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It’s easy to solve the halting problem with a shotgun. :-)
[LARRY WALL,“<199801151836.KAA14656@wall.org>"]

Prepared with a heavily used copy of Abramowitz&Stegun, a painfully
slow internet connection, a freshly decalcified coffee machine with several pounds
of carefully grained beans in slightly smeary de-aired packages and a well
cleaned mug with dirty pictures inside. ..



Introduction

Nec sic incipies, ut scriptor cyclicus olim:

“Fortunam Priami cantabo et nobile bellu”.

Quid dignum tanto feret hic promissor hiatu?

Parturient montes, nascetur ridiculus mus."

[QUINTUS HORATIUS FLACCUS,”“De Arte Poetica”, 138]

The documentation of the functions is sparse, it rarely describes the algo-
rithms used, only the usage of the functions. These notes are meant to fill the
gap and describe the underlying algorithms formally. Normal mathematic ex-
pressions have been used most of the time, but the three or four string functions
need more legibility and are described in Z2.

Additionally some real world examples are given together with some code
listings®.

Please be aware that the algorithms listed here are the algorithms used in
the program and are not necessarily the same as in your textbooks! The al-
gorithms in these textbooks have educational purpose and are build with a
pedagogical goal in mind*. The algorithms here have been chosen to give a
numerical result with a certain precision and moreso with respect to the special
intricacies of a modern computer and ECMA-script[46] and the many different
implementations of them.

Some algorithms can be implemented verbatim like Heron’s formula for
the area of a triangle

(a+b+c)la+b—c)b+c—a)(c+a—D)
4

A=

@

Be not your opening fierce, in accents bold,
Like the rude ballad-monger’s chaunt of old;
“The fall of Priam, the great Trojan King!
Of the right noble Trojan War, I sing!”
Where ends this Boaster, who, with voice of thunder,
Wakes Expectation, all agape with wonder?
The mountains labour! hush’d are all the spheres!
And, oh ridiculous! a mouse appears.
(Translation by George Colman, London, 1783)
ZRules are from J. M. Spivey’s book[100] but will be changed to rules according to the standard
ISO/IEC 13568:2002 [47] in the near future.
3Exempla sunt odiosa said Schopenhauer, so don’t expect too many of such gems.
4 At least they say so when they apply for government subsidies.

10



Introduction Introduction

This is implemented as

N
1| Math. triangleAreaHeron = function(a,b,c){
2 var one = a+b+c;
3 var two = atb—c;
4 var three = b+c-a;
5 var four = c+a-b;
6 return (onextwoxthreexfour) /4;
7|}
Y,

The formula has been parted for better legibility but it is the verbatim transla-
tion of Heron’s formula to ECMA-script.

On the other side there are some occasions where a literal translation is not
possible or not optimal. The former holds for every function of the real line
or above if we assume the the number of possible steps of a Turing machine
is at most countable. The latter is the case in the implementation of the partial
harmonic function H} for example

"1
Hy=) = 2
i+1

This formula works well for small n up to about 1000 but for larger values of
n the naive algorithm loses a lot of precision because of the division of 1 by
more and more larger numbers. The individual losses at every division step
accumulates. Only slowly, but they add up until the point where a simple
asymptotic series not only suffices but is also more precise.

Christoph Zurnieden

PRAGMATIC MATHEMATICAL SERVICE 11



Chapter 1

Special Data Types

1.1 Matrix

The Matrix class handles dense complex matrices numerically. Several oper-
ations are implemented. The basic operations are described in chapter 3.1 and
the operations for linear algebra in chapter 5.

1.1.1 Usage of the Class
Instantiation

A new matrix can be installed by generating a new instance of the Matrix
class or via a specially formated string. The Matr ix class offers several special
matrixes and suffers a bit from featuritis bombasti but is nevertheless still useful.
The format of the string to build a matrix might be familiar to some.

-

var s
var m

[N}

"11a+2.2.31,34241;2.+.0.11,-9.~.-9i]";
s.parseMatrix() ;

The lines above produce the following 2 x 2 matrix

14234 3+ 44
24018 —-9——-%

The individual elements a;; of the matrix can be reached directly. The only
difference is that the counting starts at 0. To get the element a3; the following
lines are necessary.

var s = "[1.+.2.31,3.+.41;2.+.0.11,-9.—-.-91]";
var m = s.parseMatrix();
alert(m.a[1][1]); // gives "—9 — —9i”

-

)

(5}

The special matrices offered are (all values are complex numbers, imaginary
parts are omitted if they are 0):

12



Chapter 1. Special Data Types 1.1. Matrix

e The identity matrix I, is a n X n matrix with the entries in the main diag-
onal set to 1 and 0 otherwise.

1 0 0

01 0
I, = .

0 0 1

o The exchange matrix E, is the n x n identity matrix rotated —% (90 de-
grees counter-clockwise)

0 ... 01
0 1 0
En= .
00
1 00

e The Hilbert matrix H, is a n X n matrix constructed with the formula
1
a

CARCEYES)
r 1 1 1 7
1+1-1 1+2-1) 77 (1+n-1
( ! ) ( 2 ) ( " )
H,=|(2+1-1) (2+2-1) = (2+n-1)
1 1 ' 1
l(n+1-1) (n+2-1) " (n+n-1)]

o The Lehmer matrix L,, is a n X n matrix constructed with the formula

Loz
a; ="
% otherwise
e The upper shift matrix Uy, is a n x n matrix with the superdiagonal set to
1.
0100
0 010
Ui=lo 0 0 1
0 00O
e The lower shift matrix U, is a n x n matrix with the subdiagonal set to 1.
0 000
1 000
La=1o 1 0 0
0010

PRAGMATIC MATHEMATICAL SERVICE 13



1.2. Complex Chapter 1. Special Data Types

e The “empty” matrix () is a 2x2 matrix with all elements set to Number .NaN
except a2 which is set to the string ""empty"’

Number .NaN Number.NaN

0= |Number . NaN "empty"

e The zero matrix is a n X n matrix with all elements set to 0 + 0z

1.2 Complex

1.21 =

The Complex class handles the complex numbers numerically. Because the
real numbers are a proper subset of the complex numbers the complex set is
also called the complex plane.

P ‘b= sn®

Figure 1.1: z = a + bi = pe®’

One of the complex numbers is the number ¢ which is the solution to i? =
—1!. The most common notation of a complex number z with a real part Rz = a
and an imaginary part of Sz = bis z = (a + bi). This is the vector from
(0,0) to (a, b) on the plane. These Cartesian coordinates can also be represented
as polar coordinates (p,§) where p is the distance from the origin and 6 the
angle between the vector and the x-axis. The common notation is pe?!. From
the identity e® = cosz + isinz follows that a direct conversion between the
Cartesian and the polar form of a complex number z is possible with

Rz = pcosb (1.1)
Sz = psinf
Both forms have their pros and cons but generally the Cartesian form is more
usefully for addition and the polar form for multiplication. The polar form is

used only internally in this program; the notation used for in- and output is the
Cartesian form (z + y1).

1t is not defined as i = sqrt—1 even if that might seem logic.

14 PRAGMATIC MATHEMATICAL SERVICE



Chapter 1. Special Data Types 1.3. Vector

Two conversion functions are implemented to convert the different forms
back and forth, namely pol2cart to convert form polar form to Cartesian
form and cart2pol for the other direction. Polar to Cartesian (pol2cart)

Rz = pcosl (1.2)
Sz = psinf
Cartesian to polar (cart2pol)
Rz = |7| (1.3)
Sz = atan2(Sz, Rz)
Because the real line is a proper subset of the complex plane all complex
operations are mere extensions to the operations on real numbers and thus can
be used as such if the imaginary part is zero. This is usefully for operations

that are not defined for any real number but for complex ones (for example
with some inputs to Math.asin()).

1.2.2 Usage of the Class
Instantiation

A new complex number can be installed by generating a new instance of the
Complex class. The following lines produce complex numbers, all of the same
value 0 + 0i:

~

1| var i = new Complex() ;

2| var j = new Complex(0,0);

3| var n = 0;

4| var k = n.toComplex() ;

5| var 1 = n.toComplex(0);

s var s = "0.+.01";

7| var m = s.toComplex() ;

Y

1.3 Vector

The Vector class handles complex vectors numerically.

PRAGMATIC MATHEMATICAL SERVICE 15



Chapter 2

Constants

A short list of more or less useful constants is also included. All constants
have been rounded when more than 37 decimal digits were available. Most
of the mathematical constants have been calculated by the author with 100
decimal digits of precision but almost all' can be found on the net. Some of
the constants implemented have been omitted if the source is obvious and the
description in the source-code sufficient. With some exceptions.

2.1 Mathematical Constants

2.1.1 Airy functions

From [1], pp. 446 ff.:

The Airy functions are the solutions to the differential equation
w’" —zw=0 (2.1)
Pairs of linearly independent solutions are

Ai(z), Ai(z) (2.2)

Most probably all, but the author has not looked up all of them, so it has to be “almost all”

16



Chapter 2. Constants 2.1. Mathematical Constants

The ascending series

Ai(z) = c1f(2) — cag9(2)

Ai(z) = V3 (c1 f(2) — c29(2))
f(z):1+%z3+16;!4+ 1';'7

Zi‘fsk(l) z3k
" \3), B!
2, 25, 2:5-8

9(z) =z+ g2+ =2+ =y

B i 3k 2 z3k+1
B 3/, (Bk+1)!

z10+...

2.3)
(2.4)

2.5)

(2.6)

o arbitrary; £ =1,2,3,...

3
Aj
C1 = AI(O) = \1/(5(’))
B g2 (2.7)
r'(%)
!
y = — Ai'(0) = Ai/(;)
B g1 (2.8)
r(3)
2.1.2 Apéry’s Constant (((3))
2.1.3 atans
The arcus tangent function at 3.
The value has been calculated via the continuous fraction
z
atan z = 5 (2.9)
z
1
+ - 422
3+ 97
1622
5+ 22
7
T+

PRAGMATIC MATHEMATICAL SERVICE
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2.1. Mathematical Constants Chapter 2. Constants

Please see the section about trigonometry in section 3.3

2.1.4 Artins Constant

For the description see E. Artin’s collected papers in [6]. A short oversight is at
[117]

M 1
c= H 1- 7‘| i, is the k*® prime (2.10)
priet l Pr (P — 1)

2.1.5 Backhouse’s Constant

Let P(z) be a power series whose coefficients n are the primes p,, and po = 1.

P(z) = Zpkwk keN (2.11)
k=0
=142z 4 322 + 523 + 72 + 1125 + 132% + 1727 - -
Let Q(z) be
1
= 2.12
Q@) = 5y 212)
=> qrz* (2.13)
k=0
=1-20+2% 23422 —32° + 725+ ... (2.14)
N. Backhouse’s conjecture:
B = lim |t (2.15)
n—o0 qn
= 1.4560749. .. (2.16)

2.1.6 Bernstein’s Constant

If E,(f) is the error of the best approximation to a real function f(z) on the
interval [—1, 1] by real polynomials of degree at most n and a(z) = |z| then
Bernstein showed in [11] that

0.267--- < lim nEa,(a) < 0.286. .. (2.17)
n— o0

Many people had refined the underlying theory and augmented the numeric
approximation of the constant 3(%). The number used here has been calculated
on the principles shown in [20](section 2).
Bernstein himself established the upper and lower bounds 25 years later in
[10] as
I['(2a) |sin(ma)|
T

Bla) < for a>0 (2.18)
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T'(2a) |sin(ra)| ( L]
b 2

1
1) < f(a) for a> 3 (2.19)

2.1.7 Brun’s Constant

The sum of the reciprocals of all odd twin-primes.

1 1 1 1 1 1 1 1
B (3o D) (Bod) o (B 2) e (Be B) v
Calculated with the above algorithms with the exception from the general way
insofar that it had been calculated to only 10 decimal digits precision because
the author had no access to the necessary computing power at the time of cal-
culation.
The second constant which is also called Brun’s Constant is based on the

same algorithm as above but over the so called “Cousin Primes” p, p+ 4, so the
above formula can be rewritten as

B — l+i + i_i_i + l+l + i+i
tTA\T T 11 13 17 19 ' 23 37 41

(2.21)
(L L) L1 +
43 47 204 — 2289 264 — 2285 o
The formula above converges very slowly.
2.1.8 Cahen’s Constant
With ay the k™ term of the Sylvester sequence
n—1
en=1+[Jei=€ii—en1+1 (2.22)
i=0
Cahen’s constant is defined in [19] as
_\ (D
C = kzzo p— (2.23)

The constant has been calculated by the formulas given in [95].

2.1.9 Catalan’s Constant

Catalan’s constant is named in honor of E. C. Catalan (1814-1894)[21]. One of
the possible formulas had been given by J. W. L. Glaisher in [34] as

G = i ﬂ (2.24)
£ 2k + 1)? '
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The formula used to compute the numerical approximation was

ngln(2+\/§)+ki K

. PRIk T 1) 225

2.1.10 Champernown’s constant

Champernown’s constant C'is build by concatenating the positive natural inte-
gers. With ® the concatenation operator and n € N the decimal representation
of Champernown’s constant is

C=016()~0123456789101112. . (2.26)

n=2

The resulting real is transcendental and a simple normal number in base 10. A
normal number is a real number with its digits showing a uniform distribution
in all bases and a simple normal number is a number in base b with its digits
appearing with probability 7.

2.1.11 Continued Fraction Constant

In a posting to the Math—fun list ([40]) Bill Gosper said:

By strange coincidence, the information in a typical continued frac-
tion term is very nearly one decimal digit—actually

1 w2
©~ 61n(2)In(10) @27)

2.1.12 Conway’s Constant
Conway’s Constant describes the rate of growth of the number of digits in the

look—and—say sequence. This sequence is an integer sequence with the term n+1
“describing” the term n. Starting with ny = 1:

ng =1 (2.28)
ny =11 "one” 1 (2.29)
ng = 21 "two” 1s (2.30)
nzg = 1211 “one” 2, ”one” 1 (2.31)

(2.32)
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It is the unique real root of the polynomial

0= g7 — 309 _0y68 _ ;67 L 9,66 L 9,65 L 64 63 62 61 _ 60
— 2% + 22°8 4 5257 4+ 32°% — 22°5 — 1025 — 3253 — 2252 + 625! + 625°
29 4018 _ 3p47T 76 _god5  godd | ()43 | 42 | godl
510 19439 4 7438 _ 7437 L 736 4 035 334 4 10,33 4 32 g3
— 2230 —1022° — 3228 4 2227 + 9226 — 325 + 1422 — 8223 — T2 ™!
+92%0 + 3219 — 42" —102'7 — 72" + 122" + T2 4 2213 — 12212

— 4z — 2210 4+ 5% + 27 — 720 + 2% — 42t +122° — 622+ 32— 6
(2.33)

The above polynomial is not a mere approximation of the constant but the
closed form. For detailed descriptions see J. H. Conway’s articles in [22] and
[23].

2.1.13 Copeland-Erdds’ Constant

Copeland-Erd6s’ constant is a variation of Champernown’s constant: not the
positive integers are concatenated but the positive primes.

2.1.14 cos1
The cosine of 1 had been calculated with

cosz = % (2.34)
2.1.15 coshl

The cosine hyperbolicus of 1 had been calculated with

iz —iz
cosz = % (2.35)

= cosh(iz)

2.1.16 /2

The cube root of 2 had been calculated with the “long hand” method and the
help of a pencil and several perforated sheets of paper to 101 digits accuracy by
the author while he was suffering from the symptoms of a visit to a restaurant
with surprisingly bad hygienics.
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2117 /3

The cube root of 3 had been calculated with Perl’s implementation of big in-
teger and big floating point numbers and Newton’s method. All steps were
done with fractions 2 to make use of the absolute precision of integer arith-
metic. Only the last step was done by computing the division out to get a
decimal representation.

2.1.18 Dubois-Raymond Constant

One of the remarkable numbers to be found in [59] is the second Dubois-
Raymond constant

(2.36)

2.1.19 Euler-Mascheroni Constant v
This constant, also known as Euler’s constant, is defined as the limit of

. — 1
v = nlg%o [Z P In n] (2.37)

The identity with the harmonic numbers

~v= lim (H,—Inn) (2.38)

n— o0

makes this constant useful for computing several related functions like the har-
monic function itself in section 4.10.4.

2.1.20 Embree-Trefethen Constant

The Embree-Trefethen constant is the generalized form of Viswanath’s constant
described in 2.1.71. For the recurrence

1
Tpil = Ty = BT 1 with ag = 0,a; = 1, P(sign) = 3 (2.39)

a limit exists for almost all values of 8

o(B) = lim |x|% (2.40)

n—oo

The critical value §* such that o(8*) = 1 is sometimes called the Embree-
Trefethen constant because of[24].
Viswanath'’s constant can be found at o(1).
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2.1.21 Erdos-Borwein Constant

The Erd6s-Borwein constant, named after Paul Erdés and Peter Borwein is the
sum of the reciprocals of the Mersenne numbers.

21

Ep=)_ T (2.41)

n=1

2122 e

The constant e, also known as Napier’s constant, is the base of the natural
logarithm.
The most common descriptions are

1
e= E 1 (2.42)
n=0
. 1\*
e = lim (1-{-—) (2.43)
T—00 T

The equation 2.42 is due to [?].
There is a nice, albeit non-simple continued fraction representation of e

1
e=2+ - (2.44)
1
: 2+ 2
3+ 5
4 4
+ 5.
2.1.23 Gompertz’ constant
Gompertz constant
G:/oo ¢ " du (2.45)
“Jo 1+4u )
= —¢eFEi(-1) (2.46)

Ei(z) is the exponential integral. A simple continued fraction has been found
by Stieltjes[101]

G= (2.47)
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2.1.24 Feigenbaum Constants
Theory

The Feigenbaum constants describe the ratios in a bifurcation diagram. The
constant § is a universal constant for functions approaching chaos via period
doubling, discovered by Mitchel Feigenbaum in [26] with the iteration

fl@)=1-plzl" (2.48)

With p,, the point of the 2™-cycle, po the value of u, at oo and under the as-
sumption of geometric convergence

Am proo — pin = 55 (2.49)
Solving for 6 with g constant and § > 1
§ = lim Hntt —Hn (2.50)

n=00 liny2 — fntl

The Feigenbaum constant « is the separation of adjacent elements from one
doubling to the next

. dn
a = lim
n— 00 dn+1

(2.51)

with d,, the value of the element closest to zero in the 2"-cycle 2.
The constants given in the implementation for § and a are for the logistic
map
f@)=1-plz|? (2.52)

The other constants, b, ¢, d, were given by [17] in an email to Simon Plouffe®.
With f(x) and g(z) even functions f(0) = g(0) = 1, J as large as possible and

202) _ g(g(x)) 259)
0D _ g (g @) £ @) + £ (o @) @254

together with
g(b) = 0 = m with {b,¢,d} € R¥ (2.55)

while {b, ¢? 4+ b*} are minimal. With & the order of the nearest singularity and
z approaching zero
1

2vid. [16, 86] for both constants
3With Keith Briggs, David Bailey and Steven Finch listed as the recipients of a quite pale carbon

copy
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Wﬂotting Bifurcation Diagrams for Highly Pedagogical Aims
To get a Bifurcation diagram4 of the recurrence formula given in [37]
Tnt1 = pl’n(l _-'En) (2.57)
by on-board means® two small program-listings might be helpful.
At first a standard[45] C program.
~
#include <stdlib.h>
#include <stdio.h>
int main(int argc, char #xargv){
double x = 0.0;
double r = 0.0;
// start must be between 0(zero) and 1(one)
double start=0.5;
int 1i=0;
for(r = 0; r < 4; r += 0.001){
X = start;
for (;i<500;i++) {
x =1 % x x (1 — x);
/%
Discard the first 450 points because the
iterations need some time to settle on a
fixed point.
*/
if (i > 450)
printf ("%f\t%f\n"” ,r,x);
}
}
exit (EXIT_SUCCESS) ;
}
J
the listing for Ghuplot
~
# Postscript files will get _very_ large!
#set term postscript enhanced "Helvetica” 12
#set output "bifurc.ps”
# Default is PNG with black ticks and red data
# points
set terminal png
# Gnuplot will not overwrite (at least with version
# 3.7p2) so the file listed here has to be deleted
*A logistic map, to be a bit more exact
5 At least on-board means of most Unix distributions.
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n| # before another run of Gnuplot
2| set output ”"bifurc.png”

1| set nokey
15| set nomxtics
16| set nomytics

1| # upper and lower limits
19| set yrange[0:1]

an | # value needed to have a single ’'dot’ for the default
n| # sizes
» | set pointsize .05

» | # start from the lower left
% | set origin 0,0

| # multiplicator for size

» | # default size for postscript is 10x7 inches

0| # default size for PNG is 640x480 pixel

a1 | set size 1,1

s | set xlabel "1r”

au| # the letter 'x’ is rotated 90 degrees counterclockwise
| set ylabel "x”

| # "bifurcation.out’ is the name of the outputfile of
the

s | # data generating program. Please change accordingly if
| # necessary.

w| plot “bifurcation.out’ using 1:2 title ”Bifurcation”

Assuming the existence a standard Unix shell, the GNU-compiler suit GCC,
the above listing in the file bifurcation.c and the Gnuplot script in the file
bifurcation.plot

gcc —std=c99 -W —Wall —o bifurcation bifurcation.c
./ bifurcation > bifurcation.out

gnuplot bifurcation.plot

IMAGE_VIEWER OF_ CHOICE bifurcation.png

L N

The two variables X and r in the C-listing are the variables z,, and p from the
equation 2.57. More variables to play around with are the iterations of the
loops, the limit of the discarding and the sizes of the Ghnuplot script.
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2.1.25 Fibonacci Factorial Constant

The Fibonacci factorial constant F' is the infinite product

F= H (1-a¥) (2.58)
k=1
with
1
a= 7 (2.59)
and ¢ the Golden Ration
p=1 +2‘/5 (2.60)

2.1.26 Fransén-Robinson Constant

The Fransén-Robinson constant F' is defined (vid. [29, 31, 30]) by the integral

® dzx
F_/O el (2.61)

2.1.27 Froda’s Constant

Froda’s constant is simply 2¢. The interesting thing is that he tried to prove its
irrationality in [32]. It is unknown to the author if the prove holds.

2.1.28 Gibbs Constant Si(7)

The Gibbs- or Wilbraham-Gibbs constant G’ is the sine-integral with the upper
limit =

G = /Ooo sincfdé (2.62)
= Si(n) (2.63)

There are several functions gathered under the hood of the name “sine-integral”.
The variation used here is
Z o3 t
Si(z) = / el (2.64)
0 t
From equations 2.62 and 2.64 it is evident that the function sincz® could be
defined with
1 forz =0

sinc(z) = (2.65)

sinx .
otherwise

T

bsine cardinal with its full name
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2.1.29 Gauss-Kuzmin-Wirsing Constant
With F),(z) the Gauss-Kuzmin distribution and ¥(0) = ¥(1) =0
lim F,(z) —In(1+ z)

n—oo -2

= U(z) (2.66)

Here ) is the Gauss-Kuzmin-Wirsing constant ([124]).
Biggs ([12]) computed the constant with the help of the matrix

0 RN (RY i o
M= 5122 ; (J( 2+ 2); (2.67)

with 0 < j, k¥ < n, (2),, the raising factorial (Pochhammer symbol) and ((z) is
Riemann’s ¢-function. [119] gives an example:

M= [T g o]

16— 15¢(3) 7¢(3) — > +40 (2.68)

The constant is the negative of the absolute value of the second largest Eigen-
value of that matrix.

2.1.30 Glaisher-Kinkelin Constant

The Glaisher-Kinkelin constant can be defined memorizable by means of Rie-
mann’s {-function([114, 54])

A=erz ¢ (D (2.69)
It can ([35, 36]) also be defined by means of the K-function4.7.9
K(n+1)

A= lim . (2.70)
N0 et St e
And by means of the G-function4.7.10
I TN ) N 2.71)
A n—00 nT_ﬁ(Qﬂ)56_3T
2.1.31 Golden Ratio
The Golden Ratio ¢
p=1 +2‘/5 2.72)

The triangle described by the edges A,B and C in figure 2.1.31 is also called a
Golden Gnomon. The ratio of the lengths of the lines a = BC and b = AB is
equal to the Golden Ratio

a
o=7 (2.73)
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Figure 2.1: Pentagon with Figure 2.2: Pentagram with
Golden Gnomon Golden Gnomon

Thus the angle a is in radians

a=2sin"! (£> (2.74)
2a

=r (2.75)

or 36 degrees.

Mirroring the triangle at AB and copying and rotating 36 degrees results in
the pentagram in figure 2.1.31

Rotating the triangle at the point s 36 degrees a sufficient number of times
gives a decagon with a side length of AB

The infinite series for the Golden Ratio is according to [?]

13 S (1) (2n 4+ 1)!
b=3 + 2 Gy pe @7

The continued fraction is very simple to memorize

b=1+ ! 2.77)

14

1+
1+
1+

1+---

The Golden Ratio has relations with many other functions, for example with
the Fibonacci numbers (with F), the n" Fibonacci number)

P N G
p=1+> T (2.78)
n=0
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which follows from the continued fraction in equation 2.77

1
Tp, =1+ (2.79)
Tn—1
with #; = 1 and has the obvious solution
Fn+1
n= — 2.80
o0 = (2:80)
SO .
¢ = lim —= (2.81)
n—oo n—1

Equation 2.81 has been used to calculate the Golden Ratio because it is possible
to calculate it with rationals up to the last point where one Big_Float division
is necessary.

2.1.32 Golomb’s Constant

The Golomb constant [38], also known as the Golomb-Dickman constant, is the
limit of the ratio a
A= lim == (2.82)

n—0o0 n
where a,, is the expected length of the longest cycle in a uniformly distributed
random permutation of a set S with #S = n.
An approximation for ay’ as shown in [82]

¢—1
an=¢> 91 +0 (" ) (2.83)
Inn
where ¢ denotes the Golden Ration #
2.1.33 Grothendieck’s Majorant
Grothendieck’s majorant [41]
T
= 2.84
I oMl +v2) (250

2.1.34 Hadamard-de la Valle-Poussin Constant

More prominently known as the Meissel-Mertens ([71]) or prime reciprocal
constant it is defined by the infinite sum

B, :fy—}—z (ln (l—pgl) +pik) (2.85)

k=1

"The sequence is known as the Golomb sequence or Silverman'’s sequence
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where 7 is the Euler-Mascheroni constant and py, is the k" prime, or by the
limit

. 1
B, = zli)rrgo (; ; —Inln m) (2.86)
PsT

A fast converging series is according to [55]

Bi=7+ Y M ¢ () 287)

where ((n) is Rieman’s {-function and u(z) is the Mobius function.

2.1.35 Hafner-Sarnak-McCurley Constant

The Hafner-Sarnak-McCurley constant is the average probability P(n) that the
determinants of two n X n integer matrices are relatively prime.

P(n) = H 1— (1 - H (1 —p;j)> (2.88)

k=1 j=1

i is the k™ prime.

With P(1) as the average probability that two random integers are relatively
prime

P(1) = — (2.89)

w2

As this is obviously the inverse of ((2) = 725—2 another, exponentially® converg-
ing equation has been found by [28]

o0

o= lim P(n) = [] ¢(k)~ (2.90)

n—oo
k=2

2.1.36 Hard-Hexagon Entropy Constant

The hard square hexagon constant ky, is given by

k= lim (G (n))a2 (2.91)

n— o0

8at &y 0.57™
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K, is algebraic ([8, 49])

K = K1KaK3ky (2.92)

K = 471351172 ¢ 2 (2.93)
2

/<;2=(1—\/1—c+\/2+c+2\/1—|—c—|—02) (2.94)

2
,%,:(-1—\/1—c+\/2+c+2\/1+c+c2) (2.95)

[N

n4:(\/m+\/2+a+2\/1+a+a2) (2.96)
—124 1
2501 . 1

b= 1179 2%
1 3 1 1) ?

C—(Z+§a<(b+1)s_(b_1)3)> (299)

This can be summarized to be the unique positive root of

Kp = 259374246012%* + 20132906512227842>2
+ 25050623117206737922%° + 7977266988666583797762'8
+ 74494883101310831001602'% 4 29580150383769582305282"*
— 724056702856491616174082" + 1071554481504433880432642"°
— 71220809441400405884928 2% — 733474911836301038714882°
+971431352773775751905282* — 32751691810479015985152

(2.100)

The G(n) in equation 2.91 is the number of arrays with no adjacent 1s in a
binary n x n-matrix M

1 01
010
M=11 0 1 (2.101)
The adjacent elements are the set of some a;; =1
{ai;} x {aitij,aijt1,ig1,j41} (2.102)
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The number G(n) is also the number of configurations of non-attacking kings
on a n X n hexagonal chessboard. A detail of such a board with two possible
combinations is shown in figure 2.3, the possibles moves of a king according
some of the most common rules is shown in figure 2.4.

Figure 2.3: Hexagonal Chessboard

2.1.37 Khintchine Constant

The Khintchine constant ([52]) is the limit of the geometric mean G,,()z of the
partial quotients a,, of a continued fraction for n — oo

Gn(z) = (ar1a2a3 - --an)% (2.103)

The exact value is difficult to compute, see for example [7] for examples. One
is

1 i Hj, o1 [¢(2n) — 1] (2.104)
=2

K= —
oxp 1n2n n

Here, {(z) is Riemann’s (-function and H}, is an alternating harmonic number.
Not all numbers are equal of course, so some real z exist for which lim,, _, «q,, ()K"

for example e, V2,4/3.
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Figure 2.4: Moves of a king on a hexagonal Chessboard

2.1.38 Khintchine’s Harmonic Mean

Khintchine’s Harmonic mean is a variation of Khintchine’s constant described
in 2.1.37. It is described by the integral

n

K_; = lim 2.105
! n—ooa;l tayt +ay +o+an ( )
2.1.39 Komornik-Loreti Constant
The Komornik-Loreti constant is the value of g described by
1= i 3 (2.106)
n=1 q

34 PRAGMATIC MATHEMATICAL SERVICE



Chapter 2. Constants 2.1. Mathematical Constants

with ¢, the Thue-Morse sequence. This constant is the smallest number in [1, 2]
for which a unique g-development of the form

1= eq " (2.107)
n=1

exists ([56]).
The constant is also the unique positive real root of

H(-2)=-(-2) - 2,108
prs ¢* q

The constant is transcendental ([2]).

2.1.40 Second Order Landau-Ramanujan Constant

If S(z) is the number of positive integers < z which can be expressed as a sum
of two squares, then the following limit exists [58].

The sums of squares of the first ten positive integers that are expressible as the
sum of two squares

1=0%+12 (2.110)
2=12412 (2.111)
4=0%+2? (2.112)
5=12422 (2.113)
8 =22 422 (2.114)
9=0%>+3? (2.115)
10=1% 432 (2.116)
13 = 22 + 32 (2.117)
16 = 02 + 42 (2.118)
18 = 32 + 32 (2.119)

SoS(1) =1,5(2) =2,504) =3,505) =4,58) =5,59) =6,S(10) =7,
S(13) =8, 5(16) =9, S(18) = 10...

Ramanujan exchanged the lower bound for the series 0 with a variable A.
The according equation

T odt
S(z) =K / +
(@) LR A Vint
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The constant K is the first order Landau-Ramanujan constant.[?] A fast con-
verging formula had been given in [28]

1
1 1Y ¢@m) )T+
Kir = 1-— 2.121
= 1 (-5 56m) 2421
where ((z) is Riemann’s (-function and §(z) is Dirichlet’s 8-function.
The second order Landau-Ramanujan constant C'is the limit

. (ln IL‘) % KLR
e K\

=)=c

(2.122)
2.1.41 Laplace Limit Constant

The Laplace Limit constant is the point at which Laplace’s formula for Kepler’s
equation starts to diverge. It is the unique real root of

fz) = voxp(V1+ )
N

2.1.42 Lehmer Constant

(2.123)
The Lehmer constant occurs in the Lehmer cotangent expansion ([60])
z = cot <2(—1)” cot ! cn) (2.124)
n=0
where ¢, is the recurrence
ch=c +tep+1  withn>1 (2.125)
2.1.43 Lemniscate Constant

With the arc length of a lemniscate12.6 with a = 1 being

1 2
=7 (0(3))

27 4
the Lemniscate constant is ([1])

(2.126)

1
L==s (2.127)
2
Other constants exists under this name:

First Lemniscate Constant With L the lemniscate constant as described in equa-
tion 2.127, the second lemniscate constant is ([59])

1
L1=§L

(2.128)
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Second Lemniscate Constant With M = L1 and G the Gauss constant?? the

G
number )
Ly = §M (2.129)

is sometimes called the second lemniscate constant([105].

2.1.44 Lengyel Constant

With L the partition lattice of a set {aog, a1, . . ., a, } the maximum element E,;, 4, =
{{ao,a1,...,a,}} and the minimum element E,;;, = {{{ao},{a1},-..,{as}},
the number Z,, denoting the number of chains C with C C LA{Enaz, Emin} €
C satisfies the recurrence relation

1

Zn=Y s(n,k)Zywith Z, = 1 (2.130)

1

3
|

~
Il

The quotient
Zn(2In2)np !5
(nl)?

is bound between two constants as n approaches infinity ([62]).

r(n) =

(2.131)

2.1.45 Lévy constant

In a continued fraction representation of a number x the nth root of the denom-
inator g, of the n! convergent asymptotically approaches a constant when n
approaches +oo.

lim ¢{1/n) = (r*/121n2) (2.132)

n—oo
With the exception of the set of z of measure zero[63, 61]. Plouffe ([?]) called

the exponent of % the Khinchin-Lévy constant.

2.1.46 Madelung’s Constant

In determine the energy of a single ion in a crystal the constant M in the equa-
tion -
g M (2.133)
Ame,ro
is called Madelung constant. Different crystals have different geometric ar-
rangements, so Madelungs constant depends on the orientation

M= Z(i)k:—z (2.134)
k

Madelung constants for cubic lattice sums are defined by ([67])

o0 ) (_1)k1++kn

bn(ZS) = (k%—}—“'—i-k‘%)s

(2.135)

k1,....kn=—00
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Where the prime indicates that the summation over (0, ..., 0) is excluded.
For a three dimensional table salt crystal (NaCl)

oo

' (_1)k1+k2+k3+1

b3(1) = ——_— (2.136)
khkz%:_oo VE + k2 + k3
M
Tyagi has found ([108]) a fast converging sum
1 In2 47 1 T(35T(3)
M=—-> - __— 4 + 8 8 -2 2.137
> —1)k1tkatks
' (=1) (2.138)

kioko kae—oo \ K2 + ko + k3 [exp (SW\/m) - 1]

The constant factor 2.137 of the equation is good for ten decimal digits on its
own, without the following summation.

The other possible packing for a crystal is hexagonal, for example cesium
chloride (CsCl). The formula for the hexagonal lattice sum hy(2) has a closed
form.

hs(2) = wIn3V3 (2.139)

The Madelung constant used in the implementation is that of b3(1) and the
calculation has been done with the equation 2.137.

2.1.47 Magata’s constant

Let S be the data set {(1,2), (2, 3),(3,5),(4,7), ..., (n, p,) } with p,, denoting the
nth prime. With polynomial fit of degreen — 1

cotca(z—1)+c(z—1)(z-2)+c3(z—1)(z—2)(z—3)+-- -+ cp(z—1)--- (x—n)

(2.140)
the sum of the coefficients approach a constant when n approaches oo ([68]).

2.1.48 Meissel-Mertens constant

See 2.1.34.

2.1.49 Niven’s constant

Let the prime factorization of a number = € N\ {0} be described by
z =p'py* PRt (2.141)
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then the two functions

h(z) = min(ny,ns, ..., ng) (2.142)
H(z) = max(ni,ne,...,ng) (2.143)
with H(1) = h(1) = 1 (2.144)

have the following properties ([76]):

1 n
Jim Z:l h(z) =1 (2.145)
. Zn:1 h(:L') -n C(%)
lim =% = .
1 n
Jim_ ; H(z)=C (2.147)

The constant C in equation 2.147 is the number known as the Niven constant

and has the value
> 1
C=1+ (Z [1 - @D (2.148)

k=2

2.1.50 Reciprocal of the One-Ninth-Constant
See 2.1.51.

2.1.51 One-Ninth-Constant

The One-Ninth-constant is based on a conjecture later proven to be false.
In the beginning was a proof by Schénhage ([93]) that

lim (o) = % (2.149)

n— 00
with A, Chebychev constants. The conjecture was

1
A= lm Apn)/" == (2.150)
n—00 ’ 9
The naming of constants follows some weird rules, so this constant was named
the “one-ninth constant” and, by the same logic, its reciprocal is sometimes
known as “Varga'’s constant”.
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A first hint, that A # é was given numerically ([107]), a formal disprove
followed only two years later ([39]). An exact value of A is given by ([69])

7K (V1 —¢2)
with K the complete elliptic integral of the first kind and ¢ a solution to
K(k) =2E(k) (2.152)

with E the complete elliptic integral of the second kind.
Another name for this constant has been proposed by Varga ([109]): Halphen
constant. Halphen computed the root ([42]) of the equation

D 2k + 1) (—2)ED2 = o (2.153)
k=0

With z € (0,1) the unique solution is indeed A ([70])

2.1.52 Paris Constant

For the recursion

&n =1+ dn1 forn >2A¢1 =1 (2.154)
Paris had proved in [81] that ¢,, approaches the Golden Ratio ¢ at a constant
rate.
lim (#9020 _ (2.155)
n—oo 2
So ([27])
C= 2.156
555 (2156

2.1.53 Parking Rényi Constant

This constant answers the question of how much place is wasted by randomly
parking cars in a street. Because this is a theoretical constant the cars have unit
length, the length of the street is a real number and the cars do not overlap nor
are they allowed to push. So within the closed interval [0, z] with z > 1 the
mean number M (z) of cars that can park on that street is described by ([87])

» (2.157)

0 for0<z<1
1+ 25 [0 M(y)dy forz >1
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The mean density m = lim,_, o @, Rényi’s parking constant, can be de-

scribed by . . .
/ exp (-2 / 1-e¢ ) dz (2.158)
0 0 )

While the inner integral is v + ['(0,2) + lnz with I'(z,y) the incomplete I'-
function or vy + Ei(—z) + In 2 with Ei(z) the exponential integral, no other form
exist for the outer one. Inserting that in equation 2.158 gives

oo —2T'(0,z)
m=e2 / GT (2.159)
0
oo ,—2Ei(—z)
— e / A (2.160)
0

The above holds in one dimension only, but [80] conjectured that for two

dimensions v
lim M@Y) _ e (2.161)

z,y—oco  TY

which is not yet proven nor disproven’.

2.1.54 Smallest Pisot-Vijayaraghavan Number

A Pisot number is a positive algebraic integer greater than 1 all
of whose conjugate elements have absolute value less than 1. A real
quadratic algebraic integer greater than 1 and of degree 2 or 3 is a
Pisot number if its norm is equal to £1. [120]

The smallest Pisot number 6, also known as the Plastic constant, is the positive
root of
22 —zx—1=0 (2.162)

as shown by [92] and proved by [96] The second smallest Pisot number, found
by [96], is the positive root of

-2 -1=0 (2.163)

He also showed that §; and 6, are isolated and that the positive roots of the
following polynomials are also Pisot numbers

2" (a® —z—1)+a® —1  forn € {N\{0}} (2.164)
"t —1
a" ———7  forn€ {N\{0,1,2}} Aoddn (2.165)
L |
a"———7  forn€ {N\{0,1,2}} Aoddn (2.166)
(2.167)

9 At least not known to the author at the date given on the front page of this article.
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The numbers have been named by [91] because of the closely related works
of [83, 111] about frac(z) = z — | x|

2.1.55 Plastic Constant

See 2.1.54. As a sidenote: with P the plastic constant the circumference of a
Snub Icosidodecadodecahedron with a = 1is

1 [2P—1
5,/ o (2.168)

2.1.56 Porter constant

Porter’s constant ([85])

In2 1
c= |:31n2+4'y— Mg - 2] _ - (2.169)
™ T 2

Example

With T'(m,n) the number of steps to compute ged(m, n) by means of the Euk-
lidian algorithm and T'(m,0) = 0 if m > 0 then the value of T'(m.n) is defined
by the reccurence formula

1+T(n,m mod n) form>n

2.170
1+T(n,m) form <n ( )

T(m,n) = {
With fixed n and randomly choosen m the average number of steps is ([55])
1
T(n)= - T 2.171
(n)=— % T(m,n) (2.171)

and it has been shown by [78] that

T(n) = 121n2 [lnn—zy

s
d|n

+C+ % > ¢d) 0@y (2172)
d|n

with A(d) the Mangoldt-function, ¢(d) the totient-function and C' the Porter
constant.
2.1.57 Sum of the Product of the Inverse of Primes

This constant is probably better described as the sum of the reciprocals of the
primorials'®.

19Which rhymes with factorials not with primordials. As said elsewhere in this article: the name-
finding in mathematics is not always fully comprehensible.
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A primorial is defined as the product of all primes p;, up to a given prime
Pn.

p#t = [[ o (2.173)

k=1

More generally with a number n instead of the prime p,,

(n)
n#t =[] (2.174)
k=1

where 7(n) is the prime counting function which has the numbers of primes
up to the limit n.
The limit of the reciprocals of the primorials is

1 n
lim — 3" pad#t ~ 0.7052301717918... (2.175)
k=1

n—oo N

which is implemented here as the sum of the product of the inverse of primes.
This limit ([90]) might be of additional interest

lim (po#)'/Pm = (2.176)

n—oo

where e is the base of the natural logarithm.

2.1.58 Rabbit Constant

The rabbit constant has been named aptly: it is a result of the miraculous gift-
edness of rabbits to grow up and reproduce. Despite the biological mecha-
nism of the reproduction of rabbits the rabbit sequence starts with one rabbit;
a young one even, not able to reproduce before growing older. This single
pre-pubescent rabbit of unknown sex shall be denoted 0. A rabbit in legal
age shall be denoted 1. With the two mappings 0 — 1 for a rabbit grow-
ing up and 1 — 10 for multiplicating bunnies. Following the timeline we
get0 - 1 — 10 — 101 — 10110---. Written as a binary fraction gives
0.1011010110110. . » which is called the Rabbit constant. The implementation
gives the decimal representation 0.70980344. . ..

The Rabbit constant is related to the Fibonacci sequence by the continued
fraction representation of the constant

[0,20,2F% 2F> 2Fs ] (2.177)
where F;, are Fibonacci numbers ([4, 33, 94]).

PRAGMATIC MATHEMATICAL SERVICE 43



2.1. Mathematical Constants Chapter 2. Constants

2.1.59 Ramanujan-Soldner Constant

The root of the logarithmic integral li(z) = 0 is also known as the Ramanujan-
Soldner constant p!'!. With the logarithmic integral defined as the Cauchy prin-
cipal value

T dt

li(z) =P — .

i(x) A% | It (2.178)
1—e¢ z
= lim [/ dt di ] (2.179)
0+ | Jo Int t 14eInt
and p the identity follows ([113 75])
/ dt forx > p (2.180)
0 lnt y In

2.1.60 Reciprocal Fibonacci Constant

The reciprocal Fibonacci constant is exactly what its name implies: the sum of
the reciprocals of the Fibonacci numbers F,

= 1
Pp = nzl 7 (2.181)
This constant was proved to be irrational by [5].

2.1.61 Reciprocal Prime Constant
See 2.1.34.

2.1.62 Robbins’ Constant

This constant is the average distance of two randomly chosen points inside a
unit cube. More exact ([89])

AB) = 15 [4+17f 6v3 + 211n (1+\/’) +42In (2+f) —771']
(2.182)
A useful identity is probably
In (1 n \/5) — asinh 1 (2.183)

It might be of interests to the more claustrophobic readers that the average
distance of two randomly chosen points on different faces of the cube is [14, 15]

Ap(3) = % [1+ 17v2 - 6v/3 + 211n (1 +\/§) +421n (2+\/§) - 77r]
(2.184)

HBut ¢ is also found here and there
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The ratio of these two is
Ar(3) = -A(3) (2.185)

2.1.63 Smallest Known Salem Number

The smallest Salem number is the largest root of

2 04+2% —2" —a2b —2® -2t — 2P+ +1 (2.186)

2.1.64 Sierpiniski Constant
The Sierpinisky constant K can be described by ([97])

T L 7‘2(]{5)
K = lim l; - —wlnn] (2.187)

where r2(z) is the number of ways to represent the number z as

zr =a’+ b for {a,b} € N (2.188)

2.1.65 sinl

The sine of 1 had been calculated with

iz _ ,—iz
sin z = % (2.189)

2.1.66 sinhl
The sine hyperbolicus of 1 had been calculated with
eiz _ efiz

sing = ——— (2.190)
2

= —isinh(iz)

2.1.67 Traveling Salesman Constant

The length of a self-avoiding space-filling curve through a set of n points.

A= lim Lm (2.191)
m—00 /M,
4(1+2v2)+/51
= % (2.192)

with L,, the curve length at the mth iteration and n,, the size of the point set

([771)
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2.1.68 Tribonacci Constant

The Tribonacci sequence is one generalization of the Fibonacci sequence

Ty=T, 1+Tyo+Tys withTy=To=1Ts=2andn>4 (2.193)
It has a corresponding constant, the positive root of the polynomial
0=a3-2?-2-1 (2.194)
Continuing with this technique!?
Polynome Constant Name
0=22—-2z-1 1 (1+5) Fibonacci
0=2®—2>—z-1 111+ /19 - 3v33 + /19 + 3v/33| | Tribonacci
0=zt—---—2-1 ~ 1.927561975 Tetranacci
0=2°—---—z-1 ~ 1.965948236 Pentanacci
0=2%—---—2-1 ~ 1.983582843 Hexanacci
0=z"—---—z-1 ~ 1.991964196 Heptanacci
0=z"—2" - .—g—1 2 n-anacci

1
2.1.69 The A.G.M of 1 and 7

The Gauss constant G is the reciprocal of the arithmetic-geometric mean of 1

and /2

G =

M
_V2p

1
M (1,v2)

“()

B (271r)g [F G)r

(2.195)

(2.196)

(2.197)

where K (z) is the complete elliptic integral of the first kind and I'(z) the T'-

function.

A series, converging quite fast is given by [27]

G =237 (

The constant

o

2
Z (_1)n€—2n7r(3n+1)>

n=—oo

M

V2

is called the ubiquitous constant in some articles ([99, 27])

12The names of the constants are due to [121]
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(2.198)

(2.199)
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2.1.70 Universal Parabolic Constant

Figure 2.5: Parabola 1z? + 1

The universal parabolic constant P is the ratio between the length of the
line l115, the latus rectum and the length of the segment of the parabola /;vl, in
figure 2.5. The exact value is

P=+v2+In (1 + x/§) (2.200)
=2+ asinh 1 (2.201)

2.1.71 Viswanath’s Constant

The Viswanath constant is a special form of the Embree-Trefethen constant de-
scribed in section 2.1.20.
For the recurrence
1
an = *an_1 T an_s withag = 0,a1 = 1, P(sign) = 3 (2.202)
exists almost surely the limit ([112])

lim 3/|al (2.203)

n—oo
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2.1.72 Weierstrass Constant

The Weierstrass constant w is defined as the value 10(1;1,7) of Weierstrass’
sigma function o(2; w1, w2). It has the closed form ([115, 116])
2§ kd
w= @ (2.204)
(%)

2.1.73 Some ( Values

Some of the more useful {(n) values of mostly odd n are implemented. For
more information about Riemann’s {-function and the numerical evaluation of
it see section 4.10.1.

2.2 Physical Constants

This section lacks a lot of bibliographical links, but it is difficult to get the hands
on the original works. Most of the older books are only available as abridged

translations’.

2.2.1 Astronomical Unit

The astronomical unit AU is the mean distance between Earth and sun. More
formal: the radius of an unperturbed circular orbit a massless object would
revolve about the sun in 2% days. The Gaussian constant k is defined exactly
as 0.01720209895 in this case. ([74])

2.2.2 Avogadro Constant

The Avogadro constant N4 is the number of atoms in 0.012 kg of C'? and the
current value is ([79])

6.02214179 x 10%*mol™" + 0.3 x 107 (2.205)

2.2.3 Boltzmann Constant

The Boltzmann constant k describes the relation between the macroscopic tem-
perature and the microscopic particle energy. It is the ratio of the gas constant
R and the Avogadro constant N4

R

k:N—A

(2.206)

13And sometimes bad translations! The author has read a translation of some work of New-
ton which could be clearly judged as wrong even without knowning the original text at all—the
mathematics were glaring wrong.
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2.24 Candela

The definition of a candela’®

The candela is the luminous intensity, in a given direction, of
a source that emits monochromatic radiation of frequency 540 x
10'2 Hz and that has a radiant intensity in that direction of g watt
per steradian.

A wax candela emits about one candela hence the now historic name.

2.2.5 Dielectric Constants

The dielectric constant ¢, is the ratio of the static permitivity of the material €
and the electric constant €g

6 = 2 (2.207)
€0
The values given in the implementation are the values of €.
2.2.6 Dirac Constant
The Dirac constant £ is related to Planck’s constant . by the ratio
h
=— (2.208)
2m

2.2.7 Gas Constant

The gas constant is related to the Boltzmann constant but measures the energy
of one mol of particles instead of single particles.

2.2.8 Weight of One Mol Water

The Avogadro constant times the average atomic mass of water—-about 18 grams.
The word “average” is very important because the composition of water can
vary between H}O'® and H30'® or even H30'!

2.2.9 Speed of Light
The speed of light is fixed at 299 792458 to have a steady point in spacetime
to hang up the physicist’s hat.

More formal: the meter is defined as'

The metre is the length of the path traveled by light in vacuum
during a time interval of 1/299 792 458 of a second.

1416th CGPM 1979, resolution 3
1517th CGPM 1983, resolution 1

PRAGMATIC MATHEMATICAL SERVICE 49



2.2. Physical Constants Chapter 2. Constants

So it follows that the speed of light is exactly 299 792458%. The second is de-
fined as'®

The second is the duration of 9192631 770 periods of the radi-
ation corresponding to the transition between the two hyperfine
levels of the ground state of the caesium 133 atom.

This definition is not complete, so at the 1997 meeting of the CIPM it was a
made clear that:

This definition refers to a caesium atom at rest at a temperature
of 0 K.

2210 Light Year

The year in this implementation is defined to be 365.25 days with 24 hours in
a day, 60 minutes in an hour and 60 seconds in a minute. A lightyear is the
length a photon travels in one year, so the length of a lightyear might differ
from the numbers in other implementations.

2.2.11 Magnetic Permeability of the Vacuum

The magnetic permeability of the vacuum pg follows from the definition of the
Ampere and is therefore defined as

1102 47 x 107% (2.209)
2.2.12 Newton’s Gravity Constant

Newton'’s gravity constant is the proportional constant G in

F =g

. (2.210)

where F is the force, m; and m, are masses > 0 and r is the distance between
the masses.

2.2.13 Parsec

Parsec is short for parallax second.

271"
P=Uy,-cot ( 360 ) (2.211)
270.00027778
=Uy - cot (”T> (2.212)

with U4 the astronomical unit.

1613th CGPM 1967/68, resolution 1
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2.2.14 Planck Constant

The Planck constant 4 is the ratio between the energy of a photon E and its
frequency v
h=— (2.213)
v

2.2.15 Seconds in a Year

Because the term year is ambiguous and variable!” this constant is offered in
this implementation and is the number of seconds in a year of 365.25 days of
86 400 seconds per day.

2.2.16 Stefan-Boltzmann constant

Also known as Stefan’s constant it is exactly
2Pk

0= ——=

15h3¢2

with h Planck’s constant, & Boltzmann constant and ¢ the speed of light. It is
the constant in the Stefan-Boltzmann law of energy flux of a black-body

¢ =oT* (2.215)

(2.214)

with T the absolute temperature of the black-body.

2.217 Luminosity of the Sun

Implemented here is the defined value'®.

2.2.18 Electric Constant

The electric constant ¢ is defined as
def 1
poc?

with po the magnetic constant and c the speed of light.

€0 (2.216)

2.2.19 Wien’s displacement constant

Wien's displacement constant b is the ratio between the wavelength of the emis-
sion peak of a black-body and the temperature of this black-body

b= AT (2.217)

With A the emission’s peak wavelength and T' the absolute temperature of the
black-body.

7Sidereal year? Tropical year? Which planet are you even talking about?
18The sun is a slightly variable star, so the luminosity varys
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Common Functions

3.1 Basic operations

The basic functions are defined here as the mathematical functions in the ECMA-
standard with the exception of the trigonometric functions which have their
own section. This program extends these functions to the complex plane with
the restriction that ECMA-script in its current version does not allow overload-
ing of all functions, so the syntax for the complex arithmetic is different.

3.1.1 Operations on complex numbers
Equality

Two complex numbers z; and z; are equal if and only if the real and the imag-
inary parts are equal.

Z1 = 22 1ff §R21 = §R22 A Szl = %22 (31)

Addition

The addition of complex numbers in their Cartesian notation works like vector
addition because, well, they are vectors.

Rzz =Nz + R2s

(3.2)
Szz =Sz + S29

Z1+Z2=Z3={

1| var z_1
2| var z_2
3| var z_3

new Complex(2.3, —3.4);
new Complex(—-7.3, 3.8);
z_1.add(z-2);

Subtraction works accordingly (z1 - sub(z2)).
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Multiplication

There are mainly two different ways two multiply two complex numbers: the
one with the Cartesian notation and the one with the polar form. The polar
form is easier to calculate manually but lacks precision when used with Gaus-
sian integers! because of the use of e.

The algorithm for the Cartesian form z = (Rz + Jz)

%2’3 = %21 . éRZQ — %2’1 . %ZQ
212y =23 = (3.3)
%2’3 = %zl . éRZz + %21 . %ZQ
The algorithm for the polar form z = pe??
2122 = 23 = Pz1Pzs (6921+022) (34)

The algorithm used in the program is the Cartesian because of the reasons
listed above.

Division

The rules for division are obviously the same as for multiplication and there are
mainly two ways to divide. The algorithm for the Cartesian form z = (Rz+S32)

Rre — (Rz1 - Rzg + Sz1 - S22)

. SR (R O

A, (35)
22 (Sz1 - Rzo + Nzq - S20)

(R22)? + (S22)?)

%23 =

The algorithm for the polar form z = pe??

2_1 = z3 = pi (6921 _922) (36)
22 Pz

!Gaussian integers are complex numbers with both the real and integer part integer
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Actually, the algorithm used for division is a third one. It is slightly less precise
(about one decimal digit) but avoids overflow

/ [ 1 [PV
Rz (§Rz1 + Sz “—”)

e S22
(%22 + S2o Rzo

SN——

1S21] > [S2a| <

1 x
(\}Z3 = <%21 - §RZ1 %)
\ (Rz2 +92232) 2
21
Z =2z23 =
( 1 R
§RZ3 = (%21(\— + %21)
(%22 % + %22) B2
otherwise { 2
1 %22
%23 = %21 >~ %21
{ L (%22 —gzi + \SZQ) B2
(3.7)
Power

To get the power of complex numbers is not so easy but solvable, even with
complex exponents.
In case the exponent is a real number z it is easy

2" =e"Inz (3.8)
When the exponent is complex too, it is still not that complicated. arg(z) is

theta from the polar form and thus arg z = atan2(Sz, Rz).

Z2 —
2P =a

(3.9)

Ra = el |21 Rzo — Szg - arg 21
Sa =In|z| Sz + RNza - arg 2y

Both algorithms return the complex number in its polar form, so this program
converts the results to the Cartesian form before returning them.
Roots

To get roots of complex numbers use the Complex. pow() function with ratio-
nal exponents (for example z . pow( . 5) for the square root). Only one branch
is returned.
Exponential e”
The exponential works like the power function but is implemented as follows
R — Rz
e =a=1{ 0 T° (3.10)
Sa =Sz
This returns the result in polar form. The program converts it to Cartesian form

before it returns the result.
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Logarithm

The logarithm of a complex number has infinite results, so this program returns
the principal branch only.

Rz=82=0 {?Ra -
Sa —00
Ra =In¥z
Inz=a={32=0 3.11
nz=a Sz {%a _0 ( )
otherwise Ra =Inlz]
{ Sa =argz
Conjugate
The conjugate z of the complex number z is
o = R (3.12)
Sz =-92
The following identity is also of interest
2.z =z = p? (3.13)

Inverse

There are two different inverses for complex numbers implemented in the pro-
gram: the multiplicative inverse inv z such that z - inv 2 = 1 and the additive
inverse —z such that z + —z = 0. The multiplicative inverse

Ra = Rz
invz=a= ((Re + %z)({?zz - 32)) (3.14)
SO = e 159 (R = 59)
The additive inverse
Y ae {iz - :iz (3.15)

Norm

The norm |z| of the complex number z is defined as the distance to the origin
which can be calculated with Pythagoras’ simple formula ¢ = a? + b?. By the
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definition of the polar form p is this distance, so we get the following identities

2= p (3.16)
= (R2)2 + (S2)2
= /(Rz + S2)(Rz — S2)

- z-z

To avoid overflow and too much impreciseness |z| is implemented in this pro-
gram as

|Rz| Sz=0
R¥1 Rz=0
lz2l =140 Rz=T2=0 (3.17)

Rz (1+(%)2) otherwise

3.1.2 Operations on Matrices
Matrices are implemented here in two different ways:

1. With ECMA-script arrays and real numbers. This is from the first im-
plementation of matrices, not very elegant but hopefully better compre-
hensible than the new implementation that uses in parts code that was
ported from hardly legible handoptimized Fortran code. The algorithms
used for this kind of matrix implementation are more or less verbatim
translations from the textbook?.

2. With ECMA-script arrays, complex numbers and a slightly more object-
oriented design.

The matrix operations described in this section are based on the second imple-
mentation if not noted otherwise.

Equality

Several definitions of equality are possible for matrices. The most common
definition, also the one implemented here, defines two matrices to be equal if
they are equal in size, elements and position of elements. Given two matrices

aix a2 ... Qij b11 b12 e bll
as1 a92 PN azj b21 b22 e b2l

A=\ . . . . B=|. . . . (3.18)
a;1 a;o see Qg bkl bkg . bkl

2The textbook in question is most probably [25] as the author concludes from a comment in the
original code.
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these matrices are equal in size, elements and position of elements if

A=B <— Vaij € Adby; € B{bkl|a,~j =buNi=kAj= l/\{i,j,k,l} € N}
(3.19)
The equation 3.19 is simplified—matrices are not common sets of course—but
basically correct®.

Addition

The addition of two matrices of the same size and form is done by adding the
elements of the same positions.

a1 +bi1 a2 +bi2 ... ay;+by
a1 +ba1 aza+be ... ag;+by

A+B= : : . : (3.20)
ain +br1 aip+brz ... ai +bu

Subtraction

The subtraction of two matrices is implemented by multiplying one matrix
with —1 and adding both.

A—B=A+(B-(-1) (3.21)

Multiplication

The multiplication of two matrices is a bit more complicated.

matrix A times a number n That is the simplest algorithm in this group: just
multiply every element with the number.

aip-n aig-n ... ai;-nN
a21 N A2 "N ... A4A25;°T

A-n= . . . . (3.22)
Q1N G2-N ... GG-TN

matrix A times matrix B The product of two matrices is only defined if j = %,
that is if A has as many columns as B has rows. The algorithm itself is
nearly as simple as matrix addition.

J
cit = Z Ginbni (3.23)
n=1

3Hopes the author.
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Example:
bi1 b2
A= [“H 12 ‘“3] B= by b (3.24)
az1 d22 (23
b31 b3z
C=AB (3.25)
c11 = a11b1l + a12021 + a,3b31 (326)
c12 = a11b12 + a12022 + a,3b32 (327)
o1 = a91b11 + a22b21 + as3b31 (328)
Co2 = a29b12 + a22b22 + ao3b32 (329)
Matrix multiplication is not commutative!
AB # BA for most A, B (3.30)
Example:
1 2 2 1
A= 3 4] B = [1 5] (3.31)
(4 11
AB = 10 23] (3.32)
(5 8
BA = 16 22] (3.33)

The conditions such that AB = BA are
e if both matrices are equal under the conditions described in equation 3.19
o if all elements of one or both of two square matrices are zero
e if the size of at least one matrix is one (only one element)

Division

The division of two matrices 4 is implemented as the product of A and the

inverse of B. For an explanation of the matrix inverse see 26

Rotation

One of the sometimes ridiculed but nevertheless useful operations is the rota-
tion of the matrix 90 degrees anti-clockwise.

a13 az3
I‘Otgo g1n Gi2  G13 = |Q12 G22 (3 34)
a21 Q22 a23 a1 G
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Main Diagonal

The main diagonal of a matrix is described for a square matrix by

diag(A) = {au, asz, ... ,aii} (335)

Trace

The trace is the sum of the elements on the main diagonal. For a 3 x 3 matrix
A it is defined as

trace(A) = ai1 + asz + ass (3.36)

Norm, 2-Norm, Rank

These values are calculated by doing a singular value decomposition of the
matrix. The singular value decomposition is sadly implemented for real matri-
ces only. The 2-norm of a matrix is sometimes called the condition and notated
in equations for a matrix A as cond(A)

Determinant

The determinant for square matrices is determined differently depending on
the size of the matrix.

1 x 1 The determinant of a constant is the constant itself

2 x 2 Direct way
det(A) = a11a92 — Q12021 (337)

3 x 3 By following Sarrus’ rule strictly

det(A) = aj1azqa33 (3.38)
+ ai12a23a31 (3.39)
+ ai13a21a32 (3.40)
— 013022031 (3.41)
— G12021033 (3.42)
— 411023032 (3.43)

n x n withn > 3 This is done by means of the LU-decomposition in the new
implementation of matrices and by building and adding all subdetermi-
nants in a computationaly very expensive recursion in the old one.

For further explanations see the chapter about linear algebra on page 97.
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Adjoint

The adjoint of a matrix is implemented in quite a slow but generally working
way for square matrices only. For a square matrix A

ai; = (=1)"*7 det(Si—1,j-1) (3.44)
where the matrix Sy; is build by the algorithm

Q5 ifi <kAj<lI

sij =4 Hizkng<t (3.45)
Qit1,5+41 ifi > k/\] > 1
Qi j+1 ifi <kAj>I

There exist much faster algorithms for special kinds of matrices. They might
be implemented later, but an interpreted language is rarely useful for compu-
tational exhaustive algorithms like the manipulation of large matrices if that
language is not optimized for it. ECMA-script is not very optimal for that us-
age.

Transpositions

The transposition is implemented in two ways: as a normal transposition and,
the matrix element are complex numbers after all, as a conjugate transpose.

normal transpose aij = aj; (3.46)
conjugated normal transpose  Ra;; = Ra;;, Sa; = —Say; (3.47)
Inverse

The inverse of a matrix is implemented, like the matrix adjoint, in quite a slow
but generally working way for square matrices only.

inv(A) = trans(adj(4)) if det(A) #0 (3.48)

1
det(A)

3.2 Geometric Functions

3.2.1 Triangle

The area A of a triangle, given the lengths of all three sides a, b, ¢, is according

to Heron’s formula

a+b+c)la+b—c)b+c—a)(ic+a—0>b)
4

The area of a triangle, given the lengths of two sides a, b and the angel «
between them, is

AZ(

(3.49)

4= 52‘“0‘ (3.50)
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Figure 3.1: A general triangle Figure 3.2: A right-angled triangle

The area of a right-angled triangle, given the lengths of the two catheti a, b
is

A= (3.51)

The area of a triangle, given the length of one side s and the height h is

A= (3.52)

3.2.2 Polygon

Some functions for the gardeners among the readers have been implemented;
mainly a way to get equilateral polygons more easily than the old way with a
pointy stick and a piece of knotty yarn. The number of edges is restricted to 3,
4,5, 6,8, and 10 for the two functions Math _encircledPolygonsSide(ed-
ges,side) and Math._encircledPolygonsRadius(edges, radius). The
first one calculates the polygon from the number of edges and the length of one
side, the second one with the help of the number of edges and the radius of the
circumcircle. It is probably the second formula that is more useful in the dirt-
business.

The functions return a couple of values computed from the given argu-
ments. For Math._encircledPolygonsSide(edges,side) these are the
angel alpha, the radii of both the circumcircle r» and the incircle r;, and the

4
area” A.

“The area is needed to calculate the volume of crap necessary to harvest the biggest potatoes.
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Figure 3.3: [TvBarydpas

Figure 3.4: Equilateral hexagon with in- and circumcircle

s is the length of one side and n the number of edges

_ a="72 )
@=120 7 a =90 .
2= gV3 r=2v3 = V0 10V5
S > n =3, n =4, *n=2>5
n=gv3 n—% n:lio\/25+10\/3
82 2 2
A= V3] A=s A:SZ‘/25+10\/5'
(3.53)
a =60 a=45 ) a =36 )
S
r2=$ 7‘2—% 4+2V2 T2:§(\/5+1)
s
r1 = =3 n =6, S »n =8, s »n =10
_° = — 2
62 342 rl_z(ﬁ+1) PRAGMAT%MAZF EE)M-ZTI\C/§LSIRVICE
_ 9o 2
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¢ is the circumference of the polygon

. a=172 )
a1 a=90 2\/10-2v5
—_— SZ_ -
s=12V3 5 =192 2
= 5‘
¢ ir2\/§ >TL=3, 6247'2\/5}71:4, C:% 10_2\/5 rm =25
2
r == _T2 >
22 Tl_Eﬁ 7-1:%(\/54-1)
3r 2
A=22/3 A=2r .
4 V) 2 A:S% 10 +2v/20 |
(3.55)
_ \ a =36 )
a=60 a=%

S=T>y s:rg\/Z—\/i 5:%2(\/3—1)

c=6r = 5 _
2 bn =6, c=8ry\/2—V2pn=3, ¢ 5“(\/3 1) »n =10

T2
T1=_\/§ 9
A I o n="10+275
A="23
2 " A=22V2 ) A:% 10 - 2V5
Vs
(3.56)

A couple of more general formulas for equilateral polygons are also imple-
mented.

¢ =nra sin (%) (3.57)

¢ = 2nry tan <%) (3.58)
2 1

A =nrsin (%) 5 (3.59)

A =nritan (%) (3.60)
2

s = 2 sin (%) (3.61)

3.2.3 Circle

“Circle” is the common name of the set of all points with the same distance
from a fixed point c. The following formulas are for a circle on a plane.
Circumference

The circumference g of a circle can be calculated in a lot of ways. One of these
paths is

g=2rm (3.62)

PRAGMATIC MATHEMATICAL SERVICE 63



3.2. Geometric Functions Chapter 3. Common Functions

Figure 3.5: Secant and Segment Figure 3.6: Segment and Sector

Another one is by means of Riemann’s ¢-function to avoid the endless discus-
sions about the exact value of 7.

g=2r MT@) ‘ (3.63)

Partial Circumference

The length b of the bow in the hatched part of figure 3.5 or the cake piece in
figure 3.6 is calculated as follows

b=ra (3.64)

This might look curious to some, because the common formula for such a bow

is
_ 2nro

~360°
The dimension of 360° are degrees with 360 of them to build a full circle. A

unit circle, a circle with a radius of 1, has a circumference gof g = 2-r -7 =
2-1-m = 2m. Replacing 360° with 27 gives

b

(3.65)

p= 2T (3.66)
2
2fra
= 3.67
27 ( )

The dimension of the angel o changes from degrees to radians and the value
according to the formula given in 3.131.

Area

The area A of a circle
A=rr (3.68)
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Figure 3.7: Segment Figure 3.8: Ring

Secant

The secant s of circle is any finite line with its two endpoints laying on the
circle. It is the line AB in figures 3.6 and 3.7 and it’s length s is

s =2rsina (3.69)

Area between Secant and Circle
The area meant is the hatched area in figure 3.7 limited by the line AB and the

part of the circle. It’s size S is

S=— (3.70)

Segment of the Circle (cake piece)
The area A of the segment bounded by the points C'D on the circle and the legs
¢C = cD = r of the angle  in figure 3.6 is

2
A="7 (3.71)

™
Ring
The area of the ring—the hatched area of figure 3.8—is of size

A= 71'(7“1 + TQ)(TQ — 7“1) (372)

3.24 Ellipse
Area

The area of an ellipse can be calculated in several different ways based on sev-
eral different measures. The two kinds mainly used are the calculations A;
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B,

Figure 3.9: Ellipse with foci at F; and F3

based on the length of the two axes a; = cF,, and az = ¢B,,, and A, based on
the length of the two diameters d; = cA, and d; = cB,,. See figure 3.9 for the
details.

Al = a1Q27T (373)
‘@zm@g (3.74)

3.2.5 Sphere

e,
%

T
%%%%%7%%%~\

Figure 3.10: Cap Figure 3.11: Slice

Volumes
The volume V; of a sphere

V= —nr (3.75)
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The volume V; of a cap of a sphere (figure: 3.10)

V.= %” (3r2 + 1?)
2
= hT” (3r — h)
Areas
The area A of a sphere
A = 4mr?

3.2.6 Torus

Figure 3.12: Torus

The Volume V of a torus
V = 212r2r,

The area A of a torus
A=Adr 2T1 T2

3.2.7 Cone

3.2. Geometric Functions

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

The cones here are always cones with a circle as the base.

Volume

The volume V' of a slanted cone (figure: 3.14)

1
V= 571"!'2]7/

The mantel area A, of a straight cone (figure: 3.13)

A, =7rs
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Figure 3.13: A straight cone Figure 3.14: Three slanted cones

The area A of a straight cone (figure: 3.13)
A=A.-A,

=7rr-7rs

=rirls

The side s of a straight cone (figure: 3.13)
s=1/r2+h?

The height h of a straight cone (figure: 3.13)
h=+/s2—r2

3.2.8 Miscellaneous Geometric Figures
Lamé Curve

The gnuplot script to produce figure 3.15 was:

(3.83)
(3.84)
(3.85)

(3.86)

(3.87)

1| set terminal fig big fontsize 12 metric;
2| set output “superellipse.fig”;

3| set parametric;

4| set trange[—2%pi:2xpi];

5| set xrange[ —3.2:3.2];set yrange[ —3.2:3.2];

6| y(t,n)=bssgn(sin(t))=*abs(sin(t))=**(2/n);

7| x(t,n)=a*sgn(cos(t))=*abs(cos(t))=**(2/n);

s| a=2;b=3; plot\

o| x(t,3),y(t,3),x(t,6.1),y(t,6.1) ,x(t,2.5),y(t,2.5),\

0| x(t,2),y(t,2),x(t,1),y(t,1),x(t,.5),y(t,.5) ,x(t,.01),\
n|y(t,.01),x(t,5.6),y(t,.56);

J

The Lamé curve has been named after the Mathematician Gabriel Lamé who

described it first in[57].
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X(£3), y(t3) ——
X(t,6.1), y(t,6.1) -------
X(t.2), y(t2) -~
X(t1), y(tD)
X(t,.5), y(t,.5) - - -
x(t,.01), y(t,.01) - - -
X(t,5.6), y(t,.56) — —

Figure 3.15: Lamé Curves

The equation for the Cartesian coordinates system
T

1 =‘ + ‘T (3.88)
a b
The parameter generating function, useful for plotting the curve
T =acosrt (3.89)
y = bsin~ ¢ (3.90)
(3.91)
The area of the curve is
4=/ T(1+ 1
Ao aby'm 1( n) (3.92)
LGz +7)
The formula used in the program differs slightly from equation 3.92
4abT(1+ 1)
_ dabT(1+,)" (3.93)

1+ 2)
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3.3 Trigonometric Functions

A couple of basic trigonometric functions have been implemented. Some for
real arguments that are not in the standard ECMA-script and all of those known
to the author for complex arguments. The functions taking complex arguments
are also usefully for the trigonometric functions that expand to the complex
plane. For example Math.asin(2) will yield NaN because it is not defined on
the real line but on the complex plane whereas alert(new Complex(2,0)
-asin()) gives the expected ~ 1.570796 — 1.316958:.

3.3.1 Conpl ex. prototype.sin

The sinus for complex numbers (z + yi).

. ) Rz = sin(x) cosh(yi)
=2= 3.94
sin(e +yi) = 2 {%z = cos(z) sinh(yi) (3:94)
3.3.2 Conpl ex. prot ot ype. cos
The cosines for complex numbers (z + yi).
) Rz = cos(z) cosh(yi)
=z= 3.95
cos(e +yi) =2 {%z = — sin(z) sinh(yi) (3.95)
3.3.3 Conpl ex. prototype. tan
The tangent for complex numbers (z + yi).
tan(z + yi) = @+ YD) (3.96)
v = cos(z + yi) '
3.3.4 Conpl ex. prototype. asin
The arcus sinus for complex numbers z = (x + y3).
asinz = —iln (zz’ +vV1- z2) (3.97)
3.3.5 Conpl ex. prot ot ype. acos
The arcus cosines for complex numbers z = (z + yi).
=T, ; _ 2
acosz = 2 +iln (zz +vV1—2z ) (3.98)
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3.3.6 Conpl ex. prot ot ype. at an

The arcus tangent for complex numbers z = (z + yi).

acosz = %ln (1 —2i) —In(1+ 2i) (3.99)

3.3.7 WMat h. cot

The cotangent for real numbers z.

cotx = (3.100)
tanz
3.3.8 Conpl ex. prot ot ype. cot
The cotangent for complex numbers (z + yi).
cot(z + yi) = 1 (3.101)
Ty = tan(z + yi) '
3.3.9 Math. acot
The arcus cotangent for real numbers z.
T
acotz = 5 atan(z) (3.102)
3.3.10 Conpl ex. pr ot ot ype. acot
The arcus cotangent for complex numbers (z + yi).
acot(z + yi) = g — atan(z + yi) (3.103)
3.3.11 Conpl ex. prototype. acoth
The area cotangent hyperbolicus for complex numbers (z + yi).
acoth(z + yi) = atanh (x-iiyz) (3.104)
3.3.12 Mat h. sec
The secant for real numbers z.
1
secx = (3.105)
cos
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3.3.13 Conpl ex. prot ot ype. sec
The secant for complex numbers (z + yi)

1

sec(m + yz) = m

3.3.14 Conpl ex. prototype. sech
The secant hyperbolicus for complex numbers (z + yi)

1

sech(x + yz) = m

3.3.15 Conpl ex. prot ot ype. asec

The arcus secant for complex numbers (z + yi)

sec(x + y1) = acos -
(2 +yi) (z + yi)

3.3.16 Conpl ex. prot otype. asech

The area secant hyperbolicus for complex numbers (z + yi)

sech(z + yi) = acosh

1
(z + yi)
3.3.17 WMat h. csc and Mat h. cosec

The cosecant for real numbers z.

3.3.18 Conpl ex. prot otype. csc
The cosecant for complex numbers (z + yi)

1

CSC(.’L’ + yz) = m

3.3.19 Conpl ex. prototype. csch
The cosecant for complex numbers (2 + yi)

1

CSCh(QI + yz) = m

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)
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3.3.20 Conpl ex. pr ot ot ype. acsc

The arcus cosecant for complex numbers (z + yi)

acsc(z + yi) = asin

(z +yi)

3.3.21 Conpl ex. prot otype. acsch
The area cosecant hyperbolicus for complex numbers (z + yi)

1

h /) = asinh — - ——
acsch(z + yi) = asin asinh(z + yi)

3.3.22 Mat h. sem

The semiversus for real numbers z.

sem z = sin® (1)
h 2

3.3.23 WMat h. asem

The arcus semiversus for real numbers .

asemz = 2 asin(v/z)

3.3.24 Mnat h. at an2

The two-argument arcus tangent for real numbers z.

'atani—f z2 >0
atanf;—f+7r 2 <0,y >0

atan®2 + 1 25 <0,y <0
atan2 (z1,Ts) = < z1 2 Y

% zo = 0,29 >0
—% o =0,21 <0
\0 .’L'2:0,£U1—0

3.3.25 WMat h. cosh

The cosines hyperbolicus for real numbers z.

1 1
coshz = = | el*l + —
2 elel
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3.3.26 WMat h. si nh

The sinus hyperbolicus for real numbers x.

T z=0
sinhx = —%(ele — e|12‘) z<0
3 (el — ) >0

3.3.27 WNat h. t anh

The tangent hyperbolicus for real numbers z.

T z=0
tanhz = ¢ —(1 = &247) <0
l—ﬁ x>0

3.3.28 Conpl ex. prototype.tanh

The tangent hyperbolicus for complex numbers z = (z + yi)

sinh z

tanh z =
cosh z

3.3.29 WNMat h. coth

The cotangent hyperbolicus for real numbers z.

T z=0
cothr = —(1+W%) z <0
1+ 52— z>0

e2lzl_1

3.3.30 Conpl ex. prototype. coth

The cotangent hyperbolicus for complex numbers (z + yi)

cosh(z + yi)

coth(z + yi) = sinh(z + 4)

3.3.31 WMat h. acosh

The arcus cosines hyperbolicus for real numbers z.

acoshx:ln(x+\/x2—1) z>1

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

(3.124)
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3.3.32 Conpl ex. pr ot ot ype. acosh

The area sinus hyperbolicus for complex numbers z = (z + yi). This version
has been implemented because of overflow. The simplified version acoshz =
In(y/(2% — 1)) is more elegant but obviously suffers from overflow if 22 is too

large.

acoshz =In (2 4+ (Vz — 1vVz + 1))

3.3.33 Mat h. asi nh

The arcus sinus hyperbolicus for real numbers z.

T ( z=0
sﬁlﬁé—ﬁ—i-\/ :1:2—4-1) r<0
ln(x+\/a:2—+1) x>0

3.3.34 Conpl ex. pr ot ot ype. asi nh

The area sinus hyperbolicus for complex numbers z = (z + yi).

asinhz =Iny/z + (1 + 22)
3.3.35 Mat h. at anh
The arcus tangent hyperbolicus for real numbers z.

1+z
1—z

atanha:z%ln( ) —-1<z<1

3.3.36 Conpl ex. pr ot ot ype. at anh

The area tangent hyperbolicus for complex numbers z = (z + yi).

atanhz = % (ln (14+2z)—In(1- z))

3.3.37 WMnat h. acoth

The arcus tangent hyperbolicus for real numbers «.

1 1
acothz = —1n<$+ ) |z| > 1
2 x

-1
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(3.130)

75



3.3. Trigonometric Functions Chapter 3. Common Functions

3.3.38 Conversions
Conversions for different dimensions of angles.

Degrees d to Radians 7:

. 2nd
360
Radians r to Degrees d:
d= 360r
To2rm
Grad g to Radians r:
,_ 2
400
Radians r to Grad g:
4007
9= 2w
Degrees d to grad g:
_400d
T
Grad g to degrees d:
de 360d
400

Conversions between different coordinate systems.
Cartesian to spherical:

r= /$2+y2+z2

R
Va2 +y? + 22

a = atan ¥
T

Cartesian to spherical (unit):
er = sin(f) (e; cosa + ey sina) + e cosf
eg = cos(f) (e; cosa+ ey sina) + e, sin 6

€q = —€gsina + ey cosa

Cylinder to Cartesian:

T =pcosa
y = psina
z=2z

(3.131)

(3.132)

(3.133)

(3.134)

(3.135)

(3.136)

(3.137)
(3.138)

(3.139)

(3.140)
(3.141)
(3.142)

(3.143)
(3.144)
(3.145)
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Cylinder to Cartesian (unit):

Sphere to Cartesian:

Sphere to Cartesian (unit):

Cylinder to sphere:

Cylinder to sphere (unit):

Sphere to cylinder:

Sphere to cylinder (unit):

€y = €,C08a — €, Sina
ey = €,sina + e, cos a

€, =€,

r=7r-cosa-sinf
y=r-sinqa-cosf

Z=Tr-Ccosa

T =epsinfcosa — e, sina + eg cosf cosa
y =epsinfsina + e, cosa + ey sinf cos o
z = e, cosf — eqgsinb

r= VAT

6 = atan P
z

r =e,sinf + e, cosf

0 =e,cos0 —e,sinf

a=ey
p=rsinf
a=a«a
z=rcosf

p=ersinf + egcosf
a = ey

z=e,cosl —egsind
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(3.146)
(3.147)
(3.148)

(3.149)
(3.150)
(3.151)

(3.152)
(3.153)
(3.154)

(3.155)
(3.156)
(3.157)

(3.158)
(3.159)
(3.160)

(3.161)
(3.162)
(3.163)

(3.164)
(3.165)
(3.166)
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Chapter 4

Special Functions

This chapter contains large parts of [1].

4.1 Dilogarithm

The dilogarithm or Spence’s integral for n = 2 1

f(z) = —/1 tlf—tldt (4.1)

A series expansion

fz) = i(—nk(:’:;i;)k for2> 2 >0 4.2)
k=1

4.2 Exponential Integral
4.3 Kummer’s Confluent Hypergeometric Function

4.4 Fresnel Integrals

C(z) = / cos (gﬁ) dt 4.3)
0

S(z) = /Z cos (gtz) dt (4.4)
0

1From [1] p. 1004
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Variations of these functions

Ci(z) = /= / cost?d¢ (4.5)
2 Jo
1 % cost
C = — —dt 4.6
Z(Z) \/2—71_ 0 \/'E ( )
S1(2) = 4/ = / sint? d¢ 4.7)
2 Jo
1 “sint
S = — —dt 4.8
2(’2) \/2—7_‘_ o \/'E ( )
Relations to the original integrals
- A 2T
C(z) =C, (m 2) = Cy (x 2) (4.9)

S(z) = S (x\/g) =S, (ﬁg) (4.10)

Series expansions

C(Z) = 7; mz4n+l (411)
.- (_l)n >n n
C(z) = cos (ng)Zol 3 (47; e
T ZO— (_1)nﬂ.2n+1 (412)
tsin (5’22); T3 @iy
= (=DME)t
8(2) = nz::O 2n + 1)!24n +3) i (4.13)
et (_l)n 2n+1 "
500 = =eon(3) 3 5 e
o (1yrgn (4.14)
+sin (32°) 213 T

There are also series expansions by means of the Bessel function J,, 1 /2(z) for
the variations C4 and S,

8(2) + o (4.15)
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The symmetries

C(—2)=-C(2) S(—z) = —S(z)
C(zi) =i C(2) S(zi) = —iS(2)
C(z) =C(2) S(z) = S(2)

The values at infinity are 3 for both integrals C(z) and S(z).

4.5 Bessel Functions

4.17)
(4.18)

(4.19)

The notation of the different Bessel functions follow that of [1] explained at

page 3582.

2[1] notes that the function Y}, (z) is often denoted as N, (z) by physicists and European workers

and lists a small list of other variations.
Aldis, Airey

G (2) for — %an(z)
Kn (2) for (—)" Kn(z2)

Clifford ]
Cn(z) for =" J, (2v/)

Gray, Mathews and MacRobert
1
Y (z) for iﬂ-Yn(Z) 4+ (In2 — ) Jn(z2)
Y (z) for m™ sec(vm) Yo (2)

1
Gy (2) for i HV(2)

Jahnke, Emde and Lésch
1
Ay (z) forT(v + 1)(5z)7” Ju(2)
Jeffreys
H s, (z) for H,(,l)(z)
H4, (z) for H,(,z)(z)
2
K hy(2) for (=) Ky (2)
T
Heine 1
K (z) for — o7 Yn(z)
Neuman 1
Y™ (z) for iern(z) + (In2 — ) Jn(z)
Whittaker and Watson

Ky (2) for cos(vm) Ku(z)

(4.20)
(4.21)

(4.22)

(4.23)
(4.24)

(4.25)

(4.26)

(4.27)
(4.28)

(4.29)
(4.30)

(4.31)

(4.32)

(4.33)
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4.5.1 Differential Equation

S, d2w dw .
2d W aw 2 _ 2y _
“ i +zdz +w(z®—v°)=0 (4.34)

has as solutions the Bessel functions of the first kind J 1, (2), of the second kind
Y, (2)? and of the third kind H(Y(z) and H® (2)*.

For fixed v, z = 0 and small arguments

(3 . _
Ju(2) F(i ) withv ¢ {Z~\ {0}} (4.35)
Yo(z) ~ —i H{" (2) (4.36)
K H(()2) (2)
~—Inz
™
Y, (2) » —i H(2) (4.37)
~ i H?(2)
~ _(%)r(y)(%)*v with ®v > 0

3also known as the Weber function
4also known as the Hankel functions
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4.5.2 Ascending Series

J,(2) = (%z)" > % (4.38)
Vo) = - kDl Loy (4.39)
k=0 ’
+ %ln(%z) In(2)
- ()" i(w(k+1)+¢(nk+1))ﬂ
T = El(n + k)!
%zZ (%22)2 (%2‘2)3
To() =1 = g + s = e+ (4.40)
Yo(z) = % (m (%;;) + 7> Jo(2) (4.41)

2[5 (1) G2 106G
+7rl(1!)2 (Hz) (212 +(1+2+3) (32

4.5.3 Relation to the Gamma-function

v Fy+k+1 T(p+k+1)T (1/+,u+k+1)k!

(4.42)

4.5.4 Wronskians

W(Ju(2),J-0(2)) = Jug1(2) J-u(2) + Ju(2) J_(v41) (2) (4.43)

= —2sin (7‘[’2) (4.44)

W(Ju(2), Yo (2) = Jut1(2) Yu(2) = Ju(2) Yoi1(2) (4.45)

= W—Zz (4.46)

WHM (2), B (2) = B, (), B (2) - B (2), B, (2) (4.47)
= —% (4.48)
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4.5.5 Asymptotic Expansions for Large Arguments
Principal Asymptotic Forms

For v fixed and z — oo

J.(2) = 1/% (cos (z - %wr - iw) +el%2 0 (|z|_1)> for |argz| <

(4.49)

Y,(z) = 2 (sin (z - luw - iw) +el%# 0 (|z|_1)> for |argz| < 7

T2 2
(4.50)
(1) 2 i(z—2vn—1n)
H,/(2) ~ —eTRE for —7m < argz < 2w (4.51)
™
2) 2 ie—tum—1im
H;Y (2) ~ e for —2r <argz<m (4.52)
™
Hankel’s Expansion
Withz =z —m(3v + 1)
2 .
J,(z) = — (P(v, z) cosz — Q(v,2) sinz) for largz| < (4.53)
™
2 .
Y. (2) = p— (P(v,2)sinz — Q(v, 2) cos ) for |argz| < m (4.54)

HV(z) = 1/ 7r_22 (P(v,2) +iQ(v,2)) e® for — 7 < argz < 2w (4.55)

H,(,z) (2) = % (P(v,2) —iQ(v,2)) e”® for —2r <argz<mw  (4.56)
With p = 402
> , 2k
P(v,z) = kzz;)(—nk (; pL (4.57)
o, (e=DE=9 , (p=1)(p—9)(k—25)(s—49)
BT TR 21(32)" - (@458)
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(e}

P(r,2) = Y (~1)* (’;’z ﬁfk (4.59)
k=0
_p=1 (p—1)(p—9)(p—25)
T 8z 3!(8z2)3 e (460

If v is real and non-negativ and z is positive, the remainder after k¥ terms in
the expansion of P(v,z) does not exceed the (k + 1) term in absolute value
and is of the same sign, provided that k > 1v — }. The same is true of Q(v, 2),
provided that k > 1v — 3.

Asymptotic Expansions of Derivatives

With the conditions and notation of the preceding subsection

J(2) = % (—=R(v,2)sinz — S(v, 2) cos x) for |argz| < (4.61)
7r
Y, (2) = % (R(v, 2) cosz — S(v, z) sinx) for |argz| < (4.62)
e

H,(,l)’ (z) =1/ % (i R(v,z) — S(v, 2)) €® for —m < argz < 2w (4.63)
™

H,(,Z)I (2) = — (—iR(v,2) = S(v,2)) e for — 27 <argz <mw (4.64)
= 4% +16k% — 1 (v, 2k)
(R)(Va Z) - l;](_l)k4l/2 — (4k — 1)2 (22)2k (465)
_1_ (w=1)(np+15)
—1- (87 (4.66)
> W+ 42k +1)2 -1 (v,2k + 1)
(S)(v,2) = ];)(_1)'6 P e e (4.67)
_pt3 (=1 —9)(u+35)
T 8 31(82)3 (468)

Modulus and Phase

For real v and positive z
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4.6 Beta Functions

4.6.1 Beta function B(a,b)

The Beta function, also known as the Euler integral of the first kind, is defined
by the integral

B(a,b) = /01 11 -2z)tdz  for {a,b} € R" \ {0} (4.69)

The Beta function can be extended to the complex plane by analytic continu-
ation. One of the possible results is also the identity used in the implementa-
tion.

Tal'(b)
[(a+b)

From the identity above it is obvious that the function is symmetric

B(a,b) = for {a,b,a+b} € C\{0,Z7} (4.70)

B(a, b) = B(b,a) (4.71)
Some interesting identities:
n 1
= 472
(k> m+ Bkt LE+1) (*4.72)
™

B(a,b)B(a+b,1—b) = 4.73)

z sin(wx)

4.6.2 Incomplete Beta Function

The incomplete beta function is the generalization of the beta function and is,
like the incomplete gamma function, defined by the indefinite integral

B(z;a,b) = /m 21—t de (4.74)
0

From which follows
B(1;a,b) = B(a,b) (4.75)
The incomplete beta function is related to the hypergeometric function

B(z;a,b) = a 'z F(a,1 — bja + 1;2) (4.76)

The implementation of the incomplete beta function is by means of the regu-
larized beta function.

SWith the exception that the current implementation of the Gamma-function is for R \ {0,7~}
only.
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4.6.3 Regularized Incomplete Beta Function

The regularized incomplete beta function

B(z;a,b)
I = ——" .
(00) = 5 (4.77)
It is implemented with the continued fraction given at[122].
2%(1—2)? 1
I.(a,b) = 4.78
0 =B 0 @7
1+
1+ r@)
1+ r(3)
r(4)
1+
r(5)
1+
1+
z(a+n)(a+b+n)
2 1) =-
r(2n+1) (a+2n)(a+2n+1)
zn(b —n)
2n) =
r(2n) (a+2n—-1)(a+2n)
4.7 Gamma Functions
4.7.1 T'-function
The I'-function is the generalized factorial !.
I(z+1)=2! for z—1e€N"\{0} (4.79)
It is defined for all z € C\ {0,Z~} by the integral
T'(2) = / t*~le tdt (4.80)
0

The picture on the frontpage is a plot of the values of I'(z) withz € RA —6 <
z < 6. It is the result of the following Gnuplot-script

~
1| set terminal postscript eps enhanced solid ”"Helvetica”

14
set output “gammafunction.eps”
set zeroaxis
set nokey
set parametric
set size ratio -1 1,1
set trange[—6:6]
set xrange[ —6:6];set yrange[—6:6]
set samples 15000

© ® N G e W N
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0| f(x) = (—pi)/(x*gamma(abs(x))#*sin(pixx))
un| plot t,(t<0)?f(t):gamma(t)
L
The I'(z)-function is implemented here with the common Lanczos approxi-
mation®.
V2 (2 +7-0.5)77%° Pn
I'(z) = o*+7—05 Po Z Z+n (4.81)
n=1...8
The values of pg .. . ps
Do 0.99999999999980993
P1 676.5203681218851
D2 —1259.1392167224028
D3 771.32342877765313
P4 —176.61502916214059
Ds 12.507343278686905
Ds —0.13857109526572012
D7 9.9843695780195716e — 6
Ds 1.5056327351493116e — 7

Negative non-integer values of z are computed by the way of the identity

-7
(=2) = 2I(2) sinmz (4.82)

The logarithm of the I'-function is implemented as

I'(z) =(a—0.5)In(a+7-0.5) — (a + 7 —0.5)

(o =)

n=1...8

And the logarithm of the I'-function of the negative non-integer values by
I'(=2) = In(|T(2)[) (4.84)

Viktor T. Thot gave in [106] a simple way to produce arbitrary precision
values for I'(z) with z € C with the following formulas

InT(z+1) =InZP + (2 + 0.5)In (2 + g + 0.5) — (z + g + 0.5) (4.85)

With Z the row vector

1 1 1
Z=]1 4.
z2+12+2 z+n—1 (4.86)

6The algorithm has been implemented for rationals only at the time of this writing.
7Cr+-code can be found at the webpage linked from [106]
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P the product of the n x n matrices D, B, C and the column vector F

1 if i=0

By = -V if i>0,5>i (4.87)
0 otherwise

Cij =40 if j>i (4.88)
1773 k0 (22119) (k+§'—i) otherwise
0 if i#j
1 if i=j=0

Dij =14 -1 if i=j=1 (4.89)
Diil’jfﬂ in ) otherwise

i —

(2i)! et t9t05

i i (i +g+0.5)+0° 20
The typical error can be calculated with
E=CF (4.91)
T o
le| = T <e9f— ;—1J(E)j>‘ (4.92)

Another way are the polynomial approximations for values 0 < x < 1 with
the coefficients as listed in [1] p.257.

D(z+1) = 1+ a1+ a2 +a3x® +agxt +as2® +e(z) le(x)] < 5x107° (4.93)
a1 = —.57486 46 as = 4245549 (4.94)

az = .9512363 as = —.10106 78
az = —.69985 88

And with a slightly smaller error
T(z+1) =14byx + box® + - - + bgz® + €(2) le(z)| <3x1077  (4.95)

by = —.577191652 bs = —.756704078 (4.96)
by = .988205891 be = .48219939%4
bs = —.89705 6937 br = —.19352 7818
by = .918206857 bs = .035868343
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4.7.2 Incomplete I'-function

The incomplete I'-function is defined by the integral

~(a, ) =/ tole tdt (4.97)
0

Itis implemented with Kummer’s confluent hypergeometric function M (a, b; 2)
(see section 4.3).
v(a,z) =a 'z%e *M(1,a + 1;z) (4.98)

The implementation in some of the earlier versions was with the asymptotic se-
ries from [106] which uses the raising factorial, also known as the Pochhammer
symbol.

o n

a_,—T T
V(a,2) = ate ;a(aﬂ)...(ﬁn) (4.99)
a,—T - :I:n
- 7;) T(a+n+ 1) (a) (4.100)
4.7.3 Regularized I'-function
There are two regularized I'-functions P and @
P(a,z) = 7;‘25) (4.101)
r
Qa,z) = éc(la;v) (4.102)
=1- P(a,x)

where I'(a, z) is the upper incomplete I'-function defined by the integral

[(a,z) = /oo tole tdt (4.103)

such that
(4.104)
T(a) =T(a,z) + v(a,z) (4.105)

4.7.4 Digamma 1)y(z) or F
The digamma function is the logarithmic derivative of the I'-function.

d T

YO = T T T

(4.106)
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It is implemented here with the harmonic series for small integer values of
and an asymptotic expansion otherwise. 7 is the Euler-Mascheroni constant,
k = = — 1, and L is the largest number representable. It is in case of IEEE’s

double precision used in ECMA-script L = 21024 — 1.
( n—=k
> iy ke NAk <10
n=1
1 1 1 1 1 L
1 — _ _ yz
n(k) + 2k 12k2 * 120k% 252k6 + 240k8 k< 240
to(z) = S 1 1 11 VL
In(k) + 55 ~ Torz * To0kt ~ 250k¢ k< 25
1 1 1 VL
In(k) + 5% ~ Tor2 * 120k k<150
( +00 otherwise

(4.107)
The asymptotic expansion is based on the approximation given in [1] p.259
1 <~ B

P(z)~lnz — 2 5520
n=1

forz - coin |argz| < 7 (4.108)

B,, is the n'" Bernoulli number.
A slightly more precise approximation is

P YURNURIE S SN SUNN SERE SN NP
= 2k 12k% T 120k%  252kS ' 240k°  132k10 " 32760k!2
1 3617 43867 174611 77683

T 12k T 8160k16 143648 | 6600k 276k

236364091 657931 n 3392780147 1723168255201
65520k24 12k26 3480k28 85932k30

7709321041217 151628697551 N 26315271553053477373
16320k32 12k34 69090840k36

154210205991661 4 261082718496449122051
12k38 54120040

(4.109)

It might be of interest that a solution with elementary functions exists for
rational numbers (z € Q).

¥ (F) = =7 —In(@k) = Z ot (57)

k
23 con () 1y (i (1))

n=1

(4.110)
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All numbers in a computer are € @ so the above formula seems to be a fit-
ting algorithm but the solution for some z is not in Q anymore, so any direct
implementation would suffer from lost of precision.

4.7.5 Polygamma ¢, (z)

The polygamma function 1, (z) is the n'" derivative of the digamma function

Yo ().

d" ¢o(2)
dz

Itis implemented here, for positive integer orders only, with Hurwitz’ {-function.

_ Jtbo() n=20
Yn(z) = {(—1)"+1F(n—{— Do +1,2) neNt (4.112)

Yn(z) = (4.111)

4.7.6 Double Factorial

The double factorial z!! is implemented here as follows

undefined odd(n) € Z~
1 n=-1,n=0

2!l = ’ 4.113
exp (nD(24 +05) + 5524 ~In(va) odd(linl)) ez~ 117
exp (52 +InT (2 + 1)) otherwise

4.7.7 Hyperfactorial

The logarithm of the hyperfactorial H(n) is implemented as

not defined here n ¢ Nt
H(n)={1 n=0 (4.114)
>limy i1n(i)

4.7.8 Raising Factorial (Pochhammer Symbol)

The raising factorial or Pochhammer symbol P, (a) is implemented in three
different ways:

By Product

Pu(a) = ﬁ(a +1i) (4.115)
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By the I'-Function

Po(a) = F(g(:)") (4.116)
By the In I'-Function
In P,(a) = (InT'(a + n)) — (InT'(a)) (4.117)

4.7.9 K-Function

The definition of the K-function used here is K (n) = H(n — 1) where H(n) is
the hyperfactorial and n € Nt.

K(n) =0°1223%...(n — 1)"! (4.118)
The hyperfactorial function of the implementation returns the logarithm of the

hyperfactorial and so does the implementation of the K-function in the imple-
mentation.

4.7.10 Barne’s G-Function

Barne’s G-Function is defined as

Gy = HL_ )1 ifn =0 (4.119)
012! .- (n —2)! ifn>0

Where the square brackets denote the rounding to the nearest integer.
It is implemented with logarithmic calculations

not defined n¢gN
InG(n) = < Inl n=0n=1n=2 (4.120)
((n—=1)InT(n)) —In K(n)

with K (n) the K-function at the positive integer n.

4.8 Error Function

The error function is defined by the integral 8

2 z
erf 2 = ﬁ/ et dt (4.121)
0

8From [1] p. 297 ff.

92 PRAGMATIC MATHEMATICAL SERVICE



Chapter 4. Special Functions 4.8. Error Function

The complemetary error function

2 > 2
erfc z = —/ e v dt (4.122)
VT,
=1—erfz

with the restriction that argt — a with || < T ast — co and a = T if Rt? is
bounded to the left.
Another useful integral

w(z) =e (1 + % /0 G dt) (4.123)

e ® erfc(—z1)

Several series expansions are possible

9 x (_l)nz2n+1
£, = 2 el 4.124
o \/7?7;) nl(2n + 1) (4-124)
2 e on —
=—e * —_— " 4.125
ST ;1-3---(2n+1)z (4.125)
— ()"
w(z) = - (4.126)
nz:‘; T(3+1)
Some useful symmetries
erf(—z) = —erf 2 (4.127)
erfz =erf 2z (4.128)
w(—z) = 2% — w(z) (4.129)
w(Z) = w(—2) (4.130)
Continued fractions
2 o0 2 ].
2¢? / e U dt= - for Rz > 0 (4.131)
Z+ 1
2z + 3
2
Z+ 2
z+
Z+--
1 [ et dt 1
z —
1
- 3
” 2
2
v
z —
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With a:,(c") the zeros and H ,g") the weight factors of the Hermite polynomials the
formula in 4.132 can be described as

1. & H
= im > — (4133)
k=17 — T}

The error function is related to the confluent hypergeometric function (see
section 4.3)

2z 13
fr=2M(=,2, 22 .
erf z Jr (2,2, z) (4.134)
2z _ 2 3 9
== M(1.2 —
Vi ( 27 )
Which leads to the implementations for z € R
(222
fo= — 4.1
erf z = sign(x) Jr (4.135)
erfcz=1—erfz (4.136)
Two other approximations for z € QF
1
erfx =1— o +e(@)  with |e(z)| <5x 107"
(14 a12 + asx? + azx® + asx?)
(4.137)
a1 = .278393 az = .230389 (4.138)
as = .00097 2 as = .078108
1 , .
erffz =1-— s te(x) with |e(z)] < 3 x 10
(14 a1z + azx? + - - + agxf)
(4.139)
a1 = .0705230784 as = 0422820123 (4.140)
az = .00927 05274 as = 0001520143
as = .00027 65672 as = .00004 30638
4.9 Generalized Laguerre Function
410 ( (Riemann, Hurwitz), H"
4.10.1 Riemann’s (-Function
For the right halfplane by means of the Dirchlet n-function
1 = (=t
) =152 % (4.141)

n=0

94 PRAGMATIC MATHEMATICAL SERVICE



Chapter 4. Special Functions 4.10. ¢ (Riemann, Hurwitz), H"

For the entire complex plane without s = 1 ([43])

n

¢(s) = _12175 z_:o 2n1+1 ;(_1)’“ (Z) (k+1)"° (4.142)

=0

Forevenn € Nand n > 2

_ 2n—1 |Bn| "

¢(n) (4.143)

and foroddn € Nandn > 1

B,
((—n) = ——H (4.144)
where B,, are Bernoulli numbers.

Derivatives

The derivative of the Riemann ¢-function is defined for the right half-plane by

(e =—- 3 oo (4.145)
no€{1,2} n
For2n e Nandn > 1
—1)"¢(2n + 1)(2n)!
¢'(=2n) = &1 252(n+17r2n)( ) (4.146)

4.10.2 Hurwitz’ (-Function

4.10.3 General Partial Harmonic Function H"

The general partial harmonic function H;* is implemented with the summation
formula

H™ = zn: L (4.147)

4.10.4 Partial Harmonic Function H}

The partial harmonic function H} is implemented in two ways: with simple
summation up ton = 1000 and an asymptotic series approximation otherwise.

n =

t 1 1 1 (4.148)
. 1 o S
v $ih(n) + 57~ 1207 + 1204 with n > 1000

{Z” _ with 7 < 1000
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n

That limit is not as arbitrary as it seems to be. With f(n) the summation func-
tion in ECMA-script, g(n) a high precision calculation® and h(n) the asymptotic
approximation as described above.

f(n) = 7.485 470 860 550 344 163 2
g(n) = 7.485470 860 550 343 2750 n = 1000 (4.149)
h(n) = 7.485470 860 550 344 912 656 518 204333 . . .

f(n) = 12.090 146 129 863 429 181
g(n) = 12.090 146 129 863 281 743 n=100000 (4.150)
h(n) = 12.090 146 129 863 427 947 363 219 363 504 . . .

14 decimal digits of precision for n € N seem sufficient.

9With GNU’s bc( 1) with the summation formula and scal e=100
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Chapter 5

Linear Algebra (Matrices)

5.1 Matrix Decompositions

5.1.1 Eigen Decomposition
5.1.2 LU Decomposition
5.1.3 OR Decomposition

5.1.4 Singular Value Decomposition
5.2 Systems of Equations

5.2.1 Determinant
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Chapter 6

Sets

The set arithmetic used here is based on the common Zermel-Fraenklin axioms.
If A, B are subsets of a universe U than the basic operations are the equality,
union, intersection, difference, power, and the Cartesian product.

Sets are implemented in this program as simple arrays.

6.1 Equality A =B
Two sets A, B are equal if both sets have the same elements.

VA,B,z(z € A < z€B) = (A =B) (6.1)

6.2 Union AUB

Figure 6.1: AUB

The union of the two sets A, B is defined as
AUB={z|lr € Avz € B} (6.2)

The implementation of the union concatenates both arrays, sorts the result and
removes all non-unique entries. That is admittedly not the fastest way to do it.
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Chapter 6. Sets 6.3. Intersection ANB

6.3 Intersection AN B

Figure 6.2: ANB

The intersection of the two sets A, B is defined as

ANB={z|z € AANz € B} (6.3)

Some properties of union and intersection are

AUB=BUA (6.4)
ANB=BnA (6.5)
(AUB)UC=AUBUC) (6.6)
(ANB)NC=ANBNC) (6.7)
AuBNC)=(AUB)N(BUC) (6.8)
ANnBUC)=(ANB)U(BNC) (6.9)

6.4 Difference A\ B

Both variations of the set difference make no difference operationally, so it is
implemented with a single function: Math.setminus(a,b).

6.4.1 Absolute Complement

The absolute complement, “complement” for short, CuA of the set A C U can
be defined as

CuUA=TU\A (6.10)

The notation of the absolute complement for a fixed universe U can be also CA
or A¢.
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6.4. Difference A\ B

Figure 6.3: CyA

De Morgan’s Law for A U B C U and other identities

C(AuB)=(CANCB
C(AnB)=CAUCB

AUCA=T

AnCA=g2
Ce=U
(U=go

ACB = [BcC(A
CCA=A

6.4.2 Relative Complement

Figure 6.4: A\ B

Chapter 6. Sets

(6.11)
(6.12)
(6.13)
(6.14)
(6.15)
(6.16)
(6.17)
(6.18)

The relative complement, “difference” or “set difference” for short, A \ B!

can be defined as

A\B={z|lr € Arz ¢ B}

Isometimes written with a minus sign instead: A — B

(6.19)
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Chapter 6. Sets 6.4. Difference A\ B

De Morgan’s Law and other identities

A\(BNC)=(A\B)U(A\C) (6.20)
A\(BUC)=(A\B)n(A\C) (6.21)
A\(B\C)=(CNA)U(A\B) (6.22)
AN(B\C)=(BnA)\C (6.23)
AU(B\C)=(BUA)\(C\A) (6.24)

The relative and the absolute complement are related as follows

A\B=AnCB (6.25)
C(A\B)=[AUB (6.26)

6.4.3 Symmetric Difference

Figure 6.5: Symmetric difference

The symmetric difference of two sets A, B can be defined as

AAB = (A\B)U (B\A) (6.27)
= (AUB)\ (ANB) (6.28)
= {w|((meA)V(weB))/\ﬁ((weA)/\(:ceB))} (6.29)

The last equation resembles the binary operator XOR. To make it more legible
zVy = (z Vy) A—(z Ay) (6.30)
The notation for this operation varies but z XORy and = @ y can be found more
often than others like the zVy for example, the one used here.
The XOR operation is heavily used in cryptography where the following

properties are more than willing and able to brake the security of a lot of im-
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6.5. Power Chapter 6. Sets

plementations. Exchanging the A-sign with @ for legibility we get

XoY=Y®X (6.31)
XoY)aZ=Xa (Y ®Z) (6.32)
XeY)o(YeZ) =XaZ (6.33)
XoX=0 (6.34)
XN(Y®Z) =XNY)a (XNZ) (6.35)

6.5 Power

The power set is not implemented directly in this program because the function
Array .prototype.subsets does not add the empty set to the output®. For
the sake of completeness: the axiom of the power set is

P(A) =VATYWzz ey < (Vttexz —>t€A) (6.36)

6.5.1 Families and other Collections

The subsets of the power set form so called “families” or “collections” of sets,
for example the set of all disjoint sets of some power set. The common notation
is to typeset the names of these collections in Fraktura®.

For any family 2/

ACP(A) (6.37)
Example: let A be a small set of integers A = {2,3,4}. The power set is then
P(A) ={2,{2},{3},{4},{2,3},{2,4},{3,4},{2,3,4}} (6.38)
The set 2 of all subsets of A that have an even prime as a member is

A ={{2},{2,3},{2,4},{2,3,4}} (6.39)

6.6 Cartesian Product A x B

The cartesian product of two sets A, B is a set of ordered pairs where each pair
consists of one element from A and one from B

A xB = {(a,b) € P(AUB)|a € AAD € B} (6.40)

21t is difficult to express the empty set in computerprograms, even “nothing” has to have an
address

3The \ mat hf rac{l ett er } command from the Ax4S-IATEX packet has been used here. The
font is called euf r ak—Euler Fraktur alphabet.
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Chapter 6. Sets

6.6.1 Binary Relation

6.6. Cartesian Product A x B

The implementation of the function to build a cartesian product has the ability
to implement a binary relation aRb easily and the appropriatly named function
Math.timesFunction(a,b,T) takes as it’s third argument the name of a
function that shall act as the relation®.

The simplest function would be a test for equality and acting accordingly:

e T - N B O N

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

var a = [1,3,5,7,9];
var b = [2,4,6,8,10];
Array . prototype.stripEmptyElements = function(){
var len = this.length;
var ret = new Array();
for(var i=0;i<len;i++){
if (xtypeof(this[i]) == "array’){
ret.push(this[i]);
}

}
return ret;
}i
function gatherPrimePairs (x,y){
if (x < 0x80000000 && y < 0x80000000){
var a = Math. factor (x);
var b = Math. factor (y);
if (xtypeof(a) == ’array’ && xtypeof(b) == ’array’){
if (a.length == 1 && b.length == 1){
return [x,y];
}
}
}
}

var ret = Math.timesFunction(a,b, gatherPrimePairs);
alert(ret.stripEmptyElements() .join (”"\n"))

~

J

These relations are the base of current computer programs. So here is a
short refresher of the basics.

The domain

dom R = {z|3y, (z,y) € R} (6.41)

That would be the allowed input for a computerprogram. This includes
the empty set with the obvious question if no input at all should be con-
sidered an empty set—or more, like the macro NULL in the C-language[45].
The solution used in almost all cases: a program takes either no input at

all—or only the empty set, to be a bit overly correct—and ignores

any

input given, uses some default values if no input has been given at all or

it stops immediately.

4t should be noted that the cartesian product is a binary relation, too
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6.6. Cartesian Product A x B Chapter 6. Sets

e The range
ranR = {y|3z, (x,y) € R} (6.42)

For a computer program: the output it is able to give.

e The field
field R = domR UranR (6.43)

The fields a current computer program can use are finite subsets of Q.

e The inverse
R = {(y,2)|(z,y) € R} (6.44)

That is the “back” in “backé&forth” it is the “forth”.

e The image of a set A

R[A]={y €ranR|Fz € A, (z,y) € R} (6.45)

e The image of a set A under the inverse of a relation R, also known as the
“preimage”

R7'A] = {z € domR|Fy € A, (z,y) € R} (6.46)

So a relation R is a relation on A if
field R C A (6.47)

It is desirable to keep #A, the number of elements of A, as small as possible
and moreso that field R = A or the program might not be fully testable. It will
definitly not be fully testable if |A| > |N| even with infinite Turing machines °.

Complicated looking formulas for which a simple example is advised.
Consider f(z) = z? which maps the real line to itself f : R =& R.

o The domain is R
e The rangeis Rt
e The field is R

e The inverse is f~!(z) = /z. That means that®

F1{4h) =1{-2,2} (6.48)
F71((1,2) = (-v2,-1) U (1,V2) (6.49)
-1 =2 (6.50)

SUnder the assumption, of course that the number of steps of a Turing machine is at most
countable.
6The parentheses anotate a range of numbers, in the case of (1, 2) itis the set {1,...,2} ¢ P(N).
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So domain, range and field of f~!(z) are

dom f~! =Rt (6.51)
ran f~' =R (6.52)
fieldf '=R*UR=R (6.53)

e The image is the “result” of f(z) for every z € dom f; it is the range of f
or the image of dom f.

im{2,4} = £ ({2,4}) = {4,16} (6.54)
imf = R (6.55)

e The preimage is, by the definition of the image and the definition of the
inverse, the image of ran f.

im 1{4,16} = f~' ({4,16}) = {—4,-2,2,4} (6.56)
im'f=R (6.57)

With a function f : X — Y, thesets {41, A2,...,A,} C Xand {B1, Ba,...,Bp} C
Y the following (in)equalities should look familiar to the reader.

f(An u Am) = f(An) U f(Am) (658)
f_l(Bn U Bm) = f_l(Bn) U f_l(Bm) (6'59)
but
F(An N Ap) C f(An) N f(An) (6.60)
f Y B,NBy) =f (BN f Y(Bn) (6.61)

From the example with f(z) = z? it should be obvious that f(z) is not always
simply the inverse of f~'(z) for every z

f(f7Y(Bn)) C By (6.62)

FHf(4R) 2 An (6.63)

The average computer language designer has problems with the empty set

as described above, so to avoid it the mapping f shall be extended to f : C —+ C
because the square root is well defined for every z € C.

dom f =C (6.64)
domf1=C (6.65)
ran f =C (6.66)
ranf ' =C (6.67)
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Combinatorics
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Chapter 8

Statistical Functions

It is easy to lie with statistics. It is hard to tell the truth without
statistics. [ANDREJS DUNKELS]

He uses statistics as a drunken man uses lampposts—for
support rather than illumination. [ANDREW LANG]

8.1 Distributions

Some basic algorithms for the most common distributions are implemented;
least the probability function and the distribution function, but also the inverse
of the distribution function for almost all of the offered distributions.

8.1.1 Beta Distribution

The beta distribution is based on the beta function
I'(a)T'(b)

B = .
Probability Function
The probability function Pg(z, a,b) is implemented fora > 0, > 0,0 <z < 1
_ .a—1 (1 - CL')(b - 1)
Pp(z,a,b) =z 73(% 3 (8.2)

Distribution Function
The distribution function Dg(z, a,b) is implemented fora > 0,b > 0,2 > 0

1 ifa>0Ab>0Az>1

8.3
I(z,a,b) otherwise ®.3)

Dg(z,a,b) = {
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8.1. Distributions Chapter 8. Statistical Functions
where I(x, a, b) is the regularized beta function.

8.1.2 Binomial
Probability Function

The probability function P, (n, k, p) is implemented in two different ways for
n€eN0O<p<l1.

Py(n, k,p) = (:)p'“(l —p)F (8.4)

where (:) is the binomial coefficient calculated with factorials, following the

textbook. The other implementations uses the logarithm of the binomial coef-
ficient calculated with the log-Gamma function.

In (:) =InT(n+1)—(nT(k+1)+InT (n—k+ 1)) (8.5)

This second implementation returns the logarithm of the binomial probability
function In Py(n, k, p)

In Py(n, k,p) =Iln (Z) +klnp+ (n—k)In(1l — p) (8.6)

Distribution Function

The distribution function Dy(n, k,p) for 0 < p < 1is implemented with the
help of the regularized beta function.

Dy(n,k,p) =I(1 —p,k— |n|,1+ |n]) (8.7)

8.1.3 Cauchy
Probability Function

The probability function Pc(z, A, o) for o > 01is

1
Po(a,\0) = ———5— (8:5)
(1+ =210
Distribution Function
The distribution function De(z, A\, o) for o > 0is
1  atan (&2
Dc(z,A,0) = 5 + atan (*5%) (8.9)
™
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Inverse of the Distribution Function

The inverse of the distribution function Dgl(m, Ao)foro >0,0<z<1can
be represented in closed form

—00 ifxr=0
D' (z, M 0) = { +00 ifr=1 (8.10)
A — o cot(zm) else

8.1.4 F-Distribution
Probability Function

The probability function Pr (2, m,n) for z > 0,m > 0,n > 0 is implemented as

33

prtemn = (5 ) () -5 0 05)) gy
(8.11)

o3

Distribution Function

The distribution function Dg(z,m,n) for z > 0,m > 0,n > 0 is implemented
as
1 ifx = 400

1
1—I<1+(mw/n),%,%) else

where I(z; a, b) is the regularized beta function.

Pp(z,m,n) = { (8.12)

Inverse of the Distribution Function

The inverse of the distribution function D;l(x, m,n) for0 <z <1,m>0,n>
0 can be represented in closed form

400 ifz=1

Dt (z,m,n) + (8.13)

else

1
D' (1-=2,%,%)2

where D' is the inverse of the beta distribution function.

8.1.5 Geometric
Probability Function
The probability function Pg(z,p) for 0 < p < 1,z € Nis implemented as

1 ifx =+0c0Ap=0

p(1 —p)* else (8.14)

PG'(map) = {
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Distribution Function
The distribution function Dg(z,p) for 0 < p < 1,z € Nis implemented as

1 ifx=+00Ap=0

8.15
1—(1-p)ett else ®.15)

DG(xap) = {

Inverse of the Distribution Function

The inverse of the distribution function D;'(z,p) for 0 < z < 1,0 < p < 1 can
be represented in closed form

Dg'(z,p) = e 1-s e =1 (8.16)
max ([#(ﬂﬂ - 1,0) else

where max(a, b) denotes the maximum value of the two variables a, b.

8.1.6 Hypergeometric
Probability Function

The probability function Py (z,m,t,n) for {m,n,t} € Nn #0,m < t,n <tis
implemented as

0 ifr g NAz>mAn<zAn—z)>(t—m)
Pg(z,m,t,n) =< (7))

@ n—x

()

else
(8.17)

Distribution Function

The distribution function Dg(z, m,t,n) for {m,n,t} e NNn #0,m <t,n <tis
implemented by means of the distribution function of the discrete distribution.

DH(.Z’,m,t, n) =Dp (Z‘, (i)?zla PH(ia m, t, ’I”L)Z-Lzl) (818)

This might be one of the cases, where the code of the implementation is more
readable as the underlying algorithm.

Inverse Distribution Function

The inverse distribution function is similar to the distribution function except
that it uses the inverse distribution function of the discrete distribution instead
of the normal distribution function.

The inverse distribution function D'(z,m,t,n) for {m,n,t} € Nyn #
0,m < t,n < tis implemented by means of the distribution function of the
discrete distribution.

D' (z,m,t,n) = D' (z, (), Pa(i,m,t,n)l,) (8.19)
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8.2 Means

Let S be a sequence {a;}-, of data points, for example the content of the au-
thor’s ashtray after he gave up cigarette smoking—a handful of coins of differ-
ent values:

n=38 (8.20)
{a1,as,...,a,} = {(0.01,5), (0.02,8), (0.05,3), (0.10, 20), (8.21)
(0.20,15), (0.50, 21), (1.00, 4), (2.00, 3)}

Such a sequence can be described in several ways.

8.2.1 Range

The range ran(S) of a dataset S is the difference between the smallest and the
largest element.

ran(S) = max(S) — min(S) (8.22)

8.2.2 Harmonic Mean

The harmonic mean H(S) is defined by

n
H(S) === (8.23)
Zi:l a%—
8.2.3 Geometric Mean
The geometric mean G(S) is defined by
G(S) = (H ai> % (8.24)
i=1

With only two elements in the sequence (n = 2) the geometric mean is related
to the arithmetic mean A(S) and harmonic mean H(5)

G(S) = VAS)H(S) (8.25)

As every mean is a special case of the general power mean, the geometric mean
is the case My of the power mean. The geometric mean is, the name implies
it, describable by geometric means and is thus one of the three Pythagorean
means.

The following might be of additional interest ([44])

G(ai +c,a2 +¢,...,an + ¢)>c+ G(ay,as,...,an) (8.26)
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8.2.4 Root-Mean-Square

The root-mean-square RMS(.S) is defined for a discrete distribution by

RMS(S) = (i a,?> % (8.27)
=1

and for a continuous distribution by

RMS(S) = 4 /% (8.28)

It has been shown by [44] that for a positive constant ¢

RMS(a; +¢,as + ¢, ..,a, + ¢)<c+ RMS(ay, az, - - .,a,) (8.29)

8.2.5 Arithmetic Mean

The arithmetic mean is probably the most common mean, taught in primary
school and called the average. The arithmetic mean A(S) is defined by

- 1
A(S) = (2; ai> - (8.30)
Similar to the geometrical mean [44] showed

Alay + c,a2 +¢,...,a, + ¢)=c+ A(ay,as,...,a,) (8.31)

8.2.6 Logarithmic Arithmetic Mean
The logarithmic arithmetic mean Ar,(.S) is defined by

i=1

8.2.7 Power Mean

The power mean is the generalized algorithm for means. Every other mean
can be derived from the power mean. It is defined by

n
i=1

M,(S) = (1 Ha§> % with a; > 0 (8.33)

If we include maximum and minimum as means and denote the power mean
as M), the special cases of the power mean are
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M, | Common Symbol Name of Mean
M_ min Minimum
M_4 H Harmonic Mean

My G Geometric Mean

M, A Arithmetic Mean

M, RMS Root-Mean-Square

M max Maximum

8.2.8 Arithmetic Geometric Mean

This mean is actually a limit. The recurrence formulae for AGM(a, b) are

1
Qny1 = 2 (an + by) withag = a (8.34)
bnt1 = Vanby with by = b (8.35)

(8.36)

The mean is reached when a,, = by, but in praxi the iterating takes forth until
an = by + cor a, + ¢ = b, where cis an arbitrary small constant—the desired
precision for the numerical solution.

Some combinations of a and b have a closed form for AGM(a, b) for example
the famous Gauss constant. The Gauss constant is the reciprocal of AGM(1, v/2)

1 [C ()]
s 2

= 8.37
AGM(1,v/2)  2a3/24/2 (8.37)
The derivative
=b)E(%b) — 2bK (22
%AGM(a,b) = 8‘:”b (e =B EGw) . (azy) (8.38)
Tt [K(ZT"I;)]

where K(z) is the complete elliptic integral of the first kind and E(z) is that of
the second kind.
For the special case of AGM(1,b) a series expansion exist

x  w[l+n(ip)]

AGM(1,b) = — + 0 (b* (8.39)
( ) QIH(%I)) S[IH(%I))]Z ( )
Some properties of AGM(a, b)
c¢AGM(a, b) = AGM(ca, cb) (8.40)
AGM(a,b) = AGM (%(a +b), M) (8.41)
AGM (1, Viz mZ) = AGM(1 + 2,1 — ) (8.42)
1+b 2v/b
AGM(L,b) = —— AGM (1, 1—+b> (8.43)

PRAGMATIC MATHEMATICAL SERVICE 113



8.2. Means Chapter 8. Statistical Functions

8.2.9 Geometric Harmonic Mean

This mean is the limit of the recurrence formulae

2a,by, .
Ap+41 = m with apg = a (844)
bpt1 = Vapby with by = b (8.45)

It is implemented in a slightly different way

2
n+1 = 7T 1 with ag = H(S) (846)
o T
bt = Vanbn  with by = G(S) (8.47)

with the sum i + i # 0, H(S) the harmonic mean and G(S) the geometric
mean. The mean is reached when a,, = b, but in praxi the iterating takes forth
until a, = b, + ¢ or a, + ¢ = b, where ¢ is an arbitrary small constant—the
desired precision for the numerical solution. The geometric harmonic mean
Gr(S) is related to the arithmetic geometric mean AGM by

Gu(S) = lim a, = L

lim m (8.48)

8.2.10 Arithmetic Harmonic Mean

The arithmetic harmonic mean is identical to the geometric mean. The recur-
rence formulae are

1

Ant1 = 5 (an + by) withag = a (8.49)
2a,b, .

bn+1 = an T bn Wlth b(] = b (850)

Calculating the limits a,b — oo gives

Ap(S) = lim a, = lim b, = Vab (8.51)

n—oe

which is indeed the geometric mean.

8.2.11 Weighted Geometric Mean

The weighted geometric mean G, (S) puts a value w, € N to each element of
the sequence a,,.
S wplna,

Gul(8) = E@—1 Wn

(8.52)
with 37w, =1
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8.2.12 Weighted Arithmetic Mean

The weighted arithmetic mean A, (S) puts a value w, € N to each element of
the sequence ay,.

T Wnan
Ay (S) = 722’; " (8.53)
i=1n

with 370w, =1

8.2.13 Weighted Harmonic Mean

The weighted harmonic mean H,(S) puts a value w, € N to each element of
the sequence a,,.

Yict
H,(S) = &=t an 8.54
(5) ST (8.54)
with 37wy, =1
8.2.14 Pythagorean Means
Vo |
v |
Vi |
\|
A
H
G
([ ]
R 0 J g
a b A C
|

I
Figure 8.1: A(a,b) > G(a,b) > H(a,b)

The group of the arithmetic mean A(S), geometric mean G(S) and har-
monic mean H (S) are also called the Pythagorean means. The relation between
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them in case of positive arguments a,b > 0 is
A(S) =2 G(5) > H(S) (8.55)

The inequality is shown geometrically in figure 8.1.

8.2.15 Median

The median p, /, is the value in the middle of a sorted sequence S with length
n and defined by

|an/2] for odd(n)
H1/2 =

W for even(n) An #0

(8.56)

The efficiency of the median depends on the sample size N = 2n + 1 by the
way of ([50])
4n 2

lim — = — 8.57
N3oo m(2n+1) 7« 857)

8.2.16 Mode

The mode is the number of occurances of one value. In the case of the change
in the ashtray the mode is either (0.50,21) (unimodal) or all of the elements
(multimodal'). Only the unimodal mode is implemented directly.

8.2.17 Variance

The bias corrected sample variance o2 is defined by

n 2
o = i1 (C:Ln_—lA (5)) (8.58)

where A(S) is the arithmetic mean.

8.2.18 Logarithm of the Variance

The logarithm of the bias corrected sample variance o7 is defined by

i, (Ina, — A(S))’

n—1

(8.59)

o] =

where A(S) is the arithmetic mean

1That is, of course, not the exclusive name for “all elements occur the same number of times”,
only to distinguish from unimodal. There are distinct names for special values of multimodality
in the literature like “bimodal”, “trimodal” and so on.
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8.2.19 Co-Variance

The co-variance o2(a, b) between two sample sequences S, S5 is defined by

o(Sh, S) = ﬁ 3 (an = A(S1)) (ba — A(S2)) (8.60)

where A(S) is the arithmetic mean.

8.2.20 Standard Deviation

The standard deviation is the square root of the variance. Implemented here is
the standard deviation with the bias corrected variance.

o =+Vo? (8.61)
The standard deviation is used to calculate the confidence interval CI by
zor = V2erf 1 (CT) (8.62)
Some values ([123])
Range CI

o 0.6826895
20 0.9544997
3o 0.9973002
4o 0.9999366
50 0.9999994

To calculate the range of the standard deviation from the confidence interval
n=V2erf(CI) (8.63)

Some values ([123])

CI Range
0.800 | +1.281550
0.900 | +1.644850
0.950 | +£1.959960
0.990 | +£2.575830
0.995 | £2.80703¢0
0.999 | £3.29053¢0

8.2.21 Logarithm of the Standard Deviation

The logarithmic standard deviation is the square root of the logarithmic vari-
ance. Implemented here is the logarithmic standard deviation with the bias

corrected logarithmic variance.
o1 = +4/ 0} (8.64)
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8.2.22 Average Deviation

Also known as mean deviation oy, it is defined by
1S - 4s) .65
Om =5 2 i .
where A(S) is the arithmetic mean.

8.2.23 Geometric Standard Deviation

The geometric standard deviation o,

o, = exp ( J %Z (Ina; — 1nG(S))2> (8.66)

i=1

where G(.5) is the geometric mean.

8.2.24 Skewness
The skewness § is defined differently in different sources, the variation imple-
mented is 3
5= iy (0 = A(S))
(n —1) A3(S)
where A(S) is the arithmetic mean.

(8.67)

8.2.25 Kurtosis

The kurtosis is measured in two different ways: one is called “kurtosis proper”
B2 and the other “kurtosis excess” v ([1]). The difference is 3%. It is imple-
mented as

i (ai = AS)*
(n—1) A%(S)

B2 = (8.68)

Ly Ty (0= AS))*
(n—1) 41(S)

-3 (8.69)

8.2.26 Other Means

Other means, beside the obvious “money” and “blunt object” exists. One of
these is the Stolarsky mean S;, ([102])

S,(a,b) = (:(T__bb)) - (8.70)

2Yes, really!
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This mean is not implemented but the following ECMA-script code might give
an idea.

N
1| function stolarsky(a,b,r){
2 // Sanity checks omitted here
3 var nominator = Math.pow(a, r)—Math.pow(b,r);
4 var denominator = rx(a—b);
5
6 return Math.pow(nominator/denominator,1/(r—1));
7|}
J
The Stolarsky mean is derived from the mean value theorem
flz) = f(y
3K € [z,y]f'(§) = (=) = 7(y) (8.71)
z-Y
Solving for ¢ gives
£= p1 (f(ﬂf) - f(y)) ©.72)
T—Yy
Or in a more generalized form for n + 1 variables with the nth derivative
S”‘(a17 az, ..., an+1) = fn_l (n'f (a17 az, ..., an+1)) (873)

Some relations to other means

Stolarsky Mean Related Mean
lim,,_ Sr(a,b) Minimum
S_1(a,b) Geometric mean
lim, o Sr(a,b) | Logarithmic mean (f(z) =Inz)
S1(a,b) Power mean with exponent
lim,_,; S-(a,b) Identric® mean (f(z) = zInz)
Sa(a,b) Arithmetic mean
lim, o Sr(a,b) Maximum

And as we are at it, the identric mean I(a, b) mentioned in the table 8.2.26 is

defined by
1,..,/a®

The identric mean is not implemented but this short ECMA-script should give
an idea.

function identric(a,b){
// Sanity checks omitted here
var nominator Math.pow(a,a) ;
var denominator Math.pow(b,b);
var reciprocalE 1/Math.E;

o U e W N =
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7 return reciprocalE * Math.pow(nominator/denominator,a
-b);
s| }s

Generalization to more then the mere two variables follows, like the generaliza-
tion of the Stolarsky mean, by the mean value theorem for divided differences.
The identric mean has caught some interest from [3, 18], just to name two.
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Physics Functions

9.1 Astronomy

9.2 Mechanics

9.3 Quantum Mechanics
9.4 Thermodynamics

9.5 Electric

9.5.1 Capacitance of a Cylinder Capaciator (Coax-cable)
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String Functions

10.1 Comparing

10.1.1 Similarity (Ratcliff/Obershelp)
10.1.2 Difference (Levenshtein)

10.2 Sampling
10.3 Mixing
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Helper Functions

11.1 Lists (Arrays)
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Chapter 12

Miscellaneous Functions

121 N

12.1.1 Size of a Bloomfilter
12.1.2 Happy Numbers

A positive integer is a happy number if the sum of the squares of its digits—
iterated—reaches 1.

Let s be a concatenation d - - - d,, of decimal digits d,, € {0,1,2,3,4,5,6,7,8,9},
then the reccurence formula

dy...dy=d+---d (12.1)

reaches one of the points {0, 1, 4, 16, 20, 37, 42, 58, 89, 145}([84]). For s = 97 the
calculation is

130 =92 4+ 72 (12.2)
10=1%+3*+0° (12.3)
1=1%+0? (12.4)
s0 97 is a happy number, but

162 = 9% + 92 (12.5)
41 = 1% 4+ 62 + 22 (12.6)
17 =4% 412 (12.7)
50=12+4+72 (12.8)
25 = 5% 4 02 (12.9)
29 = 2% 4 52 (12.10)
85=22+4+92 (12.11)
89 = 8% + 52 (12.12)
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S0 99 is not a happy number and therefore called, admittedly not very inven-
tive, an unhappy number. These unhappy numbers never reach 1 but end in
periodical sequences. Carrying on with the example 99 at the state 89

145 = 8% 4+ 92 (12.13)
42 = 1% 4 42 4+ 52 (12.14)
20 = 4% 422 (12.15)
4=2%407 (12.16)
16 = 42 (12.17)
37=12+62 (12.18)
58 = 3% + 72 (12.19)
89 = 52 + 82 (12.20)
the period is
80 54252054516 —->37T—>58—>89 5425204 —>--- (12.21)

The numbers listed in the set {4, 16, 20, 37,42, 58,89, 145} end all in a periodical
sequence when used as a startvalue for formula 12.1. Only the numbers 0 and
1 from the set {0,1,4,16,20,37,42, 58,89, 145} consolidate. The number 0 is
excepted from the rule because the only number that consolidates at 0 is 0 itself.

Happy Bases

Happy number exist in other bases, too. There are even happy bases like base-2
and base-4, where all numbers are happy.

12.1.3 Roman Numbers < Arabic Numbers

The main difference between the base-5 Roman system and the base-10 Arabic
system is the lack of a symbol for zero in the Roman system.

The implementation is restricted to positive integers between 1 and 6 000
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12.1.4 Factorizing
122 Z

123 Q

12.3.1 Greatest Common Denominator
12.3.2 Least Common Multiple
12.3.3 Basic Operations

124 R

12.4.1 Rounding & Truncating

/ |

d

Figure12.1: 3 <7 < 4

It is not possible to represent all numbers in all possible number systems
with a finite number of symbols, so it is sometimes necessary to round this
number to make it representable in the number system of choice. Let the set
{0,...,9,.} be the alphabet ¥ with which we want to represent the number ,
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the ratio between the radius and the circumference of a circle on a plane by the
rules of the decimal system:

Truncation

Setting the length of the radius to r = 1 the circumference c of the circle with
that radius is ¢ = 2rm = 7. That number is irrational and transcendental and
can not be represented with that alphabet by concatenation of its elements, so
it is not possible to describe both, the length of the circumference of a circle
and its radius with that alphabet of symbols and the set of rules of the decimal
system. In theory. In praxi such a high precision of measurement is not needed
and not even possible in the real world. In the physical world every circle is a
polygon with a finite number of sides.

Imagine a tourist center in the future that thinks it is needed to advertise
the vast space of our universe to draw some tourists with fat purses but way
smaller home universes. Some numbers are needed and instead of pulling
these dimensions out of a very personal place—the one where the sun rarely
shines—a young trainee is appointed to that job. Completely unexperienced in
that number-pulling thing he walks to the next computer terminal.

Trainee: Hi!

Computer: LEAVE ME ALONE!

Trainee: What the ...?

Computer: SPEAK IN FULL SENTENCES, IDIOT!
Trainee: Iwant...

Computer: WHO CARES?

Trainee: Well, I...1...

Computer: WHAT!?

As this seems to last a little bit longer, we will leave that fruitless attempts to get
some computing time from a quite buggy Al and get our sliding rules out. The
periodicals in the rack down in the ante room are a little bit older—“Galileo
retracts!”, is not really news, is it?—but sombody left last month’s issue of
“Astronomy Today” with a little table on the backside: “State of the Art in
the Twentieth Century”. The radius of the universe is given there at 39 billion
lightyears. That is a bit off, but the footnote says it was a lower bound, what-
ever that might have meant at that time. That is, with 9460 730472 580 800 m
in a lightyear and £p ~ 1.616252 - 1073% m the diameter of the universe dy is

dy = 45657297058 955 063 938 049 264 594 877 531 474 052

(12.22)
313624 360 557 635814217 £p

If we cannot measure less than one meter any result that is more precise is use-
less. For a circle with a diameter of one meter no fractional digit of = is needed,
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for a circle with a diameter of 10 meters two fractional digits are needed but
also for 7 = 5 and one digit for r = 2, so to get maximal precision the number
of fractional digits needed is the number of digits of the next decimal exponent.

In 2r

So a mere 63 digits of 7 are needed to calculate the circumference of the uni-
verse as exact as physically possible.

g3 = 3.141 592653 589 793 238 462 643 383 279 502 884 197

(12.24)
169399 375 105 820 974 944 592
This gives the result
cy = 143436629 023 180 101 816 772 847 242 591 648 920 (12.25)

495 880 549 601 544 567 220 033 £p

A 63-digit number will probably impress a lot of potential tourists and we
should not be too mannerless and give the envelope—that with the calcula-
tion on its backside—to the sobbing picture of misery in the corner: the poor
boy formerly known as the BEST APPRENTICE IN THE UNIVERSE; at least to his
mother.

A decimal number z will be truncated n digits to result in the new number
!

x
x —rem (% forx € Z
7 = (1‘; ) (12.26)
T — rem (I) forz €
0™
where rem(%) is the remainder of the division £. Examples:
123000 = trunc(123456, 3) (12.27)
654.3 = trunc(654.321, 2) (12.28)

Rounding

After careful lecture of section 12.4.1 the attentive reader has most probably
observed the problems of the calculations in that section. In the case of the
universe the result with truncated 7 gives a polygon with a circumference
that is obviously smaller than the circumference of the universe and it remains
smaller, no matter which length £p has and after which digit 7 is truncated’.
The tourist center is saved from a lawsuit for “Exaggerated Advertising” but
that will not help us to resolve the problem of underestimating the real size of
the universe—especially if we get paid for the meter.

“Meter” is a good keyword. For example the price of the gasoline the au-
thor’s car needs to run its motor costs at the day of the writing 1.699 EUR per

1 Actually, the circumference of the polygon is equal to the circumference of the universe if
£p = 0 and 7 is not truncated at all.
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liter? but one EUR has only 100 cent in it>. Now the author, as forgetful as he
is, tries to fill up a nearly full tank and the clock of the pump stops at 5.00 £,
sold for the price of...how much?

Truncating 849.5 cent to 849 cent leaves the owner of the filling station with
a little loss every time the price is not an integer. A lump sum, you might think
but even lump sums add up.

The common solution is to round it—to the nearest integer in most cases
but it can be extended to any number. Basically: for any pair of digits dy,, dn1
of a number z there is a rule to change the value of d,, based on the value of
dn+1 and z to be able to get rid of dp,41.

Restricting the problem to points of the real line, the value of d,, can be
increased or decreased resulting in an in- or decrease of the value of z, not
necessarily in the same direction. The real line has two directions: towards oo
and towards —oo. Some rules for rounding add the directions “towards zero”
and “away from zero”, so we have 4 elements of direction and, in the case of
decimal digits, 10 different values for d,, 41 to build a rule from.

Symmetric Arithmetic The symmetric arithmetic rounding, also known as round-
half-up, is the most common rounding—teached in primary school and
used in accountance.

d, =

n

i >
{dn +1 if dpyy > 5 (1229

dn ifdpi1 <5

The value of z is ignored here, it acts on the absolute value of .
rnd 3.5 =4

rnd —3.5 = —4

Asymmetric Arithmetic Where the symmetric arithmetic rounding ignores the
sign of the number to be rounded the asymmetric arithmetic rounding
takes care of the sign.

i = dn +1 %f (s?gn(w)dnﬂ) >5 (12.30)
dn if (sign(z)dp41) < 5
Example:
rnd3.5 =4
rnd -3.5=-3

This rounding is the method for ECMA-scripts Math . round.

21f you, dear reader, found this lines in the future and, after a longwinded search to find out
what “EUR” was, starts to dream about how cheap gasoline was in that days: we were sure this
price was offensively exaggerated, harmful to economy and pure and utter greed of the oil com-
panies!

3Hence the name “cent”

PRAGMATIC MATHEMATICAL SERVICE 129



124. R Chapter 12. Miscellaneous Functions

Bankers method This method, known under many names is used when large
sets of numbers have to be rounded like in statistics or, as the name im-
plies, in financial institutes.

i >
dn 1 lf dn+1 -~ 6
ifdpr1 = 5 Aeven(d,)

d, =
" p ifd,, 1 <4
" if dpy1 = 5Ao0dd(dy)

(12.31)

Example:

md3.5=3
rmd4.5=5

Nearest Integer In this kind of rounding the value of the whole number z, or
better: the sign of x is significant. It is a variation of the Bankers Rounding
above and used in electronic computing. Here 2’ is the integer part of 2
and d,, is the digit at the place counting the tenths (1)

. ifd, = 5ANodd(z
sign(z)(|z| + 1) dd > 5 (2)

z = (12.32)
if d, = 5 Aeven(x)

ifd, <5
Example:
rmd3.5=4
md4.5 =4

Towards Zero Rounding towards zero is the same as truncating: subtracting
the fractional part of the absolute value of the number

rmdz = |z (12.33)

Away from Zero Rounding away from zero is a variation of truncating.

rndz = [z] (12.34)

Random Rounding Also known under the name “stochastic rounding”.

dnp +1 ifdpy1 > 5
d ={d, if dpyq < 5 (12.35)
dn+f() ifdn-i—1:5

Here f() is a function that returns an element of the set {0,1} with a
probability P = 1. As an example the out put of ten runs of rounding the
number 3.5: 3,3, 3, 4, 4, 3, 3, 4, 4, 4. The random number generator used
timings of radiactive decay*.

4A brick, a Geiger-Miiller-counter and an atomic clock
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12.4.2 Lucas Numbers

The Lucas numbers ([66]) are the same as the Fibonacci numbers with the ex-
ception that the sequence starts with 2 instead of 0.

125 C

12.5.1 Discrete Fourier Transformation

12.6 Leftovers fitting nowhere else
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Affinely Extended Real Numbers It is the set R U {—00, +00}, a 2-point com-
pactification of the real line. The common notation seems to be (R). This
setis not a field: for example +oco+(—00) and —oo+(+00) are not defined,

so the inverse axiom of the field axiom does not hold here.

Blancmange Recipe by Paul Bocuse in [13]

250 g almonds, peeled
2 bitter almonds
2/5¢ fresh cream
100 g sugar
1/2 tbl vanilla sugar
7-8 leaves gelatine
1/10¢ thick cream (créme fraiche)

some extra sugar

Soak the almonds® for at least 30 minutes in cold water, let them dripp
off and pound them in a mortar until it is a fine paste. Add some drips
of water after the first minutes of pounding and later the cream in small
quantities®. Put the paste in a clean cloth and wring it out over a bowl.
Solve the sugar, the vanilla sugar in that almond milk. Warm a small
quantity of that milk up to solve the gelatine in it. Add that mix to the
rest of the almond milk, let it cool off until the gelatine starts to set. Whip
the rest of the cream’ together with a bit of sugar and add. Fill into a
mold or dish, cool of in the refrigerator (at least 2 hours), unmold and
serve.

Blancmange Function The Blancmange-function is a continuous function but
nowhere differentiable. It is also called the “Takagi fractal curve” by [110]

5if they are not peeled: cook about five minutes, quench and press them between thumb and
forefinger to slip the peel of. It is quite a mess, the author suggests to buy peeled almonds, they
are not very expensive.

Yes, the whole process might last about 15-20 minutes!

7 1t is not in the recipe which of the two sorts of cream is meant to be whipped, but créme fraiche
is nearly impossible to whip
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because of [103]. The term Blancmange function seems more common,
for example in [104].

Figure 12.2: Cassini Ovales

Cassini Ovals The Cassini ovales are toric sections by a plane.The Gnu_plot
script for figure 12.2 was®

-

set

set
set
set
set
set
set
set
set

terminal postscript eps enhanced solid ”“Helvetica”
14

output “cassini.eps”;

parametric;

size ratio -1 1,1;

xrange[ —2.5:2.5]; set yrange[ —2.5:2.5];
trange[—2xpi:2*pi];

nokey;

zeroaxis;

samples 1000;

”

f(a,b,x) = a**2%cos(2xx)+ (sqrt(b**4 —a*%2 % sin(2x%x)

*%2));

g(a,b,x) = a**2%cos(2xx)— (sqrt(b*x4 —a%*2 * sin(2*x)

*%2));

8The gaps in parts of the curve are remnants of rounding errors caused by an insufficient num-

ber of samples.
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2| h(a,b,x) = f(a,b,x);

13| y(s,a,b) = sin(s)xsqrt(h(a,b,s));
4| X(s,a,b) = cos(s)*sqrt(h(a,b,s));
15| set multiplot

16| plot x(t,1,0.5),y(t,1,0.5);

7| h(a,b,x) g(a,b,x);

1| plot x(t,1,0.5),y(t,1,0.5);

19| plot x(t,1,0.75),y(t,1,0.75);
2| h(a,b,x) = f(a,b,x);

x| plot x(t,1,0.75),y(t,1,0.75);
2| plot x(t,1,0.9),y(t,1,0.9);

»| h(a,b,x) = g(a,b,x);

u| plot x(t,1,0.9),y(t,1,0.9);

»| plot x(t,1,0.95),y(t,1,0.95);
% | h(a,b,x) = f(a,b,x);

| plot x(t,1,0.95),y(t,1,0.95);
| plot x(t,1,0.99),y(t,1,0.99);
»| h(a,b,x) = g(a,b,x);

| plot x(t,1,0.99),y(t,1,0.99);
sl h(a,b,x) = f(a,b,x);

2| plot x(t,1,1),y(t,1,1);

| plot x(t,1,1.01),y(t,1,1.01);
u| plot x(t,1,1.05),y(t,1,1.05);
s | plot x(t,1,1.1),y(t,1,1.1);

% | plot x(t,1,1.15),y(t,1,1.15);
v | plot x(t,1,1.2),y(t,1,1.2);

s | plot x(t,1,1.25),y(t,1,1.25);
| plot x(t,1,1.3),y(t,1,1.3);

w0| plot x(t,1,1.35),y(t,1,1.35);
a| plot x(t,1,1.4),y(t,1,1.4);

2| plot x(t,1,1.45),y(t,1,1.45);
| plot x(t,1,1.5),y(t,1,1.5);

u| plot x(t,1,1.55),y(t,1,1.55);
5| plot x(t,1,1.6),y(t,1,1.6);

s | plot x(t,1,1.65),y(t,1,1.65);
v | plot x(t,1,1.7),y(t,1,1.7);

s | plot x(t,1,1.75),y(t,1,1.75);
| plot x(t,1,1.8),y(t,1,1.8);

s| plot x(t,1,1.85),y(t,1,1.85);
st plot x(t,1,1.9),y(t,1,1.9);

2| plot x(t,1,1.95),y(t,1,1.95);
| plot x(t,1,2),y(t,1,2);

s« | plot x(t,.85,2),y(t,.85,2);

s | plot x(t,.7,2),y(t,.7,2);

s | plot x(t,.5,2),y(t,.5,2);

s7| plot x(t,0,2),y(t,0,2);

ss| set nomultiplot
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Chaos Not defined. See for example in [118] for a list of some reasons, some
trials to define it nevertheless, and a long list of references.

Continued Fraction A continued fraction is one form of a representation of a
real number z with a sequence of integers. Two different notations are

common:
b
T =ag+ ! ; (12.36)
a + 2
bs
as +
az + -
= ao b b b (12.37)
air+ as+ az+

The notation used for example for the entries of [98]° is a list of the vari-

ables a,, with the variables b,, set to onel®.

1
T =ag+ 1 with ay,asz,a3,...>0 (12.38)
a; + 1
a2 + a3 + PP
For a randomly choosen example from [98]
[0;8,9,1,149083,1,1,1,4,1,1,1,3,4,1,1,1,15,...] (12.39)
the continued fraction is
1
=0+ 1 (12.40)
8
’ 9+ !
1
1+
149083 + 1
1
’ 1+ !
1 1
+ 44 ...

In a notation suitable for ECMA-script (just C&P)

0+1/8+1/(9+1/(1+1/(149083 + 1/(1 + 1/(1 +1/(1 +1/(4 (12.41)
+1/(1+1/Q+1/1+1/B+1/4+1/0+1/1+1/(1+1/(15
+ 1))

9The notation most seen in today’s literature is of the form [ag; a1,a2,...,an]
19The indexing starts not always at ag but from a; instead. That is not always made sufficiently
clear in the accompanying text, so a bit of extra care should be taken in these cases.
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Running gives 0.12345678910111, which is Champernowns constant to 13
digits precision. The real precision of the continued fraction 12.41 is 185

digits, the twenty digits a1g0—a200 are 95969799000102030405

Champernowns constant had been choosen as an example because it is
extremely easy to check the correctness of the result and because the con-
tinued fraction expansion has a weird pattern!! and is very hard to ob-

tain.

Getting a continued fraction expansion is quite simple, at least in theory:

Example 12.6.1. Some warm-up: we are looking for the continued frac-

tion expansion of /2. The rules are simple:

pPo=p
an = |pn]
_ 1
Pn+1 = o — an,

2-1

=v2+1

a2=[\/§+1J=2

(12.42)
(12.43)

(12.44)

(12.45)

(12.46)

(12.47)

(12.48)

(12.49)

We can stop here because it is obvious that the partial quotients are al-
ways 2. So, with the overline marking the periodical sequence, the con-

tinued fraction expansion of v/2 is [1;2].

1 The next partial quotient a1g is 4.5754 * 10165
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Computing the expansion with ten partial quotients (again fit for a simple

C&P)
1+1/2+1/2+1/2+1/2+1/(2+1/(2+ 12.50)
1/2+1/(2+1/(2+1/(2)))))))) '
8119
T 5741
~ 1.414213551 (12.51)
V2 ~ 1.414213562 (12.52)

Ten partial quotients give seven decimal digits precision, not a very high
converging speed but at least easy to compute.

The error is approximately the multiplicative inverse of the square of the
last denominator. In this case

1
——— = 3.034 x 1078 .
I 3.034 x 10 (12.53)
In the case of Champernowns constant
1 .
———_ ~4.164x 107> 12.54
490050000000% ) (1254

which is a bit off. Including partial quotient a5 gives an approxximation
of 1.989 x 10355, which even more off. The arithmetic mean of the expo-
nents is 189.5 which seems more passable in relation to the real precision
of 185 decimal digits.

Dirichlet g-function The Dirichlet f-function is defined by the sum

Blz)=> (-1)*@2n+1)7" (12.55)
n=0
Equivalent equations include
B(z) =277 (—1,3:, %) (12.56)

1 1 3

Where ((z,a) is Hurwitz’ (-function and ®(z, s, a) is the Lerch transcen-
dent.

Extending the B-function to the complex plane can be done by

B —2) = (%) sin (%rzf(z)ﬂ(z)) (12.58)
where I'(z) is the I'-function.
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Field A field is unsuprisingly defined by its axioms

Name Addition Multiplication
Commutativity a+b=b+a ab = ba
Associativity | (a+b)+c=a+ (b+¢) (ab)c = a(be)
Distributivity a(b+c) =ab+ac (a+b)c=ac+be
Identity a+0=a=0+a a-l=a=1-a
Inverse a+(-a)=0=(—a)+a|a;=1=Zawitha#0

Iverson Bracket The Iverson bracket ([48]) is a notation for a numerical equiv-
alence of a Boolean result. Given a mathematical statement S, then the
definition and notation is

5] = {O if S is false (12.59)

1 if S is true

The notation with the brackets [z] is sometimes used for the floor function
and for rounding to the nearest integer, too. The former is rarely seen,
the notation |z is probably the most common in the time of this writing.
The latter used should be made clear by the accompanying text or, if that
is not possible, with the named operator nint(z), which seems to be the
most common abbreviation for that kind of rounding.

0.6 T T T T

04 —

0.2 E

-0.2 —

04 | .

-0.6 1 1 1 1

Figure 12.3: Lemniscate

Lemniskate The lemniscate or Bernoulli’s lemniscate!? is a special form of

2Bernoulli described that curve in [9]
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Cassini ovals with the Cartesian equation
(2> + ) =22 (2° — ) (12.60)

He called it lemnicus the Latin form of the greek Anuvickos with the
meanings according to [65]

1. woolen fillet,ribbon by which chaplets were fastened

2. ribbon attached to bird’s feet

3. surgical bandage

4. pledget
The Latin translation of Ayuvickos would be taenia ([64]). Bernoulli’s

reasons to choose a latin transliteration of a greek word is unknown to
the author.

With the parametric equations for a lemniscate with width a

acost

r=—- 12.61
1+sin?¢ ( )
asintcost

= 12.62

4 1+sin?t ( )

a small Gnuplot script produced the figure 12.3

’

set terminal postscript eps enhanced solid ”“Helvetica”
14

2| set output “lemniscate.eps”;

3| set parametric;

4| set nokey;

5| set zeroaxis;

6

7

8

9

-

set size ratio -1 1,1

set trange[—pi:pi];

set xrange[ —1.1:1.1];set yrange[ —.6:.6];
x(s,a)=(axcos(s))/(1+(sin(s)*%2));

0| y(s,a)=(a*sin(s)*cos(s))/(1+(sin(s)**2));
un| plot x(t,1),y(t,1);

Logarithmic Spiral The logarithmic spiral has the polar equation
r = ae (12.63)

with r the distance from the origin and é the angle from the x-axis. The
two variables a and b are arbitray constants to describe form of the spiral.
The parametric equations are

x = acos fe’? (12.64)
y = asin e’ (12.65)
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Figure 12.4: Logarithmic Spirals with increasing number of points calulated

The picture in figure 12.4 has been plotted with Ghuplot with the polar
equation and ae = In 7 resulting in the script:

[
1| set polar

2| set zeroaxis

3| set size ratio —1

+| set multiplot

5| plot [—4xpi:4.5%xpi] [—5:8] [—8:8] log(pi)**t notitle
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with lines linetype 1

6| set samples 20

7| plot [—4xpi:4.5%pi] [—5:8] [—8:8] log(pi)**t notitle
with lines linetype 2

s| set samples 30

o| plot [—4xpi:4.5%xpi] [—5:8] [—8:8] log(pi)**t notitle
with lines linetype 3

10| set samples 50

un| plot [—4%pi:4.5%xpi] [—5:8] [—8:8] log(pi)*xt notitle
with lines linetype 4

2| set samples 100

13| plot [—4%pi:4.5%xpi] [—5:8] [—8:8] log(pi)*xt notitle
with lines linetype 5

1| set nomultiplot

Moébius function The M6bius function [73]

0 if n has one or more repeated prime factors
un) =<1 ifn=1
(-1)k if n is a product of k distinct primes
(12.66)

If u(n) # 0 the number n is squarefree.

The symbol u(z) is due to Mertens [72]

g-expansion For any real number z such that 0 < = < ‘(’ILT‘]% exists the serial
expansion
oo
z=> ang"" (12.67)
n=0

withn > 0,0 < a, < |q] (@, € SAN C S) and can be found with the
greedy algorithm ([2]).

Quotient Beneath the common interpretation as the ratio z = £ with g # 0 the
term “quotation” might describe integer division, mostly notated with
the symbol \ not to be confused with the sign used to annotate set sub-
traction.

p\qg= FJ (12.68)
q

Squarefree A number is called squarefree'? if its prime decomposition contains
no repeated factors. By convention the number 1 is included in this club.

13The German quadratfrei, a verbatim translation, is also used
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factors | squarefree

n
1 1 yes
2 2 yes
3 3 yes
4 2-2 no
5 5 yes
6| 2-3 yes
7 7 yes
812-2-2 no
9 3-3 no

10| 2-5 yes

The asymptotic density ¢ of such numbers n

0= 1 forn € N (12.69)

¢(2)
Here, as elsewhere, ((n) is Riemann’s {-function.

The equivalent for the integers on the complex plane, the Gaussian inte-
gers,

(12.70)
K is Catalan’s constant
Stirling Number of the Second Kind A Stirling number of the second kind

S(m, k) describes the number of collections €; of same-sized non-empty
subsets L,, of a power set P(S). More formaly:

#S>0 (12.71)

¢; C{P(9)\ o} (12.72)

L, C¢; (12.73)

¢ ={{Lo,L,..., Lo} : #L, = #L, AL, # @} (1274)

m = #8 (12.75)

k= #L, (12.76)

S(m, k) = #{€,€,,...,¢;} (12.77)

Some examples with the set S = {2, 3,4}:

P(S) = {@,{2}, {3}, {4},{2,3},{2,4},{3,4},{2,3,4}}  (12.78)
S(3,1) =#{{{2}, {3}, {4}}} =1 (12.79)
5(3,2) = #{{2,3},{2,4},{3,4}} =3 (12.80)
5(3,3) = #{{2,3,4}} =1 (12.81)
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Thue-Morse Sequence The Thue-Morse sequence can can be easily generated
with the substitution map

0 — 01 (12.82)
110 (12.83)

Interpreted as the concatenation of binary digits gives the Thue-Morse
constant.

Wronskian The Wronskian, or Wronski-determinant, is defined for a set of
functions differentiable over an interval I by

fi 2

fi o fa
W(flaf%"')fn)(w)z : : . ] : (1284)

(n.—l) f(n.—l) . (n.—l)

1 2 n

If the Wronskian is non-zero somewhere on the interval I the functions
are said to be linearly independent on the interval.

Example:

Given the interval R and the three functions f;(z) = 1, fo = zand f3 =
which are luckily defined for every « € R and are easily differentiable
without the help of a CAS'. The Wronskian is in that case

3

1 2 =z
W(fi, fo, f3)(z) =0 1 3a? (12.85)
0 0 6z

The determinant of a 3 x 3 square matrix can be calculated without much
headache by strictly following Sarrus’ rule

(a11a22a33 (12.86)
+(

+(a13a21a32

12023031

- (a13 a220a31
—(a12a21(133
—(

— — ' e

11023032

Filling the blanks and calculating'® the determinant comes out as 6z which
is evidently non-zero on the given interval, the real line, so the functions
are linearly independent.

14Tyst in case: the derivative of a constant is 0(zero), the derivative of a power is cx™ = nex™~ !

(with ¢ constant, the coeficient) which means for an exponent of 1(one): ! = 1- (=1 =1.40 =
1-1=1
I5Which has been left as an exercise to the reader, of course.
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For another example consider the three functions fi(z) = 1, fo(z) = z?
and f3(z) = 3 + 222 over the interval R. The Wronskian is

1 z2 34222
W(fi, fo, f3)(x) =0 2z 4z |=0 (12.87)
0 2 4

This result is a hint, that these functions might be linearly dependent,
but it is not mandatory! We can see by further inspection that f3(z) =
3f1(z) + 2f2(x). That rule has it’s continuation in the relation of the col-
umn vectors c3 = 3c; + 2c2 so these three functions are in fact linearly
dependent.

It is not sufficient to assume that the functions are linearly independent
from the value of the Wronski-determinant alone if that determinant is
zero everywhere. A counter-example is easily constructed with the two
functions fi(z) = z? |z| and fa(x) = 2® over the interval (—1,1) € R®. f
is differentiable at z = 0 and

—322 ifr <0
= 12.88
The Wronskians are then

3 3
s 40| =0 ifz >0

T x

W(fi, f2)(z) = . (12.89)

‘_3”“"2 o2 =0 e <0
-3z T

So for all z € (—1,1) the Wronski-determinant is W(f1, fo) = 0. Never-
theless it is obvious that these two functions are linearly independant on
(—1,1), moreso on any interval I = (a,b) with {0} € L.

16Note that contrary to most textbooks the derivative of the function f(z) = |z| does not exist.
Only if it is restricted to the real line derivatives exist for all points except 0
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