

Copyright: The Chinese University of Hong Kong, All Rights Reserved.

CUHK RFID Middleware - System Design Document

Prepared By : Andy Mak

Anthony Lam
Daiming Qu

Report No : RFID-SDD

Version : 1.0

Issue Date : 10 August 2007

CUHK RFID Middleware - System Design Document Version: 1.0

Table of Content

1 Executive Summary .. 1

2 Introduction ... 2

3 References... 3

4 Architecture Representation .. 4

5 Relation to External Environment .. 5

6 Requirement View ... 6

6.1 System Functions .. 6

6.2 CUHK Extensions .. 6

6.3 Use Cases ... 7

6.3.1 Define... 7

6.3.2 Undefine... 8

6.3.3 GetECSpec .. 8

6.3.4 GetECSpecNames ... 9

6.3.5 Subscribe ... 9

6.3.6 Unsubscribe ..10

6.3.7 Poll ..10

6.3.8 Immediate ...11

6.3.9 GetSubscribers..11

6.3.10 Get Vendor Version...12

6.3.11 GetStandardVersion..12

6.3.12 readData ...13

6.3.13 writeData ...13

7 Logical View..14

7.1 Architectural Design..14

7.1.1 Service Endpoints ...15

7.1.2 Database Storage ...15

7.1.3 Reader Adaptation ..16

7.1.4 Reader Intelligence ...16

7.2 Design Mechanism ...17

7.2.1 Entity Beans ..17

7.2.2 Session Beans ..19

7.2.3 Message Driven Beans ...22

7.2.4 EPCGlobal Classes...23

8 Process View ..24

8.1 Application to Middleware Interfaces...24

8.1.1 ALE Service Interfaces ..24

8.1.2 Tag Data Service Interfaces ..25

8.2 Middleware to Application Interfaces...26

8.3 Adaptor to Middleware Interfaces..26

8.4 Middleware to Adaptor Interfaces..27

8.5 Interfaces between Middleware and Management Console27

9 Implementation View..28

9.1 Platform Considerations..28

9.1.1 MySQL ..28

9.1.2 Jboss...28

9.2 Class Diagram ..29

9.2.1 cuhk.ale...29

9.2.2 epcglobal.ale ...39

9.3 Collaboration Diagram ..41

9.3.1 Define..41

9.3.2 Undefine..42

CUHK RFID Middleware - System Design Document Version: 1.0

9.3.3 GetECSpec ...42

9.3.4 GetECSpecNames ..42

9.3.5 Subscribe ..43

9.3.6 Unsubscribe ..43

9.3.7 Poll ..44

9.3.8 Immeidate ...44

9.3.9 getSubscribers ..44

9.3.10 getStandardVersion...44

getVendorVersion ...45

9.3.11 Tag Data Read/Write...45

9.4 Package Diagram ...46

9.4.1 cuhk ..46

9.4.2 epcglobal...48

10 Deployment View..49

10.1 Environment..49

10.1.1 Setup...49

10.1.2 Build Procedures ...49

10.1.3 Deployment Procedures ..50

10.1.4 Logging ...50

11 Data View ..51

11.1 Table LOGICALREADER..51

11.2 Table READER...51

11.3 Table READERMAPPING...51

11.4 Table ECSPECINSTANCE ...52

11.5 Table SPECURLS...52

11.6 Table READ_EVENT ..53

11.7 Table READ_TAG...53

12 System Properties..54

12.1 Extensibility...54

12.2 Scalability ...54

12.3 Portability..54

12.4 Reliability ..54

CUHK RFID Middleware - System Design Document Version: 1.0

Revision History

Date Version Description Author

10 Aug 2007 1.0 First Release
Andy Mak

Anthony Lam
Daiming Qu

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 1

1 Executive Summary

Radio Frequency Identification (RFID) middleware is a new breed of software system which
facilitates data communication between automatic identification equipments like RFID readers
and enterprise applications. It provides a distributed environment to process the data coming
from tags, filter and then deliver it to a variety of backend applications via various communication
protocols including web services.

This document describes the system design of the CUHK RFID middleware. The middleware is
developed based on the Application Level Events (ALE) Specification Version 1.0 from
EPCGlobal, together with some CUHK specific extensions. The functions CUHK middleware
provides are summarized as follows:

1. Receiving EPCs from one or more data sources
2. Accumulating data over intervals of time
3. Filtering

� eliminate duplicate EPCs
� filter off EPCs that are not of interest

4. Manipulating (grouping & counting) to reduce volume of data
5. Reporting

The middleware is designed as a J2EE application hosted in JBoss server. It connects databases
via JDBC. The middleware interfaces with its clients via ALE standard interface – SOAP for ALE
Clients while HTTP/TCP for Subscribers. The middleware also interacts with readers via reader
adaptors. An application Management Console has been developed for system administration.

The middleware currently supports 4 service endpoints, namely ALEService, TagDataService,
ReaderManager and Notifier. The service endpoints serve as points of communication with
external clients. ALEService and TagDataService are accessible as web services by using SOAP
over HTTP. The ReaderManager can be accessed through RMI/JRMP, while the Notifier
communicates with subscribers via HTTP or TCP.

The middleware may need to deal with many active readers at the same time. To handle multiple
tag reads simultaneously without performance impact, two database instances are used - one in
memory and the other in disk.

In order to minimize the complexity of middleware and ease server implementation, the
middleware implements one single neutral reader protocol, which assumes that readers are
working in an autonomous mode. Since the actual physical readers do not know about the
standard neutral protocol, Reader Adaptor is implemented to act as a relay between the physical
reader and the middleware. If a physical reader supports autonomous mode, the adaptor simply
acts as a relay. If a physical reader only supports poll mode (as in the CUHK reader), the adaptor
then emulates autonomous mode by polling the reader at regular intervals (the Read Cycle). The
Reader Adaptor also performs registration for the reader in the middleware.

The ALE implementation assumes readers with minimal intelligence, i.e. readers can only report
tag reads and cannot do advanced processing such as pattern filtering. The core business logics
of the middleware are divided into components and are implemented as Enterprise JavaBeans
(EJB).

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 2

2 Introduction

Radio Frequency Identification (RFID) middleware is a new breed of software system which
facilitates data communication between automatic identification equipments like RFID readers
and enterprise applications. It provides a distributed environment to process the data coming
from tags, filter and then deliver it to a variety of backend applications via various communication
protocols including web services. Apart from providing an application-level interface for managing
readers and querying RFID observations, it encapsulates applications from device interfaces. It
also processes raw observations captured by the readers and sensors so that applications see
only meaningful, high-level events, thereby lowering the volume of information that they need to
process.

This document describes the system design of the CUHK RFID System. The implementation of
CUHK RFID system is not only compatible with EPCglobal Application Level Events (ALE)
specification version 1.0, but also provides CUHK specific extensions. In compliance to the
specification, the middleware does not support vendor extension to the ECSpec and ECReports
XML Schemas, but supports the optional FILE Notification URI for writing of ECReports in XML to
a file.

Overall functional components of CUHK RFID System as well as the framework are illustrated in
the following sections, which are organized as follows:

Section 3 provides the references required for understanding the rationale of the system design
and the standard specifications. The relevant references are necessary as the supplements to
this design document. Section 4 describes the architectural representation of the document,
which basically adopts 4+1 View Model. The architectural descriptions of the system are
organized from different perspectives, each of which addresses a specific set of concerns.
Section 5 depicts the relations of the system with external environments; this demonstrates the
interoperability and compatibility of the middleware with external systems.

Section 6 describes the functions provided by the system, and explains the details in terms of use
cases. Section 7 provides the logical view of the system, which includes the architectural design
and design mechanism of the system. Section 8 gives the process view of the system. This
section describes the details of various interfaces, including (1) application to middleware
interface, (2) middleware to application interface, (3) adaptor to middleware interface, (4)
middleware to adaptor interfaces, and (5) the interfaces between middleware and management
console.

According to the design considerations, Section 9 provides the implementation view of the
system. This section states the details of the design in terms of class diagrams, collaboration
diagrams and package diagrams.

Section 10 provides the deployment view. This section describes the environment setup and the
necessary deployment procedures. Data view is provided in Section 11, which gives the design
details of the involved database schema.

Last but not least, Section 12 lists the additional properties of the system.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 3

3 References

Users are expected to acquire general knowledge of middleware and the details listed in the
corresponding specifications. The relevant references are listed in the following table as the
necessary supplement to this design document.

Document Version Date Organisation

The Application Level Events (ALE) Specification 1.0 15 Sep 2005 EPCglobal Inc.

Accada’s EPCIS Implementation Developer Guide 0.2.0 8 May 2007 Accada

EPC Information Services (EPCIS) Version 1.0
Specification

1.0 12 Apr 2007 EPCglobal Inc.

Quick Start Guide of Middleware Installation 1.0 July 2007 CUHK

CUHK ALE Middleware - Test Plan 1.0 31 Aug 2007 CUHK

CUHK ALE Middleware - Test Cases 1.0 31 Aug 2007 CUHK

Tag Capturer - System Design Document 1.0 30 Jul 2007 CUHK

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 4

4 Architecture Representation

The architectural representation will basically adopt the 4 + 1 View Model as recommended, to
organize the architectural description from different perspectives, each of which addresses a
specific set of concerns:

Requirement View: describes the software requirements, functional and non-functional,
illustrated by significant use cases and scenarios

Logical View: describes the object model of the design, the system decomposition
into layers and subsystems, and the dependencies between them

Process View: describes the concurrency and synchronization aspects of the
design

Implementation View: describes the software’s static organization in the development
environment

Deployment View: describes the mapping of the software onto hardware

Data View: describes the database design for the software

It allows various stakeholders to find what they need in the software architecture. System
engineers can approach it from the logical view, process view and deployment view. DBA can
approach it from the data view. Project managers and software configuration managers can
approach it from the implementation view.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 5

5 Relation to External Environment

This section provides high-level descriptions of the external systems that relate with CUHK RFID
Middleware. Three applications were developed together with CUHK RFID Middleware for the
purpose of demonstrating the overall data flow in the RFID environment, namely Management
Console, Reader Emulator and Tag Capturer.

• Management Console – provides a bird-view of the running system and provides
administrative and management functions.

• Reader Emulator – provides hardware reader emulation to the middleware.

• Tag Capturer – demonstrates the basic functionalities, including EPCIS connectivity of

the middleware.

Please refer to the corresponding design document for the details of each of these applications.

.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 6

6 Requirement View

The CUHK RFID middleware implements the EPCglobal standard, “The Application Level Events
(ALE) specification, version 1.0. In compliance to the specification, the middleware does not
support vendor extension to the ECSpec and ECReports XML Schemas, but supports the
optional FILE Notification URI for writing of ECReports in XML to a file.

Apart from the standard system functions, the middleware supports CUHK Extensions.

6.1 System Functions

The CUHK RFID Middleware provides the following functions:

1. Receive EPCs from one or more data sources
2. Accumulate data over intervals of time
3. Filtering

� eliminate duplicate EPCs
� filter off EPCs that are not of interest

4. Manipulate (grouping & counting) to reduce volume of data
5. Reporting

6.2 CUHK Extensions

Since the ALE Specification does not specify a standard mechanism for middleware to receive
EPCs from data sources, proprietary implementations may be needed to cater for various
readers. In view of flexibility enhancement, it is recommended to simplify reader connections from
different vendors without jeopardizing the standard compliance of the middleware. As a result, a
reader to middleware protocol has been devised and the middleware implements this neutral
protocol. For any other readers that communicate by using this protocol, an adaptor is needed to
be developed for the translation.

To facilitate system administration, a CUHK middleware management console has been
developed to allow direct connection from the middleware. The management console generates
a bird’s eye view of the running system and provides administrative and management functions.

The standard specifies only the manipulation of EPCs as a set of tag IDs, and does not provide
any means for operating the data contained in tags. As we foresee that more and more RFID tags
will be supporting data operation, especially with the use of active tags, we have extended the
standard middleware to support tag data reading and writing.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 7

6.3 Use Cases

The following diagram describes the standard operations required by the specification supported
in the middleware.

Actor DEFINITION
Application Software applications that interact with the middleware to

perform operations as defined by the ALE interface

6.3.1 Define

6.3.1.1 Description

This use case describes the definition of an ECSpec in the middleware
6.3.1.2 Actors

• Application
6.3.1.3 Preconditions

• None
6.3.1.4 Major Flow of Event

1. Application to create an ECSpec object
2. Application to define the ECSpec object with a name

6.3.1.5 Alternate Flows

• DuplicateNameException is thrown when the ECSpec name already exists
• ECSpecValidationException is thrown when the specified ECSpec is invalid
• SecurityException is thrown when the operation was not permitted due to an

access control violation or other security concern
• ImplementationException is thrown when other implementation errors occur

6.3.1.6 Post-conditions

• An ECSpec with the specified name is defined in the middleware
• The ECSpec enters the Unrequested state

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 8

6.3.2 Undefine

6.3.2.1 Description
This use case describes the definition removal of an ECSpec in the middleware

6.3.2.2 Actors

• Application
6.3.2.3 Preconditions

• The ECSpec is defined
• The ECSpec is at the Unrequested state

6.3.2.4 Major Flow of Event
1. Application to remove the definition of an ECSpec object with a name

6.3.2.5 Alternate Flows

• NoSuchNameException is thrown when the ECSpec name does not exist
• SecurityException is thrown when the operation was not permitted due to an

access control violation or other security concern
• ImplementationException is thrown when there were other implementation errors

6.3.2.6 Post-conditions

• The ECSpec with the specified name is undefined in the middleware

6.3.3 GetECSpec

6.3.3.1 Description
This use case describes getting an ECSpec from the middleware

6.3.3.2 Actors

• Application
6.3.3.3 Preconditions

• The ECSpec is defined
6.3.3.4 Major Flow of Event

1. Application to get the ECSpec object with a name
6.3.3.5 Alternate Flows

• NoSuchNameException is thrown when the ECSpec name does not exist
• SecurityException is thrown when the operation was not permitted due to an

access control violation or other security concern
• ImplementationException is thrown when other implementation errors occur

6.3.3.6 Post-conditions

• The ECSpec with the specified name is returned

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 9

6.3.4 GetECSpecNames

6.3.4.1 Description
This use case describes getting a list of names of the ECSpecs defined the middleware

6.3.4.2 Actors

• Application
6.3.4.3 Preconditions

• None
6.3.4.4 Major Flow of Event

1. Application to query for the names
6.3.4.5 Alternate Flows

• SecurityException is thrown when the operation was not permitted due to an
access control violation or other security concerns

• ImplementationException thrown when other implementation errors occur
6.3.4.6 Post-conditions

• A list of ECSpec names are returned

6.3.5 Subscribe

6.3.5.1 Description
This use case describes the subscription of an ECSpec. The ECSpec will generate event
cycles as long as there is at least one subscriber. Results for each event cycle are sent to
the notification URIs as provided by the subscribers.

6.3.5.2 Actors

• Application
6.3.5.3 Preconditions

• The ECSpec is defined
6.3.5.4 Major Flow of Event

1. Application to subscribe the ECSpec, providing the name of the ECSpec and a
notification URI for receiving the results

6.3.5.5 Alternate Flows

• NoSuchNameException is thrown when the ECSpec name does not exist
• InvalidURIException is thrown when the URI specified for a subscriber cannot be

parsed
• DuplicatedSubscriptionException is thrown when the specified ECSpec name and

the subscriber URI is identical to a previous subscription that was created and not
yet unsubscribed

• SecurityException is thrown when the operation was not permitted due to an
access control violation or other security concerns

• ImplementationException is thrown when other implementation errors occur
6.3.5.6 Post-conditions

• The ECSpec enters the Requested or Active state when it is first subscribed

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 10

6.3.6 Unsubscribe

6.3.6.1 Description
This use case describes the un-subscription of an ECSpec.

6.3.6.2 Actors

• Application
6.3.6.3 Preconditions

• The ECSpec is defined
• The application has previously subscribed the ECSpec with the notification URI

6.3.6.4 Major Flow of Event
1. Application to unsubscribe the ECSpec, providing the name of the ECSpec and a
notification URI for receiving the results

6.3.6.5 Alternate Flows

• NoSuchNameException is thrown when the ECSpec name does not exist
• NoSuchSubscriberException is thrown when the subscriber does not exist
• InvalidURIException is thrown when the URI specified for a subscriber cannot be

parsed
• SecurityException is thrown when the operation was not permitted due to an

access control violation or other security concern
• ImplementationException is thrown when other implementation errors occur

6.3.6.6 Post-conditions

• The ECSpec enters the Unrequested state when it is last unsubscribed

6.3.7 Poll

6.3.7.1 Description
This use case describes polling of an ECSpec. The poll call is similar to subscribing and
then unsubscribing immediately after one event cycle is generated except that results are
returned from poll instead of being sent to a notification URI.

6.3.7.2 Actors

• Application
6.3.7.3 Preconditions

• The ECSpec is defined
6.3.7.4 Major Flow of Event

1. Application provides the name of the ECSpec to poll it
6.3.7.5 Alternate Flows

• NoSuchNameException is thrown when the specified ECSpec name does not
exist

• SecurityException is thrown when the operation was not permitted due to an
access control violation or other security concerns

• ImplementationException is thrown when other implementation errors occur
6.3.7.6 Post-conditions

• ECReports are returned

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 11

6.3.8 Immediate

6.3.8.1 Description
This use case describes the ‘immediate’ action of an ECSpec. The call is like as defining
an ECSpec, performing a single poll operation and then undefining it.

6.3.8.2 Actors

• Application
6.3.8.3 Preconditions

• None
6.3.8.4 Major Flow of Event

1. Application to create an ECSpec object
2. Application to invoke the ‘immediate’ action by passing the ECSpec

6.3.8.5 Alternate Flows

• ECSpecValidationException is thrown when the specified ECSpec is invalid
• SecurityException is thrown when the operation was not permitted due to an

access control violation or other security concerns
• ImplementationException is thrown when other implementation errors occur

6.3.8.6 Post-conditions

• ECReports are returned

6.3.9 GetSubscribers

6.3.9.1 Description
This use case describes the ‘getSubscribers’ action, which returns the lists of subscribers
(the notification URIs) of an ECSpec.

6.3.9.2 Actors

• Application
6.3.9.3 Preconditions

• The ECSpec is defined
6.3.9.4 Major Flow of Event

1. Application provides the name of the ECSpec to get the subscriber list
6.3.9.5 Alternate Flows

• NoSuchNameException is thrown when the ECSpec name does not exist
• SecurityException is thrown when the operation was not permitted due to an

access control violation or other security concerns
• ImplementationException is thrown when there was other implementation errors

6.3.9.6 Post-conditions

• A list of notification URIs are returned

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 12

6.3.10 Get Vendor Version

6.3.10.1 Description
This use case describes the action which returns a string that identifies the vendor
extensions this implementation provides.

6.3.10.2 Actors

• Application
6.3.10.3 Preconditions

• None
6.3.10.4 Major Flow of Event

1. Application to get the vendor version
6.3.10.5 Alternate Flows

• None
6.3.10.6 Post-conditions

• A string specifying the vendor version is returned

6.3.11 GetStandardVersion

6.3.11.1 Description
This use case describes the action which returns a string that identifies the version of ALE
specification this implementation complies with.

6.3.11.2 Actors

• Application
6.3.11.3 Preconditions

• None
6.3.11.4 Major Flow of Event

1. Application to get the standard version
6.3.11.5 Alternate Flows

• None
6.3.11.6 Post-conditions

• A string specifying the standard version is returned

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 13

6.3.12 readData

6.3.12.1 Description

This use case describes the action which reads data from specific tags.
6.3.12.2 Actors

• Application
6.3.12.3 Preconditions

• None
6.3.12.4 Major Flow of Event

1. Application creates a read-data request for a specific tag, with the offset address,
and data length.

6.3.12.5 Alternate Flows

• Application gets error code if the tag is not detected in any reader.
6.3.12.6 Post-conditions

• Application receives the data from the specific tag.

6.3.13 writeData

6.3.13.1 Description
This use case describes the action which writes data to specific tag.

6.3.13.2 Actors

• Application
6.3.13.3 Preconditions

• None
6.3.13.4 Major Flow of Event

1. Application creates a write-data request for a specific tag, with the offset address
and data length.

6.3.13.5 Alternate Flows

• Application gets error code if the tag is not detected in any reader.
6.3.13.6 Post-conditions

• Data is written to the tag.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 14

7 Logical View

7.1 Architectural Design

The middleware is a J2EE application hosted in JBoss server. It connects databases via JDBC.
The middleware interfaces with its clients via ALE standard interface: SOAP for ALEClient, and
HTTP/TCP for Subscriber. The ALEClient invokes operations in the middleware using ALE API.
The Subscriber is the listener for reporting results. The middleware also interacts with Readers,
through the ReaderAdaptor. There is also a Management Console for system administration.

ALEService is a stateless session bean, realized as ALEServiceBean. It implements the ALE
main API class as defined in ALE specification section 8.1. It is exposed as a web service. The
clients access it via SOAP.

TagDataService is a stateless session bean, realized as TagDataServiceBean. It implements the
CUHK’s tag data read/write extension to the middleware. It is exposed as a web service. The
clients access it via SOAP.

ECSpecValidator is a standard java utility class. It validates ECSpec according to rules defined in
ALE specification section 8.2.11.

ECSpecInstance is an entity bean, realized as ECSpecInstanceBean. It represents an ECSpec
defined in the middleware. It also models the lifecycle of the ECSpec by supporting the
Unrequested, Requested and Active state transition. It works with Timer to handle state transition
triggered by timeout.

ReportGenerator is a stateless session bean. It generates ECReports for a given Event Cycle.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 15

Notifier is a message driven bean. It performs HTTP, TCP and FILE notifications.

Timer is a built-in timer service in J2EE 1.4. It supports the various operations in the ALE
specification related to timeout.

ReaderManager is a stateless session bean. It is exposed as an EJB service endpoint. It allows
reader registration and aggregates tag reads for middleware through interfacing with
ReaderAdaptors, using RMI/JRMP. Tag reads are stored in the in-memory database for
centralized & shared usage by the system.

ReaderAdaptor is a driver program, which interfaces with the native driver of a reader. It performs
tag reads on the actual reader and submits the reads to ReaderManager via RMI/JRMP. It makes
sure that EPCs sent to the middleware in a read cycle are distinct by removing duplicated reads.
It also performs reader registration.

7.1.1 Service Endpoints

The middleware currently has 4 service endpoints, namely ALEService, TagDataService,
ReaderManager and Notifier. The service endpoints serve as the point of communication with
external clients. ALEService and TagDataService are assessable as web services using SOAP
over HTTP. ReaderManager can be accessed through RMI/JRMP, while Notifier communicates
with subscribers using HTTP or TCP.

7.1.2 Database Storage

The middleware may need to deal with many active readers at the same time. To handle many
tag reads simultaneously without performance impact, two database instances, one in memory,
anther in disk, are used.

The in-memory database is used to store tag reads. The middleware does not provide
persistence for raw tag reads. Persistence of EPC data is not required in the ALE layer as
instructed in the ALE Specification.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 16

7.1.3 Reader Adaptation

The middleware implements one single neutral reader protocol, which assumes that readers are
working in an autonomous mode. That means, the readers will fire tag reads to the middleware at
a particular frequency when they are active. This is to minimize the complexity of middleware and
ease server implementation to support for various reader protocols.

Since the actual physical readers do not know about the standard neutral protocol,
ReaderAdaptor is implemented to act as a relay between the physical reader and the middleware.
To be specific, the adaptor communicates with the physical reader using proprietary protocol and
relays the EPC reads to the middleware using the standard protocol. If a physical reader supports
autonomous mode, the adaptor simply acts as a relay. If a physical reader only supports poll
mode (as in the CUHK reader), the adaptor will emulate autonomous mode by polling it in regular
intervals (the Read Cycle).

The ReaderAdaptor also performs registration for the reader in the middleware.

The adaptor does not require a 1-1 mapping to the reader. If multiple readers are mapped to an
adaptor, they are being treated and managed by the middleware as a single unit.

The adaptor is placed NEAR the reader, and AWAY from the middleware. This approach helps
reduce the overhead during polling. If the adaptor is placed NEAR the middleware, then for every
poll, the traffic will be generated across the network to the reader, which is inefficient. Since the
adaptor is working in autonomous mode, meaning that the middleware-to-adaptor traffic is
minimal, therefore, an adaptor placing NEAR the reader, says, in the same LAN, would be
optimal. It is expected that the volume of adaptor-to-reader traffic is much more than that for the
adaptor-to-middleware traffic.

7.1.4 Reader Intelligence

The ALE implementation assumes readers with minimal intelligence, i.e. readers can only report
tag reads and cannot do advanced processing such as pattern filtering.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 17

7.2 Design Mechanism

The core business logics of the middleware are divided into components and are implemented as
Enterprise JavaBeans (EJB).

7.2.1 Entity Beans

An entity bean represents a business object in a persistent storage mechanism. So most entity
bean APIs are setters and getters, and the underlying data persistence logics are handled inside
the function.

7.2.1.1 ECSpecInstanceBean

This bean handles all logics related to a ECSpec. Since state in ECSpec is temporal, the bean
also implements TimedObject from J2EE specification.

Package

� cuhk.ale.ejb

Implemented Interfaces
� javax.ejb.EntityBean
� javax.ejb.TimedObject

J2EE Remote interface of ECSpecInstanceBean

� Nil (to avoid RMI overhead for entity bean)

J2EE Local interface of ECSpecInstanceBean

� ECSpecInstanceLocal

Function list

Return Type Declaration

Void addNotificationURL(java.lang.String specName, java.lang.String url)

Void cancelTimer(ECSpecInstanceBean.TimerType type)

Void createTimer(ECSpecInstanceBean.TimerType type, long duration)

Void deleteNotificationURL(java.lang.String specName, java.lang.String url)

ECSpecInstancePK ejbFindByPrimaryKey(ECSpecInstancePK pk)

Void ejbTimeout(javax.ejb.Timer timer)

epcglobal.ale.ECSpec getECSpec()

ECSpecInstanceValue getECSpecInstanceValue()

java.util.List getNotificationURLs(java.lang.String specName)

long getPreviousEndTime()

long getPreviousStartTime()

java.lang.String getSpecName()

long getStartTime()

int getState()

int getStateVersion()

void setECSpec(epcglobal.ale.ECSpec value)

void setECSpecInstanceValue(ECSpecInstanceValue value)

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 18

void setPreviousEndTime(long l)

void setPreviousStartTime(long l)

void setSpecName(java.lang.String value)

void setStartTime(long l)

void setState(int value)

void setStateVersion(int value)

void startTriggerReceived()

void stopTriggerReceived()

void subscribe(java.lang.String notificationUrl)

void Unsubscribe(java.lang.String notificationUrl)

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 19

7.2.2 Session Beans

Session Beans implement business tasks.

7.2.2.1 ALEServiceBean

This bean handles all front tier logics for ALE standard. The bean implements all the APIs as
listed in Section 8 in The Application Level Events (ALE) Specification, Version 1.0. All RMI calls
(including SOAP) should be directed to these functions in order to realize ALE functions.

Package

� cuhk.ale.ejb

Implemented Interfaces
� javax.ejb.SessionBean

J2EE Remote interface of ALEServiceBean

� ALEService

J2EE Local interface of ALEServiceBean

� ALEServiceLocal

Function list

Return Type Declaration

Void define(java.lang.String specName, epcglobal.ale.ECSpec spec)

epcglobal.ale.ECSpec getECSpec(java.lang.String specName)

java.util.List getECSpecNames()

java.lang.String getStandardVersion()

java.util.List getSubscribers(java.lang.String specName)

java.lang.String getVendorVersion()

epcglobal.ale.ECReports immediate(epcglobal.ale.ECSpec spec)

epcglobal.ale.ECReports poll(java.lang.String specName)

Void startTrigger(java.lang.String specName)

Void stopTrigger(java.lang.String specName)

Void subscribe(java.lang.String specName, java.lang.String
notificationURI)

Void undefine(java.lang.String specName)

Void unsubscribe(java.lang.String specName, java.lang.String
notificationURI)

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 20

7.2.2.2 ReportGeneratorBean

The bean is called in each event cycle for each ECSpec to generate the ECReport.

Package
� cuhk.ale.ejb

Implemented Interfaces
� javax.ejb.SessionBean

J2EE Remote interface of ReportGeneratorBean

� ReportGenerator

J2EE Local interface of ALEServiceBean

� ReportGeneratorLocal

Function list

Return Type Declaration

epcglobal.ale.ECReports generateReports(cuhk.ale.EventCycle eventCycle)

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 21

7.2.2.3 ReaderManagerBean

The bean receives the events submitted from the adaptor into the middleware.

Package
� cuhk.ale.ejb

Implemented Interfaces
� javax.ejb.SessionBean

J2EE Remote interface of ReaderManagerBean

� ReaderManager

J2EE Local interface of ReaderManagerBean

� ReaderManagerLocal

Function list

Return Type Declaration

Void submitALEPhysicalReaderInfo(java.lang.String
readerID,cuhk.ale.PhysicalReaderInfo physicalReaderInfo)

Void submitALETags(java.lang.String readerID,java.util.List tags)

7.2.2.4 TagDataServiceBean

This bean provides the middleware the support of tag data reading and writing. These functions
are not specified in the EPCGlobal middleware standard but is designed and implemented as
CUHK extensions to the middleware.

Package

� cuhk.ale.ejb

Implemented Interfaces
� javax.ejb.SessionBean

J2EE Remote interface of TagDataServiceBean

� TagDataService

J2EE Local interface of TagDataServiceBean

� TagDataServiceLocal

Function list

Return Type Declaration

byte[] readData(cuhk.ale.reader.DataSpec data)

Int writeData(cuhk.ale.reader.DataSpec data)

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 22

7.2.3 Message Driven Beans

A Message Driven Bean is similar to a session bean, except it responds to a JMS message rather
than a RMI event.

7.2.3.1 NotifierBean

This bean performs HTTP, TCP and FILE notification. All ECReports to be delivered are sent to
this bean internally via JMS as cuhk.ale.NotifyRequest requests. These requests are then
directed to the NotifierQueue for delivery to corresponding subscribers.

Package

� cuhk.ale.ejb

Implemented Interfaces
� javax.ejb.MessageDrivenBean
� javax.jms.MessageListener

7.2.3.2 TagWriteActivatorBean

This bean supports asynchronous reads and writes through the messaging support provided by
JMS. They are described in details in the Process View section of the document.

Package

� cuhk.ale.ejb

Implemented Interfaces
� javax.ejb.MessageDrivenBean
� javax.jms.MessageListener

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 23

7.2.4 EPCGlobal Classes

The EPCGlobal classes are well defined in the specification. According to the specification, the
ECSpec and ECReport should be able to be represented in XML format, and the ALE API should
be accessible via SOAP. Therefore, instead of modelling the EPCGlobal classes directly in Java,
they are developed with the foundation of XML to Java object transformation & SOAP
accessibility. The JAX-WS software library is used to facilitate the process.

7.2.4.1 JAX-WS

JAX-WS stands for Java API for XML Web Services. JAX-WS is a technology for building web
services and clients that communicate using XML. According to the EPCGlobal specification, the
remote procedure calls to the ALE middleware are represented by the XML-based protocol
SOAP. These calls and responses are transmitted as SOAP messages (XML files) over HTTP.

The SOAP messages are complex, and they need to be compliant to the envelope structure,
encoding rules, and conventions defined by SOAP specification. The remote procedure calls and
responses need to follow the Web Service Description Language (WSDL) definitions from
EPCGlobal ALE specification which specifies an XML format for describing the ALE service as a
set of endpoints operating on messages.

With JAX-WS, the complexities of SOAP messages are hided. The developer does not generate
nor parse SOAP messages. It is the JAX-WS runtime system that converts the API calls and
responses to and from SOAP messages. The JAX-WS also provides tools to generate the Java
classes involved from the WSDL definitions and XML schemas.

7.2.4.2 Classes Generation

The EPCGlobal classes are generated using JAX-WS with the following steps:

1. Extract the XML Schemas and WSDL definition from EPCGlobal ALE Specification, resulting

in ALE.xsd, EpcGlobal.xsd and aleservice.wsdl.
2. Modify the ALE.xsd to remove some optional elements related XML Extensibility.
3. Customize the XML binding mainly for package names and to convert XML date time to Java

date time.
4. Input the aleservice.wsdl to the ‘wsimport’ in JAX-WS to generate JAX-WS portable artefacts,

such as Service Endpoint Interface (SEI), Service, Exception class mapped from wsdl:fault (if
any), Async Reponse Bean derived from response wsdl:message (if any) & JAXB generated
value types (mapped Java classes from schema types). Since the artefacts are generated
from the wsdl, therefore, the SOAP implementation will be EPCGlobal compliant.

As a result, two packages are created – epcglobal.ale for ALE defined objects such ECSpec and
ECReports, and epcglobal.ale.soap for SOAP call and response. The logics in the middleware
are programmed to use the XML-bind Java objects.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 24

8 Process View

8.1 Application to Middleware Interfaces

Upper level applications can access the middleware through the SOAP interfaces. There are two
main sets of interfaces: the ALE standard service interfaces and the CUHK tag data services
interfaces. The SOAP interfaces use HTTP as the transport protocol.

To facilitate application integration, the interfaces come with WSDL definitions, which are
XML-based descriptions for web services defined according to W3C WSDL standard
(http://www.w3.org/TR/wsdl/). Application clients can read the WSDL to determine what functions
are available on the server. The clients can then use SOAP to actually call one of the functions
listed in the WSDL.

The WSDL contains 4 major sections:

1. wsdl:messages - represents the data being transmitted; all request and response object
are defined here.

2. wsdl:portType - represents all the operations, and each operation refers to an input and
output message.

3. wsdl:binding - specifies the protocols and data formats for the operations and messages.
4. wsdl:service - defines the communication endpoints.

8.1.1 ALE Service Interfaces

These are the standard interfaces of the middleware as defined in ALE specification section 8.1.
The server side of the interfaces is implemented by the ALEService EJB component.

Once the server is started, the WSDL can be accessed via:

http://<server_name>:8080/ale-ws/aleservice?wsdl

The following operations are supported:

• define(specName:string, spec:ECSpec) : void
• undefined(specName:string) : void
• getECSpec(specName:string) : ECSpec
• getECSpecNames() : List
• subscribe(specName:string, notificationURI:string) : void
• unsubscribe(specName:string, notificationURI:string) : void
• poll(specName:string) : ECReports
• getSubscribers(specName:String) : List
• getStandardVersion() : string
• immediate(spec:ECSpec) : ECReports
• getVendorVersion() : string

The details of the operation can be found in ALE specification Section 8.1.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 25

8.1.2 Tag Data Service Interfaces

These are CUHK’s extensions to the middleware standard interfaces to support tag data reads
and writes. The server side of the interfaces is implemented by the TagDataService EJB
component.

Once the server is started, the WSDL can be accessed via:

http://<server_name>:8080/ale-ws/aletagdata?wsdl

The following operations are supported:
- readData(data:DataSpec) : byte[]
- writeData(data:DataSpec) : int

DataSpec is the key to support tag data services. DataSpec is a data structure which contains tag
id, format id, data address, data length, and data bytes. The format id is an integer dictating the
addressing scheme to be used. The value of 0 represents byte addressing, which is the simplest
addressing scheme that every byte has its own address. The value of 1 represents page
addressing, which the data memory is addressable by using page number, and reads and writes
always start from a page.

byte[] readData(DataSpec data)

Based on the data (DataSpec), the function gets a list of reader ids which has read the tag id
within a predefined time period (default is 10s). With the reader id list, the server activates all the
readers by sending the read tag command to the readers, for that particular read id, and data
address, data length, and format id. The first reader replied to the query is considered as a tag
read hit, and the result will be return to the function callee.

int writeData(DataSpec data)

The write-into-tag operation can be time consuming and unreliable. Therefore, we separate the
request and response in two asynchronous messages.

The application user starts by issuing writeData function call via SOAP. TagDataServiceBean
then takes this request, and it will locate the related readers via TagDataServiceDAOImpl.
TagDataServiceBean will locate the list of readers, and generate a GUID (global unique identifier)
for this particular request.

With the GUID, TagDataServiceBean registers for a callback, TagDataServiceCallback. Later
ReaderManagerBean will use this callback to notify the write-into-tag result.

At the same time, TagDataServiceBean send the TagWriteActivateRequest to an internal
queuing module, which will asynchronously send the write-into-tag request together with GUID to
all reader adaptors.

Once a tag write is successful, the reader adaptor will send a response with the GUID to
ReaderManagerBean, which in turns will use the predefined callback corresponding to the GUID.
TagDataServiceBean will be notified, and return the result to the function callee.

Returns

 0 : success
-1 : other failures
-2 : no readers access to the tag

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 26

8.2 Middleware to Application Interfaces

The communication from middleware to the application follows the standard notification
mechanisms, as described in the Section 9 of ALE specification. The middleware supports the
HTTP, TCP and FILE notifications.

8.3 Adaptor to Middleware Interfaces

These are the interfaces between the ReaderAdaptor and the ReaderManager component in the
middleware. The ReaderManager is implemented as a stateless session bean using EJB. The
ReaderAdaptor should be implemented as an EJB client using the exported library
adaptor-client.jar. The protocol in between is RMI/JRMP.

The following methods are defined.

public void submitALEPhysicalReaderInfo(String readerID, PhysicalReaderInfo
physicalReaderInfo) throws Exception

The adaptor uses this method to submit to the ALE the connected hardware reader’s information.
Since the physical reader must be defined in the ALE before the adaptor can submit tags to ALE,
the adaptor should call this method to do reader registration on the first time connecting to the
server. This method can be also be used to update the reader information in the ALE, by doing
another submission to an already-defined reader. The PhysicalReaderInfo is a class with the
following attributes: manufacturer, model and IP address.

public void submitALETags(String readerID, List<String> tags) throws Exception

This adaptor uses this method to submit the tags read in every read cycle to ALE. The
ReaderAdaptor should call this method regularly (i.e. at a particular frequency) to submit tags to
the server. In a read cycle, the tags submitted should be distinct without duplicates and in the
"Tag URI" format defined EPCGlobal Tag Data Specification (e.g. "urn:epc:tag:gid-96:21.300.1").
An exception would be thrown if the readerID is not yet defined in the ALE.

public void submitReadData(String readerID, int status, byte[] data, String guid)

This adaptor uses this method to submit the tag data that the reader has been requested to read.
In a tag-read cycle, commands are sent to reader from middleware to read tag data stored in a
particular tag in a particular reader. Since the command is an asynchronous call, the
submitReadData method is used as a callback for the reader adaptor to communicate with the
middleware for the data read.

public void submitWriteData(String readerID, int status, String guid)

This adaptor uses this method to submit the tag-data-write status that the reader has been
requested to write. In a tag-write cycle, commands are sent to reader from middleware to write
tag data to in a particular tag in a particular reader. Since the command is an asynchronous call,
the submitWriteData method is used as a callback for the reader adaptor to communicate with the
middleware for the status of the tag-write.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 27

8.4 Middleware to Adaptor Interfaces

public void read(String readerID, String tagID, DataSpec spec, String guid) throws
RemoteException

The middleware uses this method to request the adaptor to read user data from the physical tag.

public void write(String readerID, String tagID, DataSpec spec, String guid) throws
RemoteException

The middleware uses this method to request the adaptor to write user data to the physical tag.

8.5 Interfaces between Middleware and Management Console

There is no specific interface between the middleware and the management console. Indeed, the
management console manipulates the middleware database directly, so as to perform operations
such as adding readers, viewing connection diagrams, etc.

The management console accesses the database using the user ‘rfidmc’. The default is to grant
all the privileges to this user in localhost access with password ‘rfidmc’:

GRANT ALL ON aledb.* TO 'rfidmc' identified by 'rfidmc';
GRANT ALL ON aledb.* TO 'rfidmc'@127.0.0.1 identified by 'rfidmc';

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 28

9 Implementation View

9.1 Platform Considerations

Among many available platform products in the market, MySQL and JBoss are selected for the
implementation. This section describes the reasons of using these platforms briefly.

9.1.1 MySQL

MySQL is the world's most popular open-source database. Its advantages include fast
performance, high reliability, high usability and high quality technical support.

MySQL has a good support for different OS, such as Windows, Linux, HP-UX, AIX, etc. Moreover,
it also support common database APIs such as ODBC and JDBC which ease the development
tasks.

According to a real case study on Friendster, MySQL works smoothly with data of total size over
7TB, 100 millions of row, without service degrading. Considering the fact that middleware should
be of much less scale than the above, the use of MySQL is a feasible solution.

9.1.2 Jboss

JBoss (AS) is the world's most widely used Java Application server. It is an open-source (GPL)
J2EE certified platform, which is widely supported by the community developers.

JBoss provides a wide range of J2EE features, which may be missing in other well known J2EE
platform, such as cluster, caching and persistence. Also, it is one of the first industrial-grade Java
application servers that support J2EE 5.0 and EJB 3.0.

Considering performance, one of the useful benchmark could be found in
http://jbento.oscj.net/httpsession2.html. In the benchmark the capability of thread handling, which
is an essential part of application server, is measured. JBoss runs with less than 25% CPU
utilization, more than 250 tps throughput, less than 10ms response time, with 250 clients
collected.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 29

9.2 Class Diagram

The overall categorization of classes is discussed in the Package Diagram section in
Development View. Here the methods and properties of the classes within the packages are
shown in details.

Classes that are added by CUHK to support the ALE implementation are described in the
following sections. For details of ALE standard classes, please refer to ALE specification.

9.2.1 cuhk.ale

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 30

CustomDatatypeConverter – utility class to support JAX-WS conversion so the date time
specified in the schema can be converted properly into proper Java Date class.

ECSpecEventCallback – call back methods to support ALE service bean's immediate and poll
method

ECSpecState – represents the possible states of the ECSpec: Unrequested, Requested, Active.

ECSpecValidator – to validate ECSpec

ECTag – tags received and processed in the middleware

EventCycle – the event cycle of the ECSpec

Grammar – utility class that contains all the regular expressions necessary to validate the tag
formats

NotifyRequest – internal class to support ECReports notification

PatternURI – encapsulate the EPCGlobal’s Pattern URI attributes and methods

PhysicalReader – represents a physical tag reader

PhysicalReaderInfo - for use in submitALEReaderInfo in ReaderManager

TagDataServiceCallback – call back class to support CUHK specific tag data read/write

TagWriteActivateRequest – internal class to support asynchronous tag write request

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 31

9.2.1.1 cuhk.ale.client

ReaderEmulator – reader emulator client

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 32

9.2.1.2 cuhk.ale.dao

ECSpecInstanceDAOImpl – DAO implementation for manipulating ECSpecInstance and
SpecURLs

ReaderManagerDAOImpl – DAO implementation of the ReaderManager, which is responsible
manipulating tag events, reader registration, etc

ReportGeneratorDAOImpl – DAO implementation to support for the ReportGenerator which is
responsible for resolving logical to physical reader mapping, gathering tag events between event
cycle, etc

TagDataServiceDAOImpl – DAO implementation to support CUHK specific tag data read/write

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 33

9.2.1.3 cuhk.ale.ejb

ALEServiceBean – as described in the previous sections

ECSpecInstanceBean – as described in the previous sections

NotifierBean – as described in the previous sections

ReaderManagerBean – as described in the previous sections

ReportGeneratorBean – as described in the previous sections

TagDataServiceBean – as described in the previous sections

TagWriteActivatorBean – as described in the previous sections

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 34

9.2.1.4 cuhk.ale.ejb.interfaces

This package contains the home interfaces, remote interfaces and utility classes to support the
EJB life cycles.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 35

9.2.1.5 cuhk.ale.exceptions

ALEException – exception occurred in the middleware; the ancestor of other exceptions occurred
in the middleware

DuplicateNameException – exception representing the specified ECSpec name already exists

DuplicateSubscriptionException – exception representing the specified ECSpec name and
subscriber URI is identical to a previous subscription that was created and not yet unsubscribed

ECSpecInvalidStateException – exception representing the ECSpec has entered into an invalid
state

ECSpecOptimisticLockException – exception representing unexpected locking problem of
ECSpec in the middleware

ECSpecValidationException – exception representing the specified ECSpec is invalid

ImplementationException – a generic exception thrown by the implementation for reasons that
are implementation-specific

ImplementationExceptionSeverity – an enumeration whose values are either ERROR or
SEVERE, used in the ImplementationException

InvalidURIException – exception representing the URI specified for a subscriber cannot be
parsed

NoSuchNameException – exception representing the specified ECSpec name does not exist

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 36

NoSuchSubscriberException – exception representing the specified subscriber does not exist

ParseURIException – exception representing errors in parsing the tag URI

SecurityException – exception representing the operation was not permitted due to an access
control violation or other security concern

9.2.1.6 cuhk.ale.soap

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 37

9.2.1.7 cuhk.ale.soap.server

ALEServiceImpl – end point implementation for the ALE web service

TagDataServiceImpl – end point implementation for the CUHK specific tag data service

9.2.1.8 cuhk.ale.soap.util

ExceptionObjectFactory – a factory for generating exceptions used in the web services

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 38

9.2.1.9 cuhk_ale_valueobjects

ECSpecInstanceValue – class used to represent the state of an ECSpecInstance object. This
value object is not connected to the database in any way. It is just a normal object used as a
container for data from an EJB.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 39

9.2.2 epcglobal.ale

For those standard classes defined in the ALE specification, please refer to the specification for details.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 40

9.2.2.1 epcglobal.ale.soap

Classes automatically generated by the JAX-WS from the ALE web services schema.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 41

9.3 Collaboration Diagram

Here the collaboration diagrams of the main ALE API operations, together with the CUHK
extended tag data reading and writing are shown. The major entities involved in each operation
are depicted.

We will have a more detailed explanation for the ‘define’ operation. The entities and procedures
involved are also similar for other operations, as they follow the EJB standard invocation
procedures.

9.3.1 Define

The application starts invoking business logic remotely through SOAP by using ALEServiceImpl.
The ALEServiceImpl is a class implementing the web services server processes and provides the
entry points for all the standard ALE operations such as ‘define’, ‘subscribe’, etc.

The ALEServiceImpl class then gets the home interface (ALEServiceLocalHome) of the
ALEServiceBean through the ALEServiceUtil class. Through the home interface, the
ALEServiceImpl then creates an instance of the ALEServiceBean session bean and then access
the bean through the local interface ALEServiceLocal. With the local interface, the
ALEServiceImpl can access to the business methods exposed by the bean.

The ‘define’ operation creates an ECSpec in the middleware. First the ECSpec is validated
through ECSpecValidator and then the ALEServiceBean will create another instance of entity
bean (ECSpecInstanceBean) to store the ECSpec. The procedures underway are similar as
before and involve the use of utility and home interface classes.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 42

9.3.2 Undefine

Internal flows are similar to the ‘define’ operation.

9.3.3 GetECSpec

Internal flows are similar to the ‘define’ operation.

9.3.4 GetECSpecNames

Internal flows are similar to the ‘define’ operation.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 43

9.3.5 Subscribe

In the ‘subscribe’ operation, ALEServiceBean will register for timer events through TimerSerivce
so as to provide time-based event triggering. For each event cycle, the ReportGenerator is
triggered to provide notifications to the subscribers.

Internal flows are similar to the ‘define’ operation.

9.3.6 Unsubscribe

Internal flows are similar to the ‘define’ operation.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 44

9.3.7 Poll

The poll call is implemented as subscribing and then unsubscribing immediately after one event
cycle is generated except that results are returned from poll instead of being sent to a
notifcationURI.

9.3.8 Immeidate

The immediate call is implemented as defining an ECSpec, performing a single poll operation and
then undefining it.

9.3.9 getSubscribers

Internal flows are similar to the ‘define’ operation.

9.3.10 getStandardVersion

Internal flows are similar to the ‘define’ operation.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 45

getVendorVersion

Internal flows are similar to the ‘define’ operation.

9.3.11 Tag Data Read/Write

Here, the application uses TagDataServiceImpl instead of ALEServiceImpl.

The TagDataServiceImpl is a class implementing the web services server processes and
provides the entry points for all the CUHK extended operations such as tag data read and write.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 46

9.4 Package Diagram

The middleware is developed into 2 Java packages: cuhk and epcglobal.

9.4.1 cuhk

9.4.1.1 cuhk.ale

The “cuhk” package only contains the “ale” package and it consists of the cuhk implementation of
the middleware, some supporting classes, and utilities.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 47

These are packages inside cuhk.ale:

� cuhk.ale.client: clients of the middleware, which are considered to be an integral part of
the middleware solution, for example, Reader Emulator, are placed here.

� cuhk.ale.dao: contains Data Access Objects, which are responsible for database storage

and retrieval of data.

� cuhk.ale.ejb: the core of the middleware is implemented using J2EE technology, and is
realized as different kinds of beans: session, entity, and message. They will be discussed
in details in the Logical View section of the document.

� cuhk.ale.exceptions: exceptions in the middleware.

� cuhk.ale.soap: contains the implementation classes for the soap connectivity of the

middleware.

� cuhk.ale.valueobjects: contains object used as a container for data in EJB, and the data
stored is not connected to database.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 48

9.4.2 epcglobal

9.4.2.1 epcglobal.ale

The “epcglobal” package also only contains the “ale” package and it consists of the classes
defined by the EPCGlobal, which are the key data components of the middleware.

These are packages inside epcglobal.ale:

� epcglobal.ale.soap: contains the classes for the data exchange for the soap connectivity
of the middleware

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 49

10 Deployment View

10.1 Environment

10.1.1 Setup

Our standard development environments are:

� Eclipse 3.1 + JBossIDE 1.5 (the IDE for development)
� Apache Ant 1.6.5 (a software tool for automating software build processes)
� JBoss 4.0.4 GA (an open source J2EE application server)
� Java Development Kit (JDK) 1.5 (for the Java development)
� Java API for XML Web Services (JAX-WS) 2.0 (library for Java Web Services)
� MySQL 5.0 (the database)
� XDoclet 1.2.3 with XJavaDoc 1.5 (for attribute-oriented code generation)
� JDBC Library 3.1 for MySQL (for database connectivity)
� Log4j 1.2.14 (a Java based logging utility)

And make sure the following environment variables are set:

� ANT_HOME
� JAVA_HOME
� JAXWS_HOME
� JBOSS_HOME
� JUNIT_HOME
� XDOCLET_HOME
� JUNIT_HOME
� LOG4J_HOME

10.1.2 Build Procedures

Check out all the codes and binaries, the required procedures are listed as below:

� Clean all code: run “ant clean“
� Configure the environment: run “ant configure”
� Generate all source codes: run “ant gen-src”
� Generate the Java Documentation: run “ant javadoc”
� EJB jar building: run “ant package-ejb“
� WAR jar building: run “ant package-war”
� EAR jar building: run “ant package-ear”
� SOAP library jar building: run “ant package-soap“
� ECSpec Editor building: run “ant package-editor“
� Reader Emulator building: run “ant package-emulator”

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 50

10.1.3 Deployment Procedures

The web services artefacts are packaged in the WAR file with the WSDL definitions, schema
documents and the endpoint implementation. The WAR file is served by the Tomcat inside JBoss.
It acts as the middleman between the EJB components and the SOAP client as the endpoint
implementation will call ALE EJB services internally. Therefore, the WAR and the EJB files are
packaged into an EAR file, as a J2EE application. And the resulting EAR file can be deployed to
JBoss.

The compiled and built packages are stored under the bin folder in the project directory:

� bin/lib/ale.ear (middleware service)
� bin/lib/adaptor-client.jar (library files for adaptor client)
� bin/lib/ale-soap.jar (library files for ALE SOAP client)

For deployment of middleware, copy ale.ear to JBoss, under

� $JBOSS_HOME\server\ale\deploy

For adaptor to ALE interfacing, copy the adaptor-client.jar to the classpath of the adaptor, see
also Adaptor to ALE interface in Process View.

For application to ALE interfacing, copy the ale-soap.jar to the classpath of the application, see
also SOAP Application APIs in Process View

10.1.4 Logging

All middleware logs are stored in {jboss.home}\server\ale\log\.

The adaptor*.log stores all logs related to the adaptor operations. The server*.log stores all logs
related to the internal processing of the middleware.

Daily log rotation is enabled with pattern yyyy-MM-dd which rollover at midnight of each day.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 51

11 Data View

The middleware gets tag data using a reader list which is populated from the logical to physical
reader mapping, giving a list of logical reader IDs. There is on/off settings for both logical and
physical readers, indicated by the ‘suppress’ flag. There may be case that the logical reader list
specified by the user results in a list of all suppressed readers. In this case, the tag read in the
event cycle will be empty.

11.1 Table LOGICALREADER

The LOGICALREADER table is storing logical readers defined in the middleware.

Column name Type Description

logicalreader_id * varchar The ID of the logical reader

suppress boolean // 0=reader on; 1=reader off

Primary Key: logicalreader_id

11.2 Table READER

The READER table is storing hardware reader information defined in the middleware.

Column name Type Description

reader_id * varchar The ID of the reader

suppress boolean // 0=reader on; 1=reader off

manufacturer varchar The name of the manufacturer

model varchar The model of the reader

ipaddress varchar The IP address of the reader

Primary Key: reader_id

11.3 Table READERMAPPING

The READERMAPPING table stores the mapping between logical readers and hardware
readers.

Column name Type Description

logicalreader_id * varchar The ID of the logical reader

reader_id * varchar The ID of the reader

Primary Key: logicalreader_id, reader_id
Foreign Key: logicalreader_id (of LOGICALREADER), reader_id (of READER)

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 52

11.4 Table ECSPECINSTANCE

The ECSPECINSTANCE table is for manipulation of ECSpec via a J2EE entity bean.

Column name Type Description

specName * varchar The ECSpec name defined.

state Int The current state of ecspec

stateVersion int (internal) optimistic locking state.

previousStartTime bigint Start time for the previous event cycle

previousEndTime bigint End time for the previous event cycle

startTime bigint Start time for the current event cycle

specXML blob Normalized ECSpec XML in raw format

Primary Key: specName

Note:

1. This table should be only modified by JBoss application server.
2. Other field inside the table but not listed here are for internal debugging purpose.

11.5 Table SPECURLS

The SPECURLS table is for storing notification URLs. It is of a 1:M mapping with the
ECSPECINSTANCE table.

Column name Type Description

specName * varchar The ECSpec name for the notification url.

NotificationUrl varchar The notification url.

Foreign Key: specName (of ECSPECINSTANCE)

Note:

1. This table should be only modified by JBoss application server.

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 53

11.6 Table READ_EVENT

The READ_EVENT table records the event received from the hardware reader in each read
cycle.

Column name Type Description

event_id * bigint Auto-generated id for the event

reader_id varchar The id of the hardware reader

timestamp datetime Timestamp for the event received

Primary Key: event_id
Foreign Key: reader_id (of READER)

11.7 Table READ_TAG
 The READ_TAG table stores the tags received from the hardware reader in a event.

Column name Type Description

event_id * bigint Auto-generated id for the event

tag_id varchar Tag ID in EPCGlobal Tag URI format

Primary Key: event_id, tag_id
Foreign Key: event_id (of READ_EVENT)

CUHK RFID Middleware - System Design Document

Version 1.0, 10 August 2007 Page 54

12 System Properties

The CUHK RFID middleware is based on J2EE technologies and leverages many of its important
qualities.

12.1 Extensibility

The system is built around a modular architecture. All the core functionalities of the system are
built as EJB components, e.g. ReportGenerator as a stateless session bean, ECSpecInstance as
an entity bean. New features can be added to the system by writing new beans, without rewriting
existing pieces; and existing pieces can be modified to fit changing needs quickly and efficiently.

12.2 Scalability

Clustering allows one to add more server hardware to handle more requests and is important for
high traffic applications. Our system is configured and deployed on JBoss, which comes with
clustering support and its support is transparent to applications. This means the system can be
setup to run in a cluster by changing a few configurations, without changing the programming
codes. By making such configurations, those server instances can detect each other and
automatically form a cluster.

12.3 Portability

The whole system is developed in Java, and can be run on different types of machines without
changes, such as recompilation or tweaks to the source codes. And the MySQL database that we
are using is also available in major platforms, such as Windows, Linux, Solaris, FreeBSD, Mac
OS, etc. Therefore, the whole RFID system setup is portable across platforms.

12.4 Reliability

The system can be configured to run on several parallel servers as cluster nodes. The load is
distributed across different servers, and even if any of the servers fails, the application is still
accessible via other cluster nodes. This makes the system fail-safe.

The system is also configured with a persistence setup, which means that even the JBoss
application server is stopped manually; a restart of the server will resume all the working state of
the system without any failures.

