal and 
comparing the statistic of low-level features in the first 
half of the window with the ones in the second half. A 
beat onset is detected as a boundary if its probability 
estimate assigned by SVM exceeds a threshold. Instead of 
using a fixed threshold, we adaptively set the threshold of 
each song to be the mean plus one standard deviation of 
the probability estimates of the song. 

The evaluation result is shown in Table 1. The three 
low-level features bring about similar accuracy, with FPs 
slightly worse than the other two, implying that the 
characteristics of music boundaries are represented more 
in timbre and rhythm. The direct concatenation of the 
three low-level features, which are denoted as local (L) in 
the table, further improves the f-score to 0.2206.  

We then compare four mid-level features, including the 
difference feature proposed in [10]. It can be found that, 
with much lower feature dimension, the use of mid-level 
features achieves similar or superior performance to that 
attained by low-level features. The novelty score, in 
particular, achieve an f-score of 0.2549 that significantly 
outperform all other low-level or mid-level features. We 
can also find that the difference feature does not perform 

well, which possibly due to the disregard of the similarity 
of the beats in each segment. 

The combination of mid-level and low-level features 
only brings about slight improvement, which somewhat 
implies that most of the information carried by low-level 
features has already been well represented by the 
mid-level features. The combination of novelty score (N), 
dissonance level (D), vocal occurrence (V), and local 
features (L) achieves the highest f-score of 0.2641.  

We then compare the two unsupervised methods 
described in Section 3.2. For the cluster-based method, 
we simply mark the boundary of two consecutive 
segments that are associated with different clusters as a 
music boundary without smoothing. The result is shown 
in Table 2. As expected, the clustering-based approach 
exhibits a remarkably high recall but a relatively low 
precision. For the histogram-based method, we consider 
the segments whose probability estimates exceed a 
threshold as boundaries. The threshold value is set in the 
same way as in the supervised methods. The performance 
of the histogram-based method is slightly worse than the 
clustering-based one, showing that gathering statistics of 
neighboring frames does not improve the precision of 
boundary detection. Moreover, it can be noted that in our 
evaluation the unsupervised approaches generally 
outperform the supervised counterparts, showing that the 
ability of the unsupervised approach to be adaptive to 
each test song is essential in boundary detection.  

Finally, we evaluate the performance of integrating the 
result of unsupervised and supervised methodologies. For 
comparison, we further implement a baseline method that 
simply sums up the supervised and unsupervised 
estimates with the same weight as the one in proposed 
graph-theoretical fusion method without exploiting the 
music knowledge of section length.  

The result is also shown in Table 2. It can be found that 
simply taking the average has achieved a higher f-score 
than any of the supervised-only or unsupervised one, 
showing that the two methodologies are indeed 
complementary and the fusion of them is plausible. The 
proposed graph-theoretical fusion further improves the 
f-score to 0.4094, which greatly outperform the taking 
average baseline, especially in recall. This result shows 
the integration of the two methodologies and the 
incorporation of music knowledge are essential to music 
boundary detection.  

A sample segmentation result is displayed in Fig. 5. In 
this example, all the boundaries can be correctly detected 
by the proposed system. Nevertheless, there is an over 
segmentation problem because the characteristics of the 
segments of the same music section may be incoherent. 

Feature # 
feature Precision Recall F-score

MFCC 40 0.1910 0.2574 0.2142
chromagram 24 0.1665 0.2131 0.1842
fluct. pattern 52 0.1906 0.2190 0.2019
local (L) 116 0.1982 0.2629 0.2206
difference [10] 6 0.1602 0.2519 0.1885
novelty (N) 6 0.2427 0.2770 0.2549
dissonance (D) 2 0.2109 0.2505 0.2198
vocal (V) 2 0.2128 0.2687 0.2240
N+L 122 0.2354 0.2900 0.2594
N+D+V 10 0.2322 0.2909 0.2592
N +D+V+L 126 0.2461 0.2932 0.2641

 
Table 1. Evaluation result of different features used in 
supervised musical boundary detection methods. 

Approach  Method Precision Recall F-score 
Supervised only N +D+V+L 0.2461 0.2932 0.2641 
Unsupervised only Cluster-based (normalized cut) [9] 0.2770 0.5166 0.3517 

Histogram-based 0.3068 0.3428 0.3124 
Directly sum  0.3274 0.3470 0.3385 
Integrated with section length Viterbi algorithm [18] 0.3800 0.4452 0.4094 

 
 Table 2. Evaluation result of different musical boundary detection methods. 
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To resolve this problem, we are working on incorporating 
more music knowledge and mid-level features. 

5. CONCLUSION 

In this paper, we have presented an integrated system 
that combines the information from supervised approach, 
unsupervised approaches, and music knowledge. We 
formulate music boundary detection as a shortest path 
problem and employ the Viterbi algorithm to solve it. We 
also propose a number of novel mid-level features to 
better capture the discriminative characteristics of music 
boundaries. Experiments conducted on the RWC dataset 
show significant improvement over the state-of-the-art 
supervised-only and unsupervised-only methods. 
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