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Abstract

Evolutionary adaptation is the process that increases the fit of
a population to the fitness landscape it inhabits. As a con-
sequence, evolutionary dynamics is shaped, constrained, and
channeled, by that fitness landscape. Much work has been ex-
pended to understand the evolutionary dynamics of adapting
populations, but much less is known about the structure of
the landscapes. Here, we study the global and local structure
of complex fitness landscapes of interacting loci that describe
protein folds or sets of interacting genes forming pathways
or modules. We find that in these landscapes, high peaks are
more likely to be found near other high peaks, corroborat-
ing Kauffman’s “Massif Central” hypothesis. We study the
clusters of peaks as a function of the ruggedness of the land-
scape and find that this clustering allows peaks to form inter-
connected networks. These networks undergo a percolation
phase transition as a function of minimum peak height, which
indicates that evolutionary trajectories that take no more than
two mutations to shift from peak to peak can span the entire
genetic space. These networks have implications for evolu-
tion in rugged landscapes, allowing adaptation to proceed af-
ter a local fitness peak has been ascended.

Introduction
The structure of the fitness landscapes that populations find
themselves in determines to a large extent how those popu-
lations will evolve. In introducing the concept of an adaptive
fitness landscape, Sewall Wright (1932) sought to illustrate
the idea that some combinations of characters will give rise
to very high fitness (peaks) while some others do not (val-
leys), and to study the processes that allow a population to
shift from peak to peak. Evolution in simple smooth land-
scapes (where each site or locus contributes independently to
fitness) is trivial, because the ascent of a single fitness peak
is largely deterministic (Tsimring et al., 1996; Kessler et al.,
1997). At the other extreme lie “random” landscapes (Der-
rida and Peliti, 1991; Flyvbjerg and Lautrup, 1992), which
are characterized by an absence of any fitness correlations
between genotypes, and whose dynamics can likewise be
solved using statistical approaches. In between these two ex-
tremes lie fitness landscapes that are neither smooth nor ran-
dom, where mutations at different loci interact in complex

patterns, giving rise to variedly rugged and highly epistatic
landscapes (Whitlock et al., 1995; Burch and Chao, 1999;
Phillips et al., 2000; Beerenwinkel et al., 2007; Phillips,
2008). Experiments with bacteria and viruses (Elena and
Lenski, 2003) have revealed that real fitness landscapes are
of this nature: they are neither smooth nor random, and con-
sist of a large number of fitness peaks.

Unfortunately, while experiments with bacteria and
viruses have taught us a lot about evolutionary dynamics,
they can only probe very limited regions of the fitness land-
scape, confined to the genotype space surrounding those of
living organisms. In artificial landscapes we are not con-
strained by generation time or the specific genotypic space
that organisms happen to occupy, but can place organisms
anywhere in the fitness landscape, thus enabling us to exam-
ine the statistical properties of fitness landscapes.

If realistic fitness landscapes are neither smooth (a sin-
gle peak) nor random (very many randomly placed peaks in
the landscape), what is the structure of complex landscapes
in “peak space”? Are most peaks confined to one region
of genotype space, leaving other areas empty? Are peaks
clustered or are they evenly distributed? One hypothesis
about the structure of fitness landscapes was proposed by
Kauffman (1993), who posited that peaks are not evenly dis-
tributed, but that high peaks are correlated in space, forming
a Massif Central, and presented numerical evidence support-
ing this view. According to this observation, the best place
to look for a high fitness peak is near another high fitness
peak. A corollary to this hypothesis is that large basins with
no peaks surrounds the central massif. If fitness peaks are
indeed distributed in this manner, it would have profound
implications for the traversability of the landscape, and for
evolvability in general (Altenberg and Wagner, 1996).

Here we strive to study this question in much more de-
tail, by analyzing all the peaks in a landscape in which the
ruggedness can be tuned from smooth to random. In par-
ticular, we would like to know whether the highest peaks
form clusters of connected walks that can percolate, i.e.,
form connected clusters that span the entire fitness land-
scape. Such clusters are very different from the neutral net-
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works studied elsewhere (van Nimwegen et al., 1999; Wilke,
2001), and we briefly argue that peak networks may be more
important for evolvability.

NK Landscape
Kauffman’s NK model (Kauffman and Levin, 1987, see also
Altenberg, 1997) has been used extensively to study evolu-
tion because it is a computationally tractable model of N bi-
nary interacting loci where the ruggedness of the landscape
can be tuned by varying K, the number of loci that each
locus interacts with. Typically N is of the order of 10-30,
but larger sets can be studied if a complete enumeration of
genotypes is not necessary. If K = 0, the smooth landscape
limit is reached, because if loci do not interact, then there
is a single peak in the landscape that can be reached by op-
timizing each locus independently. If K = N − 1, on the
other hand, the model reproduces the random energy model
of Derrida (Derrida and Peliti, 1991). The N loci are usually
thought of as occupying sites on a circular genome, while the
interactions occur between adjacent sites (see Fig. 1), but the
identity of the interactors are immaterial and the results do
not depend on their physical location on the genome. The
example genome in Fig. 1 shows the interactions between
loci in an N = 20 and K = 2 model, where the width
and darkness of the lines reflects the strength of the epistatic
interactions between sites for the global peak of that land-
scape.

While clearly the NK model should not be thought of as
describing the genome of whole organisms, the model has
been used extensively to study the evolution of a smaller set
of sites, such as the residues in a protein (Macken and Perel-
son, 1989; Perelson and Macken, 1995; Hayashi et al., 2006;
Carneiro and Hartl, 2010) or the set of interacting genes cod-
ing for a pathway or a module (Kauffman and Weinberger,
1989; Sole et al., 2003; Yukilevich et al., 2008; Østman
et al., 2010).

In the original NK model, the fitness contribution of each
locus is calculated as the arithmetic mean of the fitness con-
tributions of each locus w(xi), which itself is a function of
the value of the bit at that locus (’1’ if the gene is expressed,
’0’ if it is silent) and the allele of the K genes it interacts
with. This fitness landscape is constructed by obtaining uni-
formly distributed independent random numbers for all the
possible combinations of the K +1 sites (2K+1 numbers for
each locus), so that the fitness contribution for any combina-
tions of alleles can simply be found by looking up that value
in the table. Here, we modify this model slightly, by replac-
ing the customary arithmetic mean by the geometric one, so
that the fitness of genotype ~x = (x1, ..., xN ) is given by

W (~x) =

(
N∏

i=1

w(xi)

)1/N

. (1)

This modification better captures the nature of real genetic

Figure 1: Genome and epistatic interactions between sites
for the peak genotype of an N = 20 and K = 2 model.
While all sites within a “radius” of two interact (light grey),
the strength of interaction can be very different depending
on the actual landscape that was formed. Here, the strength
of epistatic interactions was calculated by performing all
single-site and pairwise knockouts on the global peak geno-
type, and calculating the deviation of independence using a
standard method (Bonhoeffer et al., 2004; Elena and Lenski,
1997; Østman et al., 2010).

interactions (see, e.g., St Onge et al., 2007), and it makes
it possible to introduce lethal mutations by setting one or
more numbers in the fitness lookup-table to zero. Taking the
geometric mean skews the distribution of genotype fitness
to the left, resulting in a mean of about 0.4, rather than the
value of 0.5 when using the arithmetic mean (see Fig. 2). Of
course the logarithm of W (~x) reduces to the usual arithmetic
mean of the log-transformed fitnesses.

In the NK model we can easily compute the fitness of all
genotypes as long as N and K are not too large, and we
can also identify fitness peaks as those genotypes whose N
one-mutation neighbors all have lower fitness. Increasing K
creates landscapes that are increasingly rugged, containing
more and higher peaks with deeper valleys in between. The
waiting time to new mutations becomes a determining fac-
tor in how much the population can evolve before it risks
becoming stuck on a peak of suboptimal fitness. Visualizing
natural fitness landscapes is difficult since it requires prob-
ing genotype-space by measuring the fitness of organisms
whose genomes are fully sequenced. Even worse, natural
fitness landscapes are rarely static, making such an endeavor
even more futile. In computational models all genotypes can
sometimes be enumerated, and we can thus learn about the
global properties of the fitness landscape. This exciting pos-
sibility is muted by the fact that we cannot easily visualize
high-dimensional spaces, and we are forced to resorting to
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statistical methods to probe the landscape.

How Peaks Cluster
In Fig. 2 we show the fitness distribution of all genotypes
of an N = 20, K = 4 landscape (this distribution is virtu-
ally identical for different realizations of landscapes with the
same N and K). Of those 220 genotypes, less than 0.07%
are peaks (this fraction depends on the particular realization
of the landscape), and are also roughly normally distributed
in fitness. Note that while the highest-fitness genotypes are
very likely peaks, there are peaks whose fitness is signifi-
cantly smaller, down to the mean fitness of genotypes in the
landscape. The number of peaks scales approximately expo-
nentially with N (when K is fixed), but only about linearly
with K for K sufficiently large, and at fixed N (data not
shown).
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Figure 2: Fitness distribution of all 1, 048, 576 genotypes
(dashed line) in a typical landscape of N = 20 and K = 4.
This landscape contains 679 peaks whose fitness distribution
is shown as a solid black line. In the inset we have zoomed
in on the peaks.

Pairwise distances
Because the “Massif Central” hypothesis says that the neigh-
borhoods of high peaks are the best places to look for other
high peaks, it is natural to also look at the pairwise distance
of all peaks in a landscape. As we now know the genotypes
of all the peaks in the landscape, we can ask whether peaks
have a tendency to be located close to each other by study-
ing the distribution of Hamming distances between peaks,
which counts the number of differences in the binary rep-
resentation of the sequences. In fact, this is how Kauffman
validated his hypothesis: by plotting the fitness of peaks as

a function of the Hamming distance of all peaks to the high-
est peak he found (Kauffman (1993), page 61), for a land-
scape with N = 96 and K = 2, 4, and 8. As it is not
possible to enumerate 296 ≈ 8 · 1028 genotypes, Kauffman
found high peaks using random uphill walks. Here, we in-
stead use N = 20, for which we can compute the fitness
of all genotypes and thus locate all peaks. After comput-
ing the Hamming distance between all pairs of peaks, we
can compare the distribution of these distances to a control
distribution constructed with the same number of random
genotypes, which are not expected to show any bias in the
distribution of distances. (It is easy to see that the distri-
bution of pairwise distances of random binary sequences of
length N = 20 peaks at d = 10.)
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Figure 3: Distributions of pairwise Hamming distances be-
tween all peaks (solid) and between random “control” geno-
types (dashed). The distributions shown are the averages of
50 different landscapes with genomes of length N = 20.
(A) K = 2 landscapes containing an average of 98 peaks.
(B) K = 4 landscapes containing an average of 720 peaks.
(C) K = 4 landscapes including only an average of 363
peaks with a fitness above a threshold: W ≥ Θ = 0.60. (D)
K = 4 landscapes including only an average of 95 peaks
with a fitness above a threshold of Θ = 0.66. As the samples
include fewer and higher peaks, the pairwise distributions of
K = 4 landscapes begin to resemble that of the K = 2
landscapes, suggesting that the highest peaks do cluster in
genotype space, whereas the distribution of lower peaks is
less biased.

We find that for K = 2, peaks are generally closer to each
other than expected, indicating that peaks cluster in geno-
type space (see Fig. 3A). This alone does not tell us whether
high peaks are more frequently associated with other high
peaks (as opposed to peaks of lower fitness). Moreover,
when examining K = 4 landscapes (that contain over seven
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times as many peaks on average as for K = 2) we notice that
the tendency for peaks to cluster close to each other is nearly
gone, that is, the distribution closely resembles the random
control (Fig. 3B). However, the bias reappears when we fil-
ter the peaks so that we only include those of high fitness
(Figs. 3C and D), reaffirming the hypothesis that in complex
epistatic landscapes, there is something special about being
a high peak, genotypically speaking.
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Figure 4: Mean fitness of peaks in circular clusters of radius
d = 2 as a function of the fitness of the peak in the center
of the cluster. (A) One landscape of K = 2 with 166 peaks
(black dots). All landscapes show a strong correlation be-
tween cluster mean fitness and peak fitness, while the same
analysis of assigning random genotypes to the peaks (but
keeping the fitness) shows no such correlation (gray dots).
The random data are from ten samplings. (B) One land-
scape of K = 4 with 679 peaks (black dots), and random
genotypes (gray dots) obtained by sampling four times.

Peak neighborhood
If we want to know whether peaks with high fitness are likely
to be found near other such peaks, we should study the mean
fitness of peaks within a specified radius of that peak. These
“circular” clusters contain all peaks within a Hamming dis-
tance d of a chosen peak (not counting the peak at the cen-
ter). For the smallest possible distance between peaks d = 2,
the size of a cluster is limited to 210 genotypes, but since
peaks must be at least two mutations away from each other,
there can be at most 190 peaks within a Hamming distance
of two.

Fig. 4A depicts the mean fitness of adjacent peaks in cir-
cular clusters of radius d = 2 (black dots, for K = 2),
showing a tight correlation between peak fitness and aver-
age adjacent peak fitness that indicates that the immediate
neighborhood of high peaks is populated by other peaks of
high fitness. On the contrary, when we randomize the lo-
cation of the 166 peaks in genotype space without chang-
ing their height, this relationship vanishes (light gray dots
in Fig. 4A). For K = 2 random peaks are far apart, result-
ing in only very few peaks within a distance d = 2 of each
other. The K = 4 landscape has four times as many peaks
as the K = 2 landscape, and the effect persists (Fig. 4B).
The observed relation between mean fitness of these circu-
lar clusters and peak fitness persists even when the radius in
increased to d = 6 (data not shown). We observe a similar
correlation between mean cluster fitness and maximum peak
height in network clusters (data not shown).

Adjacency matrices

A B

Figure 5: Adjacency matrices showing clusters of peaks. (A)
Single K = 4 landscape with peaks of Hamming distance
d = 2 connected. The peaks are ordered according to which
network cluster they belong to. This landscape consists of
109 peaks with fitness above Θ = 0.66 that are grouped into
nine clusters (not counting singletons). (B) Random K = 4
landscape with d = 4 and Θ = 0, showing only the first 109
genotypes.

While circular clusters can tell us whether high peaks are
surrounded by peaks that are higher than expected, they do
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not allow us to examine certain critical properties of the
landscape. To do this, we should think of peaks in the ge-
netic landscape as nodes in a random graph, and study the
size of clusters of peaks that are formed by connecting all
those peaks that are within a distance d of each other. Con-
necting such networks clusters of peaks creates a percolation
problem (see, e.g., Bollobas and Riordan (2006)). In statis-
tical physics, systems where nodes are connected by edges
that are placed with a fixed probability undergo a geometric
phase transition as a function of the edge placement prob-
ability. One of the quantities studied in percolation theory
is the size of the largest cluster, because this variable rises
dramatically at the critical point so that it takes up most of
the system once past the critical point. If the largest cluster
takes up most of the nodes, the system is said to ”percolate”,
which implies that the cluster spans the entire system (allow-
ing you to walk across connected nodes from any part to any
other in the system). We will study the percolation prop-
erties of the fitness landscape by using the peak height as
the critical parameter. Clearly, if only the highest few peaks
are considered the system is far from percolation, as these
peaks are unlikely to be connected. But if the highest peaks
are closer to each other than expected in a random control,
then the peaks could percolate far earlier.

Let us begin by computing the Hamming distance be-
tween all pairs of peaks with fitness greater than Θ, and con-
nect those peaks that are a distance of no more than d away
from each other. In Fig. 5A, we show the adjacency matrix
of clusters, which we obtained by placing a dot for every two
peaks that are with a distance d (that is, immediately adja-
cent). Peaks are ordered in such a way that peaks that fall
into the same cluster are placed next to each other. This pro-
cedure allows us to the visualize the structure of clustered
peaks in the landscape. In contrast, if the same peaks are
assigned random locations in the landscape, there is no ap-
parent structure, and clusters of peaks are on average very
small (Fig. 5B). For K = 4 and d = 2 very few peaks are
connected in a random landscape, and because of this the ad-
jacency matrix shown in Fig. 5B is for d = 4, and includes
peaks of any height. Only the first 109 peaks are shown.

Percolation phase-transition
In Fig. 6 we show the average relative size of the largest
network cluster as a function of the peak threshold Θ,
defined as the ratio of the largest number of connected
peaks with fitness above Θ to the total number of peaks in
the landscape. The relative size of the largest connected
component (also called the ”giant cluster” in percolation
theory) increases dramatically as the critical threshold
is reached, much like the size of the giant component
increases when the critical probability of edges is reached
in percolation theory. But what is remarkable about this
transition is that it only occurs because the high peaks in the
landscape occur near other high peaks: if the peaks were
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Figure 6: Size of the largest network cluster in the landscape
averaged over 50 landscapes for each K as a function of fit-
ness threshold, Θ. K = 2 (solid black line), K = 4 (dashed
black line), and K = 6 (solid black line with white circles).
The more rugged the landscapes are, the more abrupt the
transition is from small network clusters to one cluster dom-
inating the landscape. Random genotypes for K = 2 (solid
gray line) and K = 4 (dashed gray line) show no increase in
cluster size.

not clustered, the largest network cluster size would not
increase when we lower Θ, as is the case when we reassign
peaks to random genotypes (gray lines in Fig. 6).

When we include enough peaks, either by setting Θ low
for K = 4 (or else for K = 6 or higher) we find that for
d = 2 there are always two largest network clusters, while
the third largest cluster contains significantly fewer peaks.
Both large clusters percolate genotype space and the diame-
ter of both graphs is 18, not 20 (in general, N−2), while the
shortest distance between the two clusters is always 3. This
is peculiar to the way clusters are formed in this particular
percolation problem. It is a rewarding exercise to determine
the root cause of this peculiarity, which we leave to the in-
terested reader. The transition seen in Fig. 6 suggests that in
more rugged landscapes there are several clusters contain-
ing high peaks (high Θ), and that these high-peak clusters
are connected by the peaks of lower fitness (lower Θ).

The percolation of genetic space by peaks with a suffi-
ciently low height is reminiscent of the percolation of ge-
netic space by arbitrary shapes in the RNA folding prob-
lem (Grüner et al., 1996), except that in that case struc-
tures with different genotypes form a neutral network that
can be traversed by single point mutations. The giant clus-
ter of peaks in the NK landscapes cannot be traversed like
that: rather, it requires a minimum of two mutations to jump
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from peak to peak, and because some of the peaks have in-
ferior fitness, such mutations can only be tolerated for a fi-
nite amount of time–long enough to jump to the next highest
peak. Thus, deleterious mutations are likely to be important
to reach distant areas in genotype space, and the importance
of these is slowly being realized (Lenski et al., 2003, 2006;
Cowperthwaite et al., 2006; Østman et al., 2010).

Discussion
Using several methods we have shown that the rugged fit-
ness landscapes that epistatic interactions create in the NK
model consist of fitness peaks that are distributed in a man-
ner that strongly affects evolution. High peaks are more
likely to be found near other high peaks, rather than near
lower peaks or far from peaks altogether. Similarly, lower
peaks are predominantly located near each other in geno-
type space. Cluster analysis reveals that peaks tend to clus-
ter (as compared to the same peaks placed randomly in ge-
netic space) giving rise to large basins of attraction that are
effectively devoid of peaks. This feature is especially promi-
nent for moderately rugged landscapes (K = 2), while the
addition of many more smaller peaks in more rugged land-
scapes (K = 4 or higher) makes this trend less significant.
To the extent that we think that the NK landscape is an accu-
rate model for real fitness landscapes of proteins and genetic
pathways or modules, the discovery that these landscapes
possess a remarkable structure that appears to be conducive
to adaptation is highly informative about the process of evo-
lution. Clustering of peaks makes a difference when the en-
vironment changes in a way that is unfavorable to the pop-
ulation, and forcing the population to adapt anew. If the
landscape consists of evenly distributed peaks, then the risk
of becoming stuck on a low fitness peak is high, and the
population risks extinction. On the other hand, if peaks are
unevenly distributed, then the ascent of one peak may not
be where adaptation ends, making it possible to locate the
global peak or another high fitness peak.

The more rugged a landscape is, the more peaks it con-
tains, and the larger the space of genotypes that the largest
network cluster spans. In smooth landscapes with only one
or a few peaks, populations can evolve from genotypes of
low fitness and move across genotype space toward high fit-
ness. In rugged landscapes, the population always risks be-
coming stuck on a suboptimal peak. However, networks of
closely connected peaks that percolate genotype space may
still make it possible to traverse the fitness landscape jump-
ing from peak to peak (given a sufficiently high mutation
rate). If peaks are evenly distributed in genotype space, the
chance to jump from peak to peak and thereby eventually
locate the global peak is virtually nil. It is important, how-
ever, to remember that there are limits to the realism of the
NK landscape as a model of realistic genetic or protein land-
scapes. For example, it is known that a significant percent-
age of substitutions in proteins or mutations in genetic path-

ways are neutral, while the NK landscape has virtually no
neutrality (even though most mutations do not change the
fitness significantly). Neutrality plays an important role to
enhance traversability, and will facilitate the transition be-
tween peaks so that deleterious mutations are not essential
for the shift from peak to peak. However, one could main-
tain that deleterious mutations are more promising for adap-
tation than neutral mutations are, because they may be what
separate important phenotypes (Lenski et al., 2006).

The observation that peaks form clustered networks, and
that these networks percolate, implies that the risk of becom-
ing stuck on a suboptimal peak is significantly mitigated, be-
cause all it takes is the two right mutations to locate a new
peak. Thus, it appears that evolvability comes for free in
complex rugged landscapes of interacting loci. We should
note, however, that the reason why peaks cluster in land-
scapes with epistatic interactions is not immediately appar-
ent, and is a subject of ongoing investigations.
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