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Abstract

The Tamari lattice of order n can be defined on the set Tn of binary
trees endowed with the partial order relation induced by the well-known
rotation transformation. In this paper, we restrict our attention to the
subset Mn of Motzkin trees. This set appears as a filter of the Tamari
lattice. We prove that its diameter is 2n − 5 and that its radius is n −

2. Enumeration results are given for join and meet irreducible elements,
minimal elements and coverings. The set Mn endowed with an order
relation based on a restricted rotation is then isomorphic to a ranked
join-semilattice recently defined in [2]. As a consequence, we deduce an
upper bound for the rotation distance between two Motzkin trees in Tn

which gives the exact value for some specific pairs of Motzkin trees.

Keywords: Lattice; ideal; filter; binary tree; Motzkin; Tamari; diameter.

1 Introduction

Interpreting associativity as a leftward substitution rule on parenthesizations
leads to what is known as a Tamari lattice [9, 13, 14]. This partial order on a
Catalan set first appeared in 1951 in Dov Tamari’s thesis at the Sorbonne in
Paris [27]. The Tamari order was originally defined as a partial order on paren-
thesizations, but it can also be understood as an order on binary trees endowed
with the well-known rotation operation occurring among other in computer sci-
ence. Quite a number of important papers have been published on the topic
in many areas such as algebra, combinatorics, physics. However, among this
plentiful literature, there are only a few studies related to specific subsets of the
Tamari lattice. For instance, the paper [17] highlights a Boolean sublattice of
the Tamari lattice. More recently, it has been proved that the subset of bal-
anced binary trees is closed by interval in the Tamari lattice [10]. The subset
of Motzkin words has also been studied whenever this subset is endowed with
the Tamari partial order on parenthesizations [2].
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In this paper, we tackle the problem by studying how the rotation trans-
formation acts on the subsetMn of Motzkin trees of order n which are binary
trees such that the internal nodes whose left subtree is a leaf also have a leaf
as their right subtree. These trees are in bijection with Motzkin paths, which
explains their name.

In Section 3, we show thatMn is a filter in the Tamari lattice Tn of binary
trees of order n. We compute the diameter and the radius ofMn. In Section 4,
enumeration results are given for join and meet irreducible elements, minimal
elements and coverings. In Section 5, we endow the setMn with a partial order
based on a restricted rotation transformation, and we prove that this poset is
isomorphic to a ranked join-semilattice presented in a recent paper of the au-
thors [2]. As a consequence, we deduce an upper bound for the rotation distance
between two Motzkin trees in Tn which gives the exact value of the classical dis-
tance rotation for some specific pairs of Motzkin trees. This result suggests that
Mn is better behaved than the Tamari lattice regarding the rotation distance
and the diameter.

2 Definition and notations

The Tamari lattice Tn of order n is defined on the set of binary rooted ordered
trees with n internal nodes and thus n + 1 leaves (see [9, 13, 14, 28]). In this
lattice, a tree T ′ covers a tree T when it is obtained from it by a left-rotation
(see Figure 1).

T’
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Figure 1: The left-rotation transformation on binary trees.

Now, we introduce the Polish notation of binary trees that will be convenient
later for the proofs. An internal node of a binary ordered tree admits a left and a
right subtree. The prefix order on a binary tree is defined recursively by visiting
the root and then the left subtree and the right subtree. The infix order is
defined recursively by visiting the left subtree, the root and the right subtree.
The Polish (or linear) notation of T is obtained by reading T in prefix order and
replacing each internal node (resp. each leaf) with © (resp. with ). The left-
rotation transformation −→ on a tree T can be viewed on the Polish notation
of trees as the elementary transformation ©T1© T2T3 −→©© T1T2T3 where
T1, T2 and T3 are the Polish notations of three subtrees of T . For instance,
©© © © is obtained from© ©© © by a left-rotation.
The inverse transformation←− will be called a right-rotation and the transitive
closure of the left-rotation will be denoted

∗−→.
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The rotation transformation has been widely studied using weight sequences
of binary trees introduced in [15]. Some of our proofs consist in switching from
one of the three representations to the other (tree, Polish notation and weight
sequence). So we provide the definition of the weight sequence of T ∈ Tn (w-
sequence for short).

Given T ∈ Tn, the weight of T is the number of its leaves, i.e. n + 1. The
w-sequence of T ∈ Tn is wT = wT (1)wT (2) . . . wT (n)wT (n+ 1), where wT (i) is
the weight of the largest subtree of T whose last leaf is the ith leaf of T in prefix
order. For convenience, we do not use the last value wT (n+ 1) which is always
equal to n+ 1. Two distinct trees cannot have the same w-sequence (see [15]).

Proposition 1 (Theorem 1 in [15]) A necessary and sufficient condition for an
integer sequence w of length n to be the w-sequence of a tree in Tn is 1 ≤ w(i) ≤ i
for all i ∈ [n], and if j ∈ [i− w(i) + 1, i] then i− w(i) ≤ j − w(j).

Proposition 2 (Lemma 2 in [21]) Given T ∈ Tn with w-sequence wT = wT (1)wT (2) . . . wT (n),
then the tree obtained by performing a left-rotation on the kth internal node in
infix order (if it possible) has the w-sequence wT (1)wT (2) . . . wT (k−1)(wT (k)+
wT (k − wT (k)))wT (k + 1) . . . wT (n).

For example, the left-rotation that transforms © ©© © into
© ©©© corresponds to changing the w-sequence 1121 into the
w-sequence 1123.

Theorem 1 (Theorem 2 in [15]) Given T and T ′ in Tn, we have:

T
∗−→ T ′ ⇐⇒ wT (i) ≤ wT ′(i) for all i ∈ [n].

We define the rotation distance d(T, T ′) between two binary trees T, T ′ ∈ Tn
as the minimum number of left- and right-rotations needed to transform T

into T ′ (see [12, 22]). Previous works on rotation distance have focused on
approximation algorithms [1, 4, 18]. However, there remains today an open
problem whether the rotation distance can be computed in polynomial time.

3 The Motzkin filter Mn

LetMn be the set of Motzkin trees with n internal nodes, i.e binary trees where
all internal nodes that have a leaf as their left subtree also have a leaf
as their right subtree. Equivalently, Motzkin trees are the ones whose Polish
notation does not contain any occurrence of © ©. It is well known that this
set is enumerated by the nth term of the Motzkin sequence A001006 in [23]
(see for instance [5, 26]). For example, M4 = {© ©©© ,©©
© © ,©©© © ,©© ©© }. We refer to [8]
and [24] for other combinatorial classes enumerated by the Motzkin numbers.
See Figure 2 for an illustration of a Motzkin tree. For readability, binary trees
undermentioned will be sometimes illustrated without leaves (see Figure 3).
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©©© © ©©©

Figure 2: A Motzkin tree, with w-sequence 1214123, and its Polish notation.

Due to the definition of the left-rotation (see Figure 1), the setMn is closed
under the left-rotation transformation, i.e. any left-rotation on a Motzkin tree
creates a tree that belongs to Mn. Notice that this property means that Mn

is a filter in Tn which is the notion dual to that of an ideal ([6, 11]). Hence the
following proposition holds.

Proposition 3 The posetMn is a filter of Tn whose maximum element 1 has
the w-sequence w1 = 123 . . . n. Thus (Mn,

∗−→) is a join-semilattice.

Let δ(T, T ′) be the rotation distance inMn between two Motzkin trees T and
T ′, i.e. the minimum number of left- and right-rotations needed to transform T

into T ′ by passing through Motzkin trees inMn. Obviously, we have d(T, T ′) ≤
δ(T, T ′) where d is the classical rotation distance in Tn. The diameter δ(Mn)
ofMn is the maximum distance inMn among all pairs of Motzkin trees. The
radius rad(Mn) ofMn is the minimum (on T ∈ Mn) of the greatest distance
of T from any other Motzkin tree (see [7]). The following theorems give the
diameter and the radius ofMn. Notice that computing the diameter d(Tn) of
the Tamari lattice was for many years an open problem. Recently, Pournin has
proved that d(Tn) = 2n− 6 for n > 10 using only combinatorial arguments [20].

Lemma 1 For all n ≥ 3, the diameter of Mn satisfies

δ(Mn) ≤ 2n− 5.

Proof. The proof uses the same general idea as that of Lemma 2 in [22]. We build
a path between two arbitrary objects by transforming them into a canonical
object. The proof is also similar in the way this transformation is done, since
we cluster the leaves of the trees to the right of the Polish notation, while in
[22], they increase the incidence of a given vertex in two triangulations. We
proceed by induction on n ≥ 3. For n = 3, it is clear that δ(M3) = 1 ≤ 2 ·3−5.
Now let us assume that δ(Mk) ≤ 2k − 5 for all k < n, and let us prove that
δ(Mn) ≤ 2n−5. Let T be a Motzkin tree inMn and ℓ(T ) ≤ n be the number of
internal nodes before its first leaf in its Polish notation. If ℓ(T ) < n then there
necessarily exists a rotation on T that increases by one the number ℓ(T ). Thus,
we can produce the maximum tree 1 with ℓ(1) = n by performing n − ℓ(T )
rotations. Then, given any two trees T and T ′ we can convert T into T ′ in
2n− ℓ(T )− ℓ(T ′) rotations via 1. Thus, we have δ(T, T ′) ≤ 2n− ℓ(T )− ℓ(T ′).
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Figure 3: The Motzkin semilatticeM6.

Due to the fact that T and T ′ belong toMn, we have ℓ(T ) ≥ 2 and ℓ(T ′) ≥ 2.
In the case where ℓ(T ) = 2 and ℓ(T ′) = 2, T and T ′ have the same left subtree
© . Therefore, the distance between T and T ′ is the distance between the
two right subtrees of T and T ′ that lie in Mn−2. The induction hypothesis
implies δ(T, T ′) ≤ 2(n− 2)− 5 = 2n− 9 ≤ 2n− 5.

In the case where ℓ(T ) > 2 or ℓ(T ′) > 2, we have ℓ(T ) + ℓ(T ′) ≥ 5 and we
have δ(T, T ′) ≤ 2n− 5.

According to the two previous cases, we deduce δ(Mn) ≤ 2n − 5 which
completes the induction. 2

We obtain the lower bounds using the same general argument and a similar
construction as in [20]. In particular, we exhibit a pair of Motzkin trees with n
internal nodes and show they are at distance 2n−5 using a map φ (which works
as the deletions from [20]) that removes an internal node from a Motzkin tree,
and that removes the rotations involving this node from any path within the
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graph of the semilatticeMn. Lemma 4 of this paper corresponds to Corollary
1 from [20].

Now let us define the transformation φ from Tn to Tn−1 such that φ(T ) is
obtained from T by replacing the last internal node in infix order with its left
subtree (its right subtree being necessarily a leaf). Notice that whenever the left
subtree of the last node of T is a leaf, then φ(T ) is obtained from T by replacing
the last node with a leaf. For instance, if T =©© ©© © then
φ(T ) = ©© ©© , and if T ′ = ©© ©© ©©
then φ(T ′) = ©© ©© © . In terms of w-sequences, we have
wT = 12121, wφ(T ) = 1212 and wT ′ = 121212, wφ(T ′) = 12121. See Figure 4 for
an illustration of φ.

Figure 4: The transformation φ.

Lemma 2 Let T ∈ Tn and w(1)w(2) . . . w(n) be its w-sequence. Then, the w-
sequence of φ(T ) is w(1)w(2) . . . w(n − 1). Therefore, if T ∈ Mn then φ(T ) ∈
Mn−1.

Proof. For 1 ≤ i ≤ n − 1, the transformation φ does not modify the largest
subtree of T whose last leaf is the ith leaf of T in prefix order. Thus, the
w-sequence of φ(T ) is w(1)w(2) . . . w(n− 1) and φ(T ) belongs toMn−1. 2

Lemma 3 Let T and T ′ be two Motzkin trees in Mn such that T ′ is obtained
from T by a rotation involving the last internal node of T in infix order. Then,
we have φ(T ) = φ(T ′).

Proof. Let us assume that T ′ is obtained from T by a left-rotation (resp. right-
rotation) involving the last internal node of T in infix order. Then, the w-
sequence of T ′ is obtained from that of T by increasing (resp. decreasing) the
last value wT (n). With Lemma 2, we deduce that the w-sequences of φ(T ) and
φ(T ′) are the same, and thus φ(T ) = φ(T ′). 2

Lemma 4 Let T = T0, T1, . . . , Tk = T ′ be a shortest path in Mn between T

and T ′. Let p ≥ 0 be the number of (left or right) rotations involving the last
internal node in infix order. Then, we have

δ(φ(T ), φ(T ′)) ≤ δ(T, T ′)− p.

Proof. According to Lemma 2, φ(T ) = φ(T0), φ(T1), . . . , φ(Tk) = φ(T ′) is a path
in Mn−1 between φ(T ) and φ(T ′), provided one removes duplicates from this
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sequence. Two consecutive trees in the sequence are then indeed related by a
rotation, which follows from Lemma 2 and from Proposition 2. With Lemma
3, there are p pairs (Ti, Ti+1) such that φ(Ti) = φ(Ti+1). Thus, the length
of the previous path between φ(T ) and φ(T ′) is δ(T, T ′) − p, which implies
δ(φ(T ), φ(T ′)) ≤ δ(T, T ′)− p. 2

Theorem 2 For n ≥ 3, we have δ(Mn) = 2n− 5.

Proof. Considering Lemma 1, it suffices to exhibit a family of pairs of Motzkin
trees T, T ′ ∈ Mn, n ≥ 3, satisfying δ(T, T ′) = 2n − 5. For n even, n ≥ 4,
we define T and T ′ by their weight sequences wT = 121212 . . .12 and wT ′ =
1231212 . . .121. For n odd, n ≥ 3, T and T ′ are defined by wT = 121212 . . .121
and wT ′ = 1231212 . . .12.

n even n odd

wT = 1212 . . .12 wT = 1212 . . .121

wT = 1231212 . . .121 wT = 1231212 . . .12

Figure 5: The Motzkin trees T and T ′ in the proof of Theorem 2

We proceed by induction on n ≥ 3. It is straightforward to verify that
δ(121, 123) = 1 = 2 · 3− 5 and δ(1212, 1231) = 3. Therefore the cases n = 3 and
n = 4 hold. Let us assume that δ(T, T ′) = 2k − 5 for all k, 3 ≤ k < n, and let
us prove that δ(T, T ′) = 2n− 5 whenever T and T ′ belong toMn.

Exchanging T and T ′ according to the parity of n (if needed), we assume
that wT = . . . 12 and wT ′ = . . . 121. Let T = T0, T1, . . . , Tk = T ′ be a shortest
path in Mn between T and T ′. Let p be the number of rotations in this
path that involve the last internal node in infix order. Lemma 4 induces that
δ(φ(T ), φ(T ′)) ≤ δ(T, T ′) − p. By Lemma 2, we use the induction hypothesis
and we deduce δ(T, T ′) ≥ 2(n − 1) − 5 + p = 2n − 7 + p. Now, let us prove
that p ≥ 2. Indeed, a path in Mn between wT = . . . 12 and wT ′ = . . . 121
necessarily moves the last value wT (n) = 2 of wT . We distinguish two cases:
(i) the first rotation r involving the last node of a tree in the path increases the
value wT (n), and (ii) the first rotation r involving the last node of a tree in the
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path moves the last value wT (n) = 2 into one. We will prove that case (i) is
the only possibility.

In the case (i), it is clear that we need at least one more rotation in order
to decrease to one the last value. Thus, we necessarily have p ≥ 2.

In the case (ii), whenever we decrease wT (n) = 2 to one, it is necessary
to have wT (n − 1) 6= 1 (otherwise the obtained tree would not be a Motzkin
tree). Thus, the path contains a rotation before r that moves the value wT (n−
1) = 1. However the only possibility to move it, is that wT (n) 6= 2 (see the
characterization of a w-sequence in Proposition 1), which means that wT (n) = 2
must be changed before. This case does not occur since r was the first rotation
moving the last value.

Hence, we have p ≥ 2 and we deduce δ(T, T ′) ≥ 2(n − 1) − 5 + p ≥ 2n− 5
which completes the induction. 2

Theorem 3 For n ≥ 3, we have rad(Mn) = n− 2.

Proof. It is clear that (see for instance [7]), we have the inequality

rad(Mn) ≤ δ(Mn) ≤ 2 · rad(Mn).

Using Theorem 2, we deduce that the radius of Mn is at least n − 2. On the
other hand, we consider the Motzkin tree defined in the proof of Theorem 2 with
the weight sequence wT = 121212 . . . Since the distance between a Motzkin tree
and the tree 1 = 123 . . . n is the Hamming distance of their w-sequences (see
Section 3 in [16] for instance), we have δ(1212 . . . , 1234 . . . n) = n− 2 and n− 2
is the maximum distance between the tree 1 = 1234 . . . n and any Motzkin tree.
Thus, the radius ofMn is at most n− 2. 2

4 Enumeration results for (Mn,
∗−→)

In this part, we present several enumeration results for some specific elements
of the semilattice (Mn,

∗−→). Given T ∈ Mn, we denote TL (resp. TR) its left
(resp. right) subtree, i.e. T =©TLTR.

Proposition 4 The generating function for the number of minimal elements
in (Mn,

∗−→) is given by
1 + x− x3
1− x2 − x3 .

For 0 ≤ n ≤ 12, the first values are 1, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16 (see Padovan
sequence A000931 in [23]).

Proof. A minimal element T in (Mn,
∗−→) is a Motzkin tree where any right-

rotation creates a tree that does not belong inMn. Given T =©TLTR ∈Mn,
then TL and TR are necessarily minimal elements. Moreover, the right-rotation
involving the root of T necessarily creates a tree that does not lie inMn. This
means that the right subtree of TL is necessarily a leaf. By induction, TL does
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not contain any right subtree not reduced to a leaf. In the case where TL contains
at least three internal nodes, then the right-rotation involving its root creates
a Motzkin tree. Therefore, the only two possibilities are either TL =© or
TL =©© .

Let A(x) be the generating function for the number of minimal elements
in Mn for n ≥ 0. Then, we have the functional equation A(x) = x2A(x) +

x3(A(x) − 1) + 1 + x which gives A(x) = 1+x−x3

1−x2−x3 . 2

Recall that T ∈ Mn is a join (resp. meet) irreducible element if T = T1∨T2
(resp. T = T1 ∧ T2) implies T = T1 or T = T2. Since the setMn is finite, join
(resp. meet) irreducible elements are elements that have a unique lower (resp.
upper) cover.

Proposition 5 For n ≥ 1, the meet irreducible elements in (Mn,
∗−→) are

enumerated by the triangular numbers (n−2)(n−1)
2 .

For 1 ≤ n ≤ 12, the first values are 0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55 (see
A000217 in [23]).

Proof. A meet irreducible element in (Mn,
∗−→) is a Motzkin tree T where only

a single left-rotation can be performed. Thus, only one internal node can be
a right child which means that the weight sequence of T is necessarily of the
form wT = 12 . . . ℓ12 . . . k(k + ℓ+ 1) . . . n where k ≥ 1 is the number of internal
nodes of the unique subtree T ′ of T whose root is a right child, and ℓ ≥ 2
is the number of internal nodes of the left subtree of the unique node having
an internal node as right child. Finally, the number of such trees is given by
n−2∑

k=1

n−k∑

ℓ=2

1 = (n−2)(n−1)
2 . 2

Proposition 6 The generating function for the number of join-irreducible ele-
ments in (Mn,

∗−→) is given by

x3(1 + x+ 2x2 + 3x3 + 3x4 + x5)

(1− x2 − x3)3 .

For 1 ≤ n ≤ 12, the first values are 0, 0, 1, 1, 5, 9, 18, 34, 58, 100, 164, 265.
Proof. A join-irreducible element in (Mn,

∗−→) is a Motzkin tree T on which
only one right-rotation is possible. Let B(x) be the generating function for the
number of join irreducible elements in Mn. The Polish notation of the only
one join irreducible in M3 is ©©© . Now we assume n ≥ 4. Given
T = ©TLTR and A(x) be the generating function for the number of minimal
Motzkin trees (see Proposition 4).

Case 1: if TR is a leaf then the right-rotation involving the root provides a
Motzkin tree, which implies that TL is necessarily a minimal element of weight
at least four. Thus, the corresponding generating function is x(A(x)−1−x−x2).

Case 2: if TR is a minimal Motzkin tree of weight at least two, then TL is
either (i) a minimal tree of weight at least four, or (ii) a join irreducible element
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whose right subtree is a leaf. Indeed, in sub-case (i), the unique possible right-
rotation is the one at the root of T . The generating function for the case (i)
is x(A(x) − 1)(A(x) − 1 − x − x2). For the case (ii), the unique right-rotation
is the one that can be performed in TL. So, a join irreducible element with a
leaf as right subtree has necessarily a minimal left subtree. Thus, the number
of Motzkin trees satisfying (ii) is given by the generating function x2(A(x) −
1)(A(x) − 1− x).

Case 3: if TR is a join irreducible Motzkin tree of weight at least two, then
TL is either © or ©© . Indeed, if TL is minimal then the right
subtree of TL must be a leaf (otherwise the right-rotation at the root of T would
transform T into a Motzkin tree). So, the corresponding generating function is
x2B(x) + x3B(x). Finally we have the following functional equation that gives
the result:

B(x) = x3 + x(A(x) − 1− x− x2) + x(A(x) − 1)(A(x) − 1− x− x2)+
x2(A(x) − 1)(A(x) − 1− x) + x2B(x) + x3B(x),

where A(x) is given in Proposition 4. 2

Proposition 7 The generating function for the number of coverings in (Mn,
∗−→

) is given by

(1− x)(1 − 2x− x2 − (1− x)
√
1− 2x− 3x2)

2x(1− 2x− x2) .

For 1 ≤ n ≤ 12, the first values are 0, 0, 1, 3, 10, 30, 88, 252, 712, 1992, 5537, 15323.
Proof. Let cn be the number of coverings inMn, C(x) be the associated gener-
ating function and M(x) =

∑

i≥0

Mix
i be the generating function for the number

of Motzkin trees.
Since we have c0 = c1 = c2 = 0, we assume n ≥ 3. Given T = ©TLTR, we

distinguish three cases.
Case 1: TR is a leaf. Thus, there are cn−1 possible left-rotations in TL. The

corresponding generating function is xC(x).
Case 2: if TR =© . There are Mn−2 left-rotations involving the root of

T and cn−2 possible rotations in TL. The corresponding generating function is
x2M(x) + x2C(x).

Case 3: if the weight of TR is at least three. Let i, 1 ≤ i ≤ n − 3, be
the number of internal nodes of TL. There are ci + cn−i−1 left-rotations in
the two subtrees TL and TR, and MiMn−i−1 left-rotations involving the root

of T . Varying i from 1 to n − 3, there are
n−3∑

i=1

(ci + cn−i−1) +
n−3∑

i=1

MiMn−i−1

possible left-rotations. Since
n−3∑

i=1

MiMn−i−1 =Mn−Mn−1−Mn−2 (see [25] for

instance), the corresponding generating function is x2C(x)
1−x

+ x3C(x)
1−x

+M(x) −
xM(x)− x2M(x)− x.
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Considering all cases, we have the following functional equation and the
result is deduced:

C(x) = xC(x) + x2C(x) + x2
C(x)

1− x + x3
C(x)

1− x +M(x)− xM(x) − x,

where M(x) = 1−x−
√
1−2x−3x2

2x . 2

5 A ranked Motzkin poset included in (Mn,
∗−→)

Let W be the set of Motzkin words, i.e. the language over {(, )} defined by the
grammar S  λ|(SS), and Wn be the set of Motzkin words of length 2n (with
n open and n close parentheses). From a Motzkin word in Wn we can associate
a binary tree in Tn where its Polish notation is obtained by replacing each open
(resp. close) parenthesis with © (resp. ), and by adding at the end. For
instance, the Polish notation of the associated tree of the Motzkin word (()(()))
is ©© ©© .

LetMWn be the set of binary trees in Tn associated to the Motzkin words
belonging to Wn. Since a Motzkin word is obtained from the rule S  λ|(SS),
the Polish notation of its associated tree is either of the form (i) ©TL or (ii)
T =©TLTR where TL and TR lie in some setsMWk for k < n, and such that
TR satisfies (i). Actually, the setMWn consists of the mirrors of binary trees
whose Polish notation has no three consecutive internal nodes.

In [2], we investigate the rotation transformation → on the setMWn. We

have proved that (MWn,
∗−→) is a ranked join-semilattice.

In this part, we construct an isomorphism between (MWn−1,
∗−→) and

(Mn,
∗
֌) where֌ is the restricted left-rotation defined by

©T1© T2 ֌©© T1T2

where T1, T2 are the Polish notations of some subtrees. Notice that in [4],
the authors study on binary trees an analogous restricted rotation defined by
© © T2T3֌©© T2T3.

Let ψ be the map from MWn−1 to Tn defined by the following recursive
rule. For T =©TLTR ∈ MWn−1, we define

ψ(T ) = χ(©T ),

where χ(©T ) is recursively defined by

χ(©© TLTR ) =©χ(©TL )χ(TR),

anchored with χ( ) = and χ(© ) =© .
Less formally, ψ(T ) is obtained from ©T by performing the following

process: for all nodes x and y such that y is the left child of x, the right subtree
of y is moved into the right subtree of x.

For example, if T =©© ©©© © then ψ(T ) = χ(©T ) =
©©© ©©© © (see Figure 6).
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T ©T ψ(T ) = χ(©T )

Figure 6: The bijection ψ.

Lemma 5 The map ψ is a bijection from MWn−1 toMn.

Proof. By the recursive definition of ψ, it is straightforward to see that ψ(T )
does not contain any pattern© ©. Thus, we have ψ(MWn−1) ⊆Mn. More-
over, from the recursive definition of χ, ψ is necessarily injective. Indeed, for
any T, T ′ such that T = ©TLTR, T ′ = ©T ′

LT
′
R and ψ(T ) = ψ(T ′), we have

©χ(©TL )χ(TR) = ©χ(©T ′
L )χ(T ′

R). Using the induction hypothesis, we
obtain T ′

L = TL, T
′
R = TR and thus, T = T ′. The two sets MWn−1 and Mn

being enumerated by the Motzkin numbers (see [5]), we deduce that ψ is a bi-
jection fromMWn−1 toMn. Notice that the bijections described in [5] induce
a different isomorphism betweenMn and the setMWn−1. 2

Theorem 4 The two join-semilattices (MWn−1,
∗−→) and (Mn,

∗
֌) are iso-

morphic.

Proof. According to Lemma 5, it suffices to prove that the map ψ transports the
rotation transformation −→ between two trees in MWn−1 onto the restricted
rotation ֌ in Mn, and vice versa. Let T, T ′ ∈ MWn−1 be so that T ′ is
obtained from T by a left-rotation. It is worth noticing that a left-rotation
between two trees ofMWn−1 is a restricted rotation between these two trees.
Since the rotation transformation is a local transformation, we will consider T
and T ′ near the node involved by the rotation. Therefore, we give arguments
using T = . . .©©A©©B C . . . and T ′ = . . .©©©A©B C . . . (see
the trees on the top of Figure 7).

We have ψ(T ) = . . . © χ(©A ) © χ(©B ) . . . and ψ(T ′) = . . . ©
©χ(©A )χ(©B ) . . .. Setting A′ = χ(©A ) and B′ = χ(©B ), we
recognize the restricted rotation . . .©A′©B′ . . .֌ . . .©©A′B′ . . . (see
Figure 7 for an illustration of this proof). This argument still remains available
for the converse mutatis mutandis. Finally, the map ψ transports the rotation
transformation T −→ T ′ where T, T ′ ∈ MWn−1 into the restricted rotation
ψ(T )֌ ψ(T ′) where ψ(T ) and ψ(T ′) belong toMn. 2

The image of the semilattice (MW5,
∗−→) by the map ψ can be viewed in

Figure 3 by not taking into account the four rotations labeled (a), (b), (c) and
(d).
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Figure 7: An illustration for the proof of Theorem 4.

In [2], the authors compute the length ρ(T, T ′) of a shortest path between
T and T ′ inMWn−1. The following corollary provides an upper bound for the
rotation distance d in Tn (and also inMn).

Corollary 1 Given T and T ′ in Mn, we have

d(T, T ′) ≤ δ(T, T ′) ≤ ρ(ψ−1(T ), ψ−1(T ′)).

Since computing the rotation distance d in Tn is a difficult problem, our
upper bounds are valuable, especially because they are sometimes sharp and
because ρ can be computed easily. Indeed, the bounds give the exact value of
the classical distance rotation d for some specific pairs of Motzkin trees. For
example, if n is even, n ≥ 4, then we define T and T ′ by their w-sequences
wT = 121212 . . .121n and wT ′ = 121212 . . .12. If n is odd, n ≥ 3, then T

and T ′ are defined by wT = 121212 . . .12n and wT ′ = 121212 . . .121. A simple
calculation proves that d(T, T ′) = ⌊n−1

2 ⌋ = δ(T, T ′) = ρ(ψ−1(T ), ψ−1(T ′)).

6 Others research directions

Motzkin trees are in bijection with trees where internal nodes have one or two
children. How the rotation operation can be described on these trees?

Motzkin trees can be defined as binary trees whose Polish notation avoids
the pattern © © (or equivalently, a certain binary tree pattern). Is there
a criterion to decide, for a given set of patterns P , if the set MP

n of binary
trees avoiding P form a subposet (resp. a sublattice, a join-semilattice, a meet-
semilattice) of the Tamari lattice of order n?

Recently, some studies have focused on m-Tamari lattices which generalize
the classical Tamari lattices for trees where internal nodes are of arity m + 1
(see the survey paper of Bergeron [3] for any m, and [19] for ternary trees). Is
there a generalization of Motzkin trees and the results of this paper for trees
where internal nodes are of arity m+ 1?

13
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2012.

14



[15] J.M. Pallo: Enumerating, ranking and unranking binary trees, The Com-
puter Journal, 29(1986), 171-175.

[16] J.M. Pallo: On the rotation distance in the lattice of binary trees, Inform.
Process. Lett., 25(1987), 369-373.

[17] J.M. Pallo: Some properties of the rotation lattice of binary trees, The
Computer Journal, 31(1988), 564-565.

[18] J.M. Pallo: An efficient upper bound of the rotation distance of binary
trees, Inform. Process. Lett., 73(2000), 87-92.

[19] J.M. Pallo: The rotation χ-lattice of ternary trees, Computing, 66(2001),
297-308.

[20] L. Pournin: The diameter of associahedra, Adv. Math. 259(2014), 13-42.

[21] D. Roelants van Baronaigien and F. Ruskey: A Hamilton path in the rota-
tion lattice of binary trees, Congressus Numerantium, 59(1987), 313-318.

[22] D.D. Sleator, R.E. Tarjan, W.P. Thurston: Rotation distance, triangula-
tions and hyperbolic geometry, J. Am. Math. Soc., 1(1988), 647-681.

[23] N.J.A. Sloane: The On-line Encyclopedia of Integer Sequences, available
electronically at http://oeis.org.

[24] R.P. Stanley: Enumerative Combinatorics, vol. 2. Cambridge University
Press, 1999.

[25] P.R. Stein and M.S. Waterman: On some new sequences generalizing the
Catalan and Motzkin numbers, Discrete Math., 26(1978), 261-272.

[26] Y. Sun: Statistic “number of udu’s” in Dyck paths, Discrete Math., 287(1-
3)(2004), 177-186.
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