Large Scale Keyword Extraction
using a Finite State Backend

Milo$ Jakubitek!2, Pavel Smerk?

INatural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanicka 68a, 602 00 Brno, Czech Republic

{jak, smerk}@fi.muni.cz

?Lexical Computing
Brighton, United Kingdom and Brno, Czech Republic
{milos.jakubicek}@sketchengine.co.uk

Abstract. We present a novel method for performing fast keyword ex-
traction from large text corpora using a finite state backend. The FSA3
package has been adopted for this purposes. We outline the basic ap-
proach and present a comparison with previous hash-based method as
used in Sketch Engine.

Key words: terminology extraction, keyword extraction, fsa, Sketch En-
gine

1 Introduction

In this paper we focus on the keyword (and terminology, as explained later)
extraction task when solved using a system with a contrastive approach, such
as the Sketch Engine corpus management system [1]. In this case, the input
for this task consists of two arbitrary corpora: a focus corpus from which the
keywords should be extracted, and a reference corpus that the term candidates
from the focus corpus are contrasted with.

The keyword candidates come from different sources, but in the end
the procedure always boils down to a very costly operation of matching
all keyword candidates in the focus and reference corpus. While individual
corpora are indexed in a database that assigns unique numeric identifiers to
each string, hence intra-corpus processing operates on numbers and not strings,
inter-corpus processing cannot take of this advantage and the any kind of
pre-indexing (e.g. of particular corpus pairs) is not very flexible as systems
like Sketch Engine deal with thousands of corpora, and the term extraction
functionality is often used with user corpora built on-demand.

To speed up the process of string comparison, we present an approach that
builds on intersecting two finite state automata. We show that this approach is
more efficient both in space and time. We describe both the old method used
in Sketch Engine and this new one and conclude by a comparison on a set of
scenarios.

Ale$ Horék, Pavel Rychly, Adam Rambousek (Eds.): Proceedings of Recent Advances in Slavonic Natural
Language Processing, RASLAN 2016, pp. 143-146, 2016. © Tribun EU 2016

144 M. Jakubitek and P. Smerk

2 Keyword Extraction in Sketch Engine

Sketch Engine contains a keyword and terminology extraction module [2] using
a contrastive approach to find term candidates. Two corpora are given as input
to the term extraction: a focus corpus consisting from texts in the target domain,
and a (ideally very big) reference corpus which the focus corpus is compared
to. Sketch Engine currently contains reference corpora for over 80 languages.
The elementary units for the extraction can be one of the following three:

1. positional attributes in the corpus, such as word forms, lemmas or part-of-
speech tags,

2. terms as identified by the language-specific term grammars, e.g. noun
phrases,

3. collocation lists represented by triples of (headword, relation, collocate) as
derived from the word sketches.

In each case the system first extract all candidates from the focus corpus so
as to be able to compare their relative frequencies (or other statistic) with the
reference corpus.

2.1 Previous approach

The previous approach as used in Sketch Engine was based on a string-to-string
comparison in the case of positional attributes, and comparison of pre-indexed
fixed-length string hashes in the case of term and collocation lists. Especially
the latter case suffered from a number of deficiencies:

- pre-indexing of string hashes was costly both in space and time. E.g. for
a English corpus enTenTen12 [3] which has almost 13 billion words, the
collocation list hashes occupies 2.2 GB (each hash being a 64bit binary). This
is a problem especially with a cold disk cache when the whole file needs to
be read into the memory for any comparisons.

- even the comparison of hashes took a long time (e.g. the comparison of the
collocation list between the British National Corpus [4] and the enTenTen12

still took about 2 minutes with a cold disk cache, and about 13 seconds with
hot disk cache.)

2.2 Finite-state based approach

To overcome the disadvantages described above we have designed a new
method based on finite state automata (FSA). Instead of pre-indexing any
hashes, for all the three source types we pre-index a minimal FSA containing
all the strings. We use the FSA3 package! which can efficiently build a minimal
FSA and provides a string-to-number and number-to-string mapping of each

1 See nttp://corpus.tools.

Large Scale Keyword Extraction using a Finite State Backend 145

stored string (where the numbering corresponds to enumeration of all strings
sorted lexicographically).

Initial experiments with FSA-based string-to-number and number-to-string
mappings were described in [5]. The FSA3 package is inspired by the tools for
automata generation and minimization developed by Daciuk [6]. Alongside of
the development described below, we have significantly improved compile-
time performance of the FSA3 package which is now about 10 times faster
compared to what was provided in [5] and has linear complexity with regard
to the input data size. While the compile-time performance is not crucial for
the keyword extraction task (where the compilation is performed only once
per corpus) it is an important aspect for other tasks where automata need to
be often recreated. A detailed report on all findings relevant to the automata
compilation and minimization will be provided in a separate paper.

We have extended the FSA3 package by the intersect operation on two
automata (denoted as FSA1 and FSA;), which can:

1. output all strings present in both FSA; and FSA; together with their respec-
tive numeric IDs in both automata (we call this an intersect operation).

2. output all strings present in FSA; with matching numeric IDs or just the
ID from FSA; where the string was not present FSA; (we call this a left
intersect operation).

The left intersect operation allows these automata to be directly exploited
in the keyword extraction task so as to obtain a list of matching strings and
IDs which can be used to retrieve pre-indexed frequencies from the individual
corpora (where the string is present only in FSA;, the frequency in FSA; is
obviously zero).

3 Evaluation

We have conducted a number of comparisons of the hash-based and finite-
state based approach using different usage scenarios and string sources. For the
evaluation we used three corpora: the BNC (100 million words), the enTenTen12
(13 billion words) and enTenTen15 (30 billion words).

All results are summarized in Table 1.

The evaluation shows that the FSA-based approach is faster for all hot-
cache scenarios. The slowdown for the cold-cache scenario was, after a detailed
inspection, caused by the fact that the hash indices stored far less amount of
data (ca 250 MB) because of filtering out items with frequency lower than 1 per
billion words. Therefore, this comparison cannot be seen as representative.

4 Conclusions

In this paper we have presented a novel method for extracting keywords from
very large (billion word) corpora that is based on finite-state machines. The

146 M. Jakubitek and P. Smerk

Table 1: Evaluation of hash-based and FSA-based keyword extraction

string corpus; corpus; FSA; FSA; page timey., time;,q, speedup
source size size cache

lemma BNC enTenTenl5 556k 26,426k cold 80.2s 51.4s 1.56x
items items
4MB 340 MB

hot 6.3s 0.7s 9x

term Brown enTenTenl2 320k 164,189k cold 1mlls 2m10.2s 0.54x
list family items items
4MB 2GB

hot 4s 1.2s 3.3x

evaluation shows promising results so that the method is going to be adopted
for the Sketch Engine corpus management system so as to be able to carry out
practical results from a production environment.

Acknowledgments. The research leading to these results has received funding
from the Norwegian Financial Mechanism 2009-2014 and the Ministry of
Education, Youth and Sports under Project Contract no. MSMT-28477/2014
within the HaBiT Project 7F14047.

References

1. Kilgarriff, A., Baisa, V., Busta, J., Jakubicek, M., Kovaft, V., Michelfeit, J., Rychly, P,
Suchomel, V.: The Sketch Engine: ten years on. Lexicography 1 (2014)

2. Kilgarriff, A., Jakubi¢ek, M., Kovét, V., Rychly, P., Suchomel, V.: Finding terms in
corpora for many languages with the Sketch Engine. EACL 2014 (2014) 53

3. Jakubicek, M., Kilgarriff, A., Kovéf, V., Rychly, P, Suchomel, V.: The TenTen Corpus
Family. International Conference on Corpus Linguistics, Lancaster (2013)

4. Leech, G.: 100 million words of English: the British National Corpus (BNC).
Language Research 28(1) (1992) 1-13

5. Jakubicek, M., Rychly, P, Smerk, P.: Fast construction of a word-number index for
large data. RASLAN 2013 Recent Advances in Slavonic Natural Language Processing
(2013) 63

6. Daciuk, J., Weiss, D.: Smaller representation of finite state automata. Theoretical
Computer Science 450 (2012) 10-21

