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Abstract

While there has been considerable research in
learning probabilistic graphical models from
data for predictive and causal inference, al-
most all existing algorithms assume a single
dataset of i.i.d. observations for all variables.
For many applications, it may be impossi-
ble or impractical to obtain such datasets,
but multiple datasets of i.i.d. observations
for different subsets of these variables may
be available. Tillman et al. [2009] showed
how directed graphical models learned from
such datasets can be integrated to construct
an equivalence class of structures over all
variables. While their procedure is correct,
it assumes that the structures integrated
do not entail contradictory conditional inde-
pendences and dependences for variables in
their intersections. While this assumption
is reasonable asymptotically, it rarely holds
in practice with finite samples due to the
frequency of statistical errors. We propose
a new correct procedure for learning such
equivalence classes directly from the multi-
ple datasets which avoids this problem and
is thus more practically useful. Empirical re-
sults indicate our method is not only more ac-
curate, but also faster and requires less mem-
ory.

1 INTRODUCTION

Probabilistic graphical models are widely used for pre-
dictive and causal inference. Learning the structure
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of these models from data has remained an active re-
search area for several decades. Almost all existing
structure learning methods, however, assume that a
single dataset of i.i.d. observations for all variables
of interest is available. For many applications, such
datasets may be impossible or impractical to obtain.
For instance, fMRI researchers are often unable to ob-
tain reliable measurements of activation in every brain
region of interest each time an fMRI machine is used
with a particular individual due to differences across
individuals, fMRI machine settings, and other random
factors. Instead, such researchers often obtain multiple
datasets which each measure different subsets of these
brain regions, e.g. a researcher interested in brain re-
gions X,Y, and Z may obtain i.i.d. observations for
three different individuals resulting in three datasets
with useful recordings only for regions X and Y , Y and
Z, and X and Z, respectively. Data are structured
similarly in other domains, e.g. econometric models
of the U.S. and U.K. economies share some but not
all variables due to differences in financial recording
conventions and U.S. states report both federal and
state-specific educational testing variables [Tillman et
al., 2009]. We will say that a set of datasets has over-
lapping variables when data are structured in this way.

While the above problem is superficially similar to
learning structure from a dataset where individual cell
values are missing at random, e.g. questionnaire data
where some individuals randomly skip questions, it is
a fundamentally different (and much harder) type of
missing data problem: if we concatenate datasets with
overlapping variables to form a single dataset with
missing cells, the cells which are missing do not occur
at random; instead, there is a highly structured pat-
tern to the missing data and certain subsets of vari-
ables are never jointly recorded in the concatenated
dataset. Tillman et al. [2009] showed that the state
of the art Structural EM algorithm [Friedman, 1998]
for learning directed graphical models from datasets
with cell values missing at random is unsuccessful (in
terms of both accuracy and computational tractabil-
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ity) when used with a dataset formed by concatenating
multiple datasets with overlapping variables. Thus, a
fundamentally different approach is needed.

Tillman et al. [2009] proposed the first such approach,
the integration of overlapping networks (ION) algo-
rithm, based on the observations in Danks [2005]. ION
learns an equivalence class of directed acyclic struc-
tures from multiple datasets with overlapping variables
under the assumption that the datasets correspond to
the same data generating process and thus do not en-
tail contradictory conditional independences and de-
pendences given perfect statistical information. While
this is a reasonable theoretical assumption (which we
also make in the procedure described later in this pa-
per), the way it is incorporated into how ION combines
information from different datasets leads to many
practical problems, which result from the fact that
statistical information is never perfect. ION assumes
that equivalence classes of structures over the variables
recorded in each dataset can first be obtained using a
structure learning algorithm which detects possible la-
tent confounders (unobserved variables that may be
common causes of two or more observed variables)
such as FCI [Spirtes et al., 1999]. The ION algorithm
then takes these structures as input and, through a
series of graph theoretic operations, attempts to learn
an equivalence class of possible structures which may
correspond to the true data generating process for the
union of variables measured in each dataset. How-
ever, since each equivalence class in the input set is
learned independently using a different dataset, it is of-
ten the case that different equivalence classes in the in-
put set entail contrary conditional independences and
dependences due to statistical errors (even when the
datasets correspond to the same data generating pro-
cess). When ION encounters contradictory input, it
may either produce inaccurate results or (frequently)
no results since it cannot find any structures which are
consistent with the entire input set. Another serious
practical limitation of ION is that it often requires sig-
nificant memory resources and computation time even
for small numbers of variables.

In this paper, we present a new method for learning
equivalence classes of directed graphical models from
multiple datasets with overlapping variables that is
asymptotically correct and complete, effectively deals
with the above problem of contrary statistical infor-
mation from different datasets, and requires signifi-
cantly less memory and computation time than ION.
Rather than learning structures for each dataset in-
dependently and attempting to integrate the results,
we learn equivalence classes directly from the multi-
ple datasets. This allows us to avoid the problem of
contradictory input and also results in a more robust

learning procedure since we can often use more than
one dataset at once when performing any statistical
test, which results in a more accurate test. Section
2 provides necessary background material; section 3
presents new graph theoretic results which our learn-
ing algorithm relies on; section 4 describes the method
for testing conditional independence using multiple
datasets with overlapping variables that our learning
algorithm uses; section 5 describes and discusses the
learning procedure; section 6 presents empirical results
with real and artificial data; finally section 7 discusses
conclusions and future research.

2 BACKGROUND

A mixed graph G = 〈V, E〉 is a graph consisting of
edges in E which connect distinct nodes in V. Edges
in mixed graphs can be of three types: (i) directed
(→), (ii) undirected (−), and bidirected (↔). An edge
between two nodes X and Y points toward Y if it
has an arrowhead at Y . Nodes connected by an edge
are adjacent. An edge sequence is any ordered set of
nodes 〈V1, . . . , Vn〉 such for 1 ≤ i < n, Vi and Vi+1

are adjacent. If each node in an edge sequence occurs
exactly once then it is a path. An edge sequence or
path is directed if each edge between consecutive nodes
points in the same direction. X is an ancestor of Y
and Y is a descendant of X if there is a directed path
which points from X to Y . If such a path consists
of only X and Y , then X is a parent of Y and Y
is a child of X. X and Y are spouses if they are
connected by a bidirected edged. AdjXG , PaX

G , ChX
G ,

AnX
G , DeX

G , and SpX
G refer to the set of adjacencies,

parents, children, ancestors, descendants, and spouses
of X in G, respectively. G contains a directed cycle
between two nodes X and Y if X → Y is in E and Y ∈
AnX

G . G contains an almost directed cycle between two

nodes X and Y if X ↔ Y is in E and Y ∈ AnX
G .

A path 〈X,Z, Y 〉 is a v-structure (collider) if both
edges along the path point towards Z, e.g. X →
Z ← Y , X ↔ Z ← Y . Such a path is unshielded
if X and Y are not adjacent. A path is an im-
morality if it is unshielded and a v-structure. A trek
between X and Y is a path with no v-structures.
A path 〈V1, . . . , Vn〉 is an inducing path between V1

and Vn relative to Z ⊆ V if for 1 < i < n, (i) if
Vi /∈ Z, then 〈Vi−1, Vi, Vi+1〉 is a v-structure, and (ii)
if 〈Vi−1, Vi, Vi+1〉 is a v-structure, then Vi ∈ AnV1

G
∪

AnVn

G
. A path 〈V1, . . . , Vn−2, Vn−1, Vn〉 in G is discrim-

inating for Vn−1 and 〈Vn−2, Vn−1, Vn〉 is a discrimi-
nated triple if (i) for 1 < i < n−1, 〈Vi−1, Vi, Vi+1〉 is a
v-structure and Vi ∈ PaVn

G
and (ii) V1 and Vn are not

adjacent.

A maximal ancestral graph (MAG) is a mixed graph
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that is useful for modeling systems with possible latent
confounders. They are a natural extension of directed
acyclic graphs (DAGs), which are simply special cases
of MAGs where all edges are directed. Bidirected edges
in MAGs indicate that the corresponding nodes have
an unobserved common cause, while undirected edges
indicate that the corresponding nodes have an asso-
ciation due to the presence of sample selection bias.1

Below, we define MAGs formally.

Definition 2.1 (Maximal ancestral graph (MAG)). A
mixed graph G = 〈V, E〉 is a maximal ancestral graph
(MAG) if
(i) G does not contain any directed cycles or almost
directed cycles and for any undirected edge X − Y in
G, X and Y have no parents or spouses (G is ancestral)
(ii) For any distinct nodes Vi, Vj ∈ V, if Vi and Vj are
not adjacent in G, then G contains no inducing paths
between Vi and Vj with respect to ∅ (G is maximal).

The first condition used to define MAGs simply ex-
tends the acyclicity property of DAGs. The second
ensures that MAGs have a separation criteria that con-
nects their topology to individual conditional indepen-
dence relations in the same way that the well known
d-separation criterion [Verma and Pearl, 1991] is used
to connect DAG topology to such relations.

Definition 2.2 (m-separation). A path 〈V1, . . . , Vm〉
in a MAG G = 〈V, E〉 is active (m-connected) relative
to Z ⊆ V\{V1, Vn} if for 1 < i < n
(i) if Vi ∈ Z, then 〈Vi−1, Vi, Vi+1〉 is a v-structure
(ii) if 〈Vi−1, Vi, Vi+1〉 is a v-structure, then {Vi}∪DeVi

G

and Z have nonempty intersection.
If there are no active paths between nodes X and Y
relative to Z in G, then X and Y are m-separated rela-
tive to Z, denoted msepG(X,Y |Z). If X and Y are
not m-separated with respect to Z, this is denoted
¬msepG(X,Y |Z).

If a MAG consists of only directed edges (it is a DAG),
then m-separation reduces to d-separation. A MAG
essentially represents the collection of DAGs over the
observed and unobserved variables represented by the
MAG which have the same d-separation and ancestral
relations among the observed variables [Zhang, 2008].

Most structure learning algorithms assume that the
Markov and faithfulness conditions hold (see Spirtes
et al. [2000] for a discussion and justifications). When
these conditions hold and the true data generating
mechanism can be represented as a DAG G = 〈V, E〉,
then d-separation in G is equivalent to conditional in-
dependence in an associated joint probability distri-
bution over variables corresponding to the nodes in
G. Thus, if we are only able to observe a subset of

1See [Zhang, 2007] for a example.

these variables W, conditional independence among
these variables is equivalent to m-separation in a MAG
H = 〈W,F〉 which respects the d-separation and an-
cestral relations in G. In general, however, there will
be more than one MAG for which conditional indepen-
dence in an associated joint probability distribution is
equivalent to m-separation. Two MAGs which have
exactly the same sets m-separation relations are said
to be Markov equivalent. This occurs if and only if two
MAGs share the same adjacencies, immoralities, and
discriminated triples which are v-structures [Zhang,
2007]. The complete set of MAGs which have exactly
the same sets m-separation relations is a Markov equiv-
alence class of MAGs.

This leads to another type of structure which is used
to represent Markov equivalence classes of MAGs, re-
ferred to as a partial ancestral graph (PAG) [Richard-
son and Spirtes, 2002; Zhang, 2007]. PAGs are mixed
graphs with a third type of endpoint, ◦. Whenever
an edge has a ◦-marked endpoint this indicates that
there is at least one MAG in the Markov equivalence
class that has an arrowhead at that endpoint and at
least one such MAG that has a tail at that endpoint
[Zhang, 2007]. PAGs are analogous to PDAGs or pat-
terns which are used to represent Markov equivalence
classes of DAGs.

A number of structure learning algorithms directly
use the results of conditional independence tests (or
similarly likelihood-based scoring) to derive the set of
(Markov equivalent) graphical structures which could
have generated some observed data, subject to as-
sumptions. The FCI algorithm [Spirtes et al., 1999;
Zhang, 2007] is a structure learning algorithm for sin-
gle datasets which detects possible latent confounders
and sample selection bias using conditional indepen-
dence tests. It outputs a PAG representing the com-
plete Markov equivalence class of MAGs over the ob-
served variables. The ION algorithm for multiple
datasets with overlapping variables also detects such
information (with respect to the complete variable
set). However, it outputs a set of PAGs since observ-
ing only subsets of the complete variable set in a given
dataset further underdetermines the true data gener-
ating process. When some variables are never jointly
observed in a single dataset, some possible conditional
independences or dependences are unknown. Thus,
the equivalence class may consist of multiple Markov
equivalence classes, which requires multiple PAGs to
represent.

3 MARGINAL MAG PROPERTIES

An attractive property of MAGs is that they are closed
under marginalization and conditioning [Richardson
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and Spirtes, 2002]. If G = 〈V, E〉 and H = 〈W,F〉
are both MAGs where W ⊂ V and msepH(X,Y |Z)⇔
msepG(X,Y |Z) for all X,Y ∈ W and Z ⊆ W\{X,Y },
then H is a marginal MAG with respect to G, i.e. H
is the graph which results after marginalizing the vari-
ables V\W from G. Below, we provide a correct pro-
cedure for marginalizing variables from MAGs, which
restates results from Richardson and Spirtes [2002].

Theorem 3.1 (Richardson and Spirtes [2002] Defi-
nition 4.2.1, Theorem 4.12, Corollary 4.19, Theorem
4.18). Let G = 〈V, E〉 be a MAG and let W ⊂ V.
Then the marginal MAG H = 〈W,F〉 with respect to
G is formed by applying the following steps:
(i) Make H an undirected graph such that for X,Y ∈
W, X and Y are adjacent in H if and only if ∀Z ⊆
W\{X,Y }, there is an active path between X and Y
with respect to Z in G
(ii) For each undirected edge X −− Y in F , if there
does not exist a trek π = 〈X, . . . , Y 〉 in G such that no
edges along π are bidirected and either (a) all directed
edges along π towards X or (b) all directed edges along
π point towards Y , make X −− Y bidirected in H
(iii) For each undirected edge X −− Y in F , if there
exists a trek π = 〈X, . . . , Y 〉 in G such that no edges
along π are bidirected and all directed edges along
π point toward X, and there does not exist a trek
π′ = 〈X, . . . , Y 〉 such that no edges along π′ are bidi-
rected and all directed edges along π′ point toward Y ,
make X −− Y directed towards X in H.

The goal of the learning algorithm for multiple
datasets with overlapping variables described in sec-
tion 5 is essentially to find all MAGs whose marginal
MAGs for each set of variables observed in a dataset
entail the same conditional independences and depen-
dences observed in the data for those variables. In
order to avoid repetitively going through the marginal-
ization procedure above, we give two conditions below
which can be used to check, for a MAG G = 〈V, E〉 and
a MAG H = 〈W,F〉 where W ⊂ V, whether H is a
marginal MAG with respect to G.

Theorem 3.2. Let G = 〈V, E〉 and H = 〈W,F〉 be
MAGs where W ⊂ V. H is Markov equivalent to the
marginal MAG with respect to G if the following hold
for all X,Y ∈ W.
(i) if X and Y are adjacent in H, then G has an
inducing path between X and Y with respect to V\W
(ii) msepH(X,Y |Z) ⇒ msepG(X,Y |Z) for every
Z ⊆ W\{X,Y },

The proof of theorem 3.2 is included in the appendix.

4 ROBUST CONDITIONAL

INDEPENDENCE

Let X ⊥⊥D Y |Z indicate that X and Y were found
to be conditionally independent given Z using some
conditional independence test with a dataset D. As
noted in section 1, a major shortcoming of ION is that
each dataset is dealt with independently which often
leads to contradictory statistical information. In or-
der to have a more robust test for conditional indepen-
dence, we would like to deal with all of the data at once
and use every dataset containing the relevant variables
for a given conditional independence test whenever we
test for a particular conditional independence. A sim-
plistic way of doing this is to concatenate the values
for the relevant variables from each such dataset and
use a standard conditional independence test for sin-
gle datasets. This, however, can lead to a number
of well known statistical problems and often does not
work well in practice, as shown in Tillman [2009]. An-
other well studied solution, which often works much
better in practice, involves using metaanalysis meth-
ods. Tillman [2009] used these methods for structure
learning with multiple datasets which all contained the
same variable sets and found that among well known
metaanalysis methods, Fisher’s method [Fisher, 1950]
performed best (see Tillman [2009] or Fisher [1950])
for details). We will thus use this method for testing
conditional independence in the learning algorithm de-
scribed in section 5. This method assumes we have an
appropriate conditional independence test that can be
used with single datasets. Let D = 〈D1, . . . ,Dn〉 be
multiple datasets with overlapping variables over vari-
able sets 〈V1, . . . ,Vn〉, respectively, and V =

⋃n

i=1
Vi.

Algorithm 1 shows how this method, as described in
Tillman [2009], can be adapted for the overlapping
variables case to test whether X and Y are condi-
tionally independent given Z for any X,Y ∈ V and
Z ⊆ V\{X,Y } at a significance level α. We will
use X ⊥⊥D Y |Z to indicate conditional independence
using this method (algorithm 1 returns true) and
X ⊥⊥Di

Y |Z to indicate conditional independence us-
ing the specified test for a single datasets Di. In al-
gorithm 1, F−1

χ2

k

denotes the χ2 quantile function with

k degrees of freedom. Note that algorithm 1 assumes
that X, Y , and Z are jointly measured in at least one
dataset (since the χ2 quantile function is undefined for
0 degrees of freedom).

5 INTEGRATION OF

OVERLAPPING DATASETS

In this section, we describe our learning algorithm
for multiple datasets with overlapping variables, In-
tegration of Overlapping Datasets (IOD). IOD takes
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Input : D, X,Y,Z, α
Output: true or false

k ← 01

foreach Di ∈ D do2

if {X,Y } ∪ Z ⊆ Vi then3

pi ← p-value associated with X ⊥⊥Di
Y |Z4

k ← k + 15

else6

pi ← 17

end8

end9

if −2

n
∑

i=1

log(pi) < F−1

χ2

2k

(1− α) then return true
10

else return false

Algorithm 1: Test Independence

multiple datasets as input and outputs a complete
equivalence class of PAGs over the union of variables
measured in each dataset representing MAGs that
may correspond (indistinguishably, based on condi-
tional independence information) to the true data gen-
erating mechanism responsible for each dataset. Let
D = 〈D1, . . . ,Dn〉 be datasets with overlapping vari-
ables over variable sets 〈V1, . . . ,Vn〉, respectively, and
let V =

⋃n

i=1
Vi. We will assume each dataset corre-

sponds to the same data generating process and thus,
given perfect statistical information, should not entail
contrary conditional independences and dependences
for common sets of variables. We will also assume
that the Markov and faithfulness conditions hold and
the data generating process is acyclic, but may contain
latent and selection variables, provided that a variable
is a selection variable if and only if it is a selection vari-
able in the true data generating process with respect
to V and all variable sets 〈V1, . . . ,Vn〉 which contain
the variable. Proofs are included in the appendix.

The first stage of the algorithm, shown as algorithm
2, obtains the independence facts and inducing paths,
in data structures Sepset and IP, respectively, neces-
sary to build the equivalence class that will be output
by exploiting theorem 3.1 as well as partially oriented
mixed graphs G and G1, . . . ,Gn which are used in the
second stage of the algorithm. The independence facts
recorded in Sepset are obtained by applying the ini-
tial steps of FCI to the variable sets V1, . . . ,Vn and
using algorithm 1 with D for independence testing. In
order to obtain the necessary independence facts, algo-
rithm 2 accesses a set PossSep({X,Y },H) for a given
graph H = 〈W,F〉. This set is constructed by con-
sidering each Z ∈ W\{X,Y } and path 〈V1, . . . , Vm〉
in H such that V1 = X, Vm = Y and for some
1 < j < m, Vj = Z. If in such a path, either (i)
for 1 < k < j, either Vk−1 and Vk+1 are adjacent or

〈Vk−1, Vk, Vk+1〉 is a v-structure or (ii) for j < k < m,
either Vk−1 and Vk+1 are adjacent or 〈Vk−1, Vk, Vk+1〉
is a v-structure, Z is added to PossSep({X,Y },H).
The graphs G1, . . . ,Gn output by algorithm 2 contain
the adjacencies of the sets of MAGs which represent
the independence and dependence facts of the joint
distribution which generated D over the variable sets
V1, . . . ,Vn. These graphs are used to generate IP as
required by theorem 3.1. G contains a (not neces-
sarly proper) superset of the edges and (not necessarly
proper) subset of the immoralities in any MAG over
V which represents the independence and dependence
facts of the joint distribution which generated D.

The second stage of the algorithm, shown as algorithm
3, uses G, G1, . . . ,Gn, Sepset, IP, output by algo-
rithm 2, to construct the equivalence class of MAGs
over V which represent the independence and depen-
dence facts of the joint distribution which generated
D. Algorithm 3 considers the edges that may be
removed and possible immoralities and discriminated
triples which may oriented in G to produce a graph in
this equivalence class. P(X) is used to represent the
powerset of X. Once a graph has been constructed
which contains a possible set of adjaencies, immorali-
ties, and discriminated triples which are v-structures,
the complete set of orientation rules from Zhang [2007]
which are necessary to convert this graph into a PAG
(R1, . . . ,R10) are invoked. In order to determine
whether this candidate PAG should be included in the
equivalence class, it is converted to a MAG in its rep-
resented equivalence class. If this MAG satisfies the
conditions of theorem 3.1, then the PAG that was pre-
viously created is added to the equivalence class.

The following two theorems show that IOD is correct,
or each MAG in the equivalence class that is output
is consistent with D, and complete, or if there exists a
MAG H that is consistent with D, then H is contained
in the equivalence class that is output.

Theorem 5.1 (correctness). ∀J ∈ G, resulting from
algorithm 3, J is a PAG such that for any MAG J ′

in the equivalence class represented by J , for 1 ≤ i ≤
n, X,Y ∈ Vi and Z ⊆ Vi\{X,Y }, X ⊥⊥D Y |Z ⇔
msepJ ′(X,Y |Z).

Theorem 5.2 (completeness). Let H be a MAG such
that for 1 ≤ i ≤ n, X,Y ∈ Vi and Z ⊆ Vi\{X,Y },
X ⊥⊥D Y |Z ⇔ msepH(X,Y |Z). Then ∃J ∈ G such
that H can be formed by orienting ◦-marked edges in
J .

6 EXPERIMENTAL RESULTS

We compared the performance of IOD to ION in simu-
lation under 4 different scenarios: (a) 2 datasets which
each measure 7 out of 8 total variables, e.g. {X1, X2,
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Figure 1: Precision, Recall, Runtime, and Memory usage for scenarios (a), (b), (c), and (d)

X3, X4, X5, X6, X7} and {X1, X2, X3, X4, X5, X6,
X8}, (b) 2 datasets which each measure 13 out of 14
total variables, (c) 3 datasets which each measure 6 out
of 8 total variables, (d) 3 datasets which each measure
12 out of 14 total variables. For each case, we gener-
ated a random directed acyclic structure with 8 or 14
variables to represent some ground truth data generat-
ing process using the MCMC procedure in Melançon et
al. [2000]. We then sampled from this structure using
different multivariate Gaussian parameterizations for
each dataset. We used the resulting datasets as input
to IOD and the structures which resulted from using
each of these datasets as input to FCI (separately) as
input to ION. The partial correlation-based Fisher Z-
transformation conditional independence test, which
is correct for multivariate Gaussian distributions, was
used for all single dataset conditional independence
tests. We always used the significance level α = .05.
We compared the accuracy of the MAGs in the equiva-
lence classes output by IOD and ION to the true data
generating graph using two metrics: precision: the
number of edges in a structure that are in the ground

truth structure (with correct orientations) / the num-
ber of edges in that structure; recall : the number of
edges in a structure that are in the ground truth struc-
ture (with correct orientations) / the number of edges
in the ground truth structure. For each scenario, we
repeated this procedure 100 times for 10 different sam-
ple sizes (of each dataset) ranging from 100 to 1000.
Figure 1 shows, for each scenario, the best precision
and recall scores for MAGs in the equivalences classes
output by IOD and ION averaged over the 100 tri-
als. We also measured total runtime and maximum
memory usage and report these averages. Error bars
indicate 95% confidence intervals. We see that in each
scenario IOD significantly outperforms ION in preci-
sion and recall. Closer examination of the results re-
veals the relatively poor performance of ION is largely
due to ION returning no results for many of the 100
trails due to statistical errors, as mentioned in section
1. We also see that IOD is noticeably faster and re-
quires significantly less memory than ION.

We also applied IOD to real datasets with overlap-
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LACC

LOCC

LIFG

LIPL

LMTG

RACC

ROCC

RIPL

RIFG

RMTG I

Figure 2: Edges in fMRI datasets equivalence class

ping variables from an fMRI experiment where sub-
jects were presented pairs of words and asked whether
they rhymed. Activity in the following brain regions
was recorded: left occipital cortex (LOCC), left mid-
dle temporal gyrus (LMTG), left anterior cingulate
(LACC), left inferior frontal gyrus (LIFG), left inferior
parietal (LIPL), right occipital cortex (ROCC), right
middle temporal gyrus (RMTG), right anterior cingu-
late (RACC), right inferior frontal gyrus (RIFG), right
inferior parietal (RIPL). For each measurement, an in-
put variable (I) indicates the presentation of rhyming
or non-rhyming words. 160 measurements were ob-
tained for 13 subjects, which resulted in 13 datasets
where 1-4 variables were not recorded. Figure 2 shows
every edge that is present in some MAG in the equiv-
alence class. The darkness of edges indicates the per-
centage of MAGs in the equivalence class which con-
tain the edge, where darker edges are present in more
MAGs than lighter edges. While we do not have
ground truth for this data, our results are consistent
with domain knowledge which indicates a cascade of
interactions in the left side of the brain after the pre-
sentation of the stimulus eventually leading to a cas-
cade in the right side. Some edges observed are also
consistent with the results in Ramsey et al. [2010],
which analyzed this data using a different method.

7 CONCLUSION

Learning from multiple datasets with overlapping vari-
ables is an important problem with many practical ap-
plications that has mostly been ignored in the existing
structure learning literature. As data collection in-
creases, such data may become ubiquitous for many
problems researchers are interested in. Developing
methods which can take advantage of such data may

prevent researchers from engaging in the costly and
time consuming process of collecting new data for a
specific variable set of interest and allow analysis of
variable sets which may be impossible to jointly ob-
serve in a single dataset, e.g. due to privacy or ethics.

Tillman et al. [2009] provided the first correct proce-
dure for addressing this problem, but their procedure
often is not useful in practice since each dataset is dealt
with separately and this often leads to contradictory
statistical information. We introduced the IOD algo-
rithm, which we showed is asymptotically correct and
complete in section 5, to provide a new structure learn-
ing procedure for such data which can effectively deal
with this problem, as is shown in our simulations. By
working with as many datasets as possible whenever
performing a conditional independence test, IOD not
only avoids problems which result from contradictory
statistical information, but also is more accurate and
robust since statistical decisions are often made us-
ing more data than would be used by ION. In section
6 we also showed that IOD significantly outperforms
ION not only in terms of accuracy, but also in terms
of runtime and memory usage. We also showed that
IOD can be successfully applied to real fMRI data.

IOD and ION both learn structure using only the con-
ditional independences and dependences entailed by
a dataset. Recently, a number of algorithms have
emerged which use non-Gaussianity [Shimizu et al.,
2006] and nonlinearity [Hoyer et al., 2009] observed in
the data to learn structure. These algorithms typically
produce an equivalence class that is much smaller than
the Markov equivalence class, often a unique struc-
ture. Thus, a significant open problem is how to adapt
such methods to use multiple datasets with overlap-
ping variables and (hopefully) produce an equivalence
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Input : D

Output: G, G1, . . . ,Gn, Sepset, IP

G ← 〈V, E〉 where X ◦−◦ Y ∈ E for all X,Y ∈ V1

for 1 ≤ i ≤ n do2

Gi ← 〈Vi, Ei〉 where X ◦−◦Y ∈ Ei for all X,Y ∈ Vi3

j ← 04

while j ≤ |Vi| − 2 and there exists an edge5

X ◦−◦ Y ∈ Ei such that
∣

∣

∣
AdjXGi

\{Y }
∣

∣

∣
≥ j do

foreach X ◦−◦ Y ∈ Ei do6

if ∃S ⊆ AdjXGi
\{Y } such that |S| = j and7

X ⊥⊥ DY |S then

Sepset({X,Y },Gi)← S8

Remove X ◦−◦ Y from Gi and G9

end10

end11

j ← j + 112

end13

foreach unshielded path 〈X,Z, Y 〉 in Gi do14

if Z /∈ Sepset({X,Y },Gi) then make15

〈X,Z, Y 〉 an immorality in Gi

end16

foreach adjacent X,Y in Gi do17

if ∃S ⊆ PossSep({X,Y },Gi) such that18

X ⊥⊥ DY |S then

Sepset({X,Y },Gi)← S19

Remove X ◦−◦ Y from Gi and G20

else21

Add 〈{X,Y },Vi〉 to IP22

end23

end24

foreach unshielded path 〈X,Z, Y 〉 in Gi do25

if Z /∈ Sepset({X,Y },Gi) then26

if an edge exists between either X and Z27

or Y and Z in G then orient the edge to
have an arrowhead endpoint at Z

end28

end29

end30

Algorithm 2: Obtain Independence Facts, Inducing
Paths, and Initial Structure

class that is significantly smaller than the equivalence
classes produced by IOD and ION. Another open prob-
lem is how to use background knowledge about the
true data generating process to efficiently guide the
IOD search procedure. We hope to address these prob-
lems in future research.
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Input : G, G1, . . . ,Gn, Sepset, IP

Output: G

RemEdges← ∅1

foreach adjacent X,Y ∈ G do2

if for 1 ≤ i ≤ n,3

{X,Y } ∪AdjXG ∪PossSep({X,Y },G) * Vi and

{X,Y } ∪AdjYG ∪PossSep({X,Y },G) * Vi

then add {X,Y } to RemEdges

end4

G← ∅5

foreach E ∈ P(RemEdges) do6

Let H be the induced subgraph of G containing7

only edges between pairs of variables not in E

PossImm← ∅8

foreach Z ∈ V and pair X,Y ∈ AdjZG do9

if τ = 〈X,Z, Y 〉 can be made an immorality10

in H and for 1 ≤ i ≤ n, either Z /∈ Vi or
Sepset({X,Y },Gi) is undefined then add τ
to PossImm

end11

foreach t ∈ P(PossImm) do12

Ht ← H13

Make each τ ∈ t an immorality in Ht14

Let J be the graphs resulting from iteratively15

applying rules R1−R10 in Zhang [2007] to
Ht and whenever a discriminating path is
found in R4, creating two graphs where the
discriminated collider has either orientation
foreach J ∈ J do16

J ′ ← J17

If an edge in J ′ has only one ◦ endpoint,18

make that endpoint a tail
Let K be the induced subgraph of J ′

19

containing only ◦−◦ edges
Orient K such that K has no immoralities20

For each edge in K, give the corresponding21

edge in J ′ the same endpoint orientations
if (i) J ′ is a MAG, (ii) each Sepset set22

corresponds to an m-separation in J ′,
and (iii) for each 〈{X,Y },Vi〉 ∈ IP, there
is an inducing path between X and Y with
respect to V\Vi in J ′ then add J to G

end23

end24

end25

Algorithm 3: Construct the Equivalence Class
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APPENDIX - SUPPLEMENTARY

MATERIAL

Proofs

First, we need the following result to prove theorem
3.2.

Theorem 7.1 (Richardson and Spirtes [2002] Theo-
rem 4.2). Let G = 〈V, E〉 be a MAG and W ⊂ V.
Then for X,Y ∈ W there is an inducing path between
X and Y in G with respect to V\W if and only if
∀Z ⊆ W\{X,Y }, there is an active path between X
and Y with respect to Z in G.

Theorem 3.2. Let G = 〈V, E〉 and H = 〈W,F〉 be
MAGs where W ⊂ V. H is Markov equivalent to the
marginal MAG with respect to G if the following hold
for all X,Y ∈ W
(i) if X and Y are adjacent in H, then G has an
inducing path between X and Y with respect to V\W
(ii) msepH(X,Y |Z) ⇒ msepG(X,Y |Z) for every
Z ⊆ W\{X,Y },

Proof. Let J = 〈W,F ′〉 be the MAG which results
from marginalizing V\W from G according to theorem
3.1.

If there is an edge between X and Y in H, then there
is an inducing path between X and Y with respect to
V\W in G. Also, ∀Z ⊆ W\{X,Y }, there is an active
path between X and Y with respect to Z by theorem
7.1. This entails an edge between X and Y in J by
theorem 3.1(i). If X and Y are not adjacent in H
then ∃Z ⊆ W\{X,Y } such that msepH(X,Y |Z) ⇒
msepG(X,Y |Z) ⇒ msepJ (X,Y |Z) ⇒ X /∈ AdjYJ .
Thus, H and J have strictly the same adjacencies.

Let 〈X,Z, Y 〉 be an immorality in H. Then,
∃S ⊆ W\{X,Y,Z} such that msepH(X,Y |S) ⇒
msepG(X,Y |S) ⇒ msepJ (X,Y |S) ⇒ 〈X,Z, Y 〉 is an
immorality in J since X and Z are adjacent in J ,
Y and Z are adjacent in J , X and Y are not ad-
jacent in J , and there is a conditioning set which
m-separates X and Y in J which does not include
Z. Let 〈X,Z, Y 〉 be unshielded, but not an im-
morality in H. Then, ∃S ⊆ W\{X,Y,Z} such that
msepH(X,Y |S ∪ {Z}) ⇒ msepG(X,Y |S ∪ {Z}) ⇒
msepJ (X,Y |S∪{Z})⇒ 〈X,Z, Y 〉 is not an immoral-
ity in J since X and Z are adjacent in J , Y and Z
are adjacent in J , X and Y are not adjacent in J ,
and Z is in a conditioning set which m-separates X
and Y in J . Thus, H and J have strictly the same
immoralities.

Now let 〈φ1, . . . , φk〉 be all of the discriminating paths
in H which have discriminated triples corresponding
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to discriminated triples in J and for 1 ≤ i ≤ k, let
φi = 〈Wi,1, . . . ,Wi,ni

〉, i.e. 〈Wi,ni−2,Wi,ni−1,Wi,ni
〉

is the discriminated triple for φi. Then for 1 ≤
i ≤ k, 〈Wi,ni−2,Wi,ni−1,Wi,ni

〉 is a v-structure
in H if and only if every set which m-separates
Wi,1 and Wi,ni

in H does not contain Wi,ni−1, and
〈Wi,ni−2,Wi,ni−1,Wi,ni

〉 is not a v-structure in H if
and only if every set which m-separates Wi,1 and Wi,ni

in H contains Wi,ni−1. Due to this mutual exclu-
sivity, if 〈Wi,ni−2,Wi,ni−1,Wi,ni

〉 is a v-structure in
H and not a v-structure in J , or vice versa, then
there exists at least one pair {X,Y } ⊆ W such
that ∃S,T ⊆ W\{X,Y } such that msepH(X,Y |S)
and ¬msepH(X,Y |T), but ¬msepJ (X,Y |S) and
msepJ (X,Y |T). However, since msepH(X,Y |S) ⇒
msepG(X,Y |S) ⇒ msepJ (X,Y |S), it must be the
case that 〈Wi,ni−2,Wi,ni−1,Wi,ni

〉 is a v-structure
in J if and only if 〈Wi,ni−2,Wi,ni−1,Wi,ni

〉 is a v-
structure in H for 1 ≤ i ≤ k.

Thus, since H and J have strictly the same ad-
jacencies, immoralities, and discriminated triples
that are v-structures, they are Markov equiva-
lent. Thus, msepH(X,Y |Z) ⇔ msepJ (X,Y |Z) ⇔
msepG(X,Y |Z), for X,Y ∈ W and Z ⊆
W\{X,Y }.

For theorem 5.1, we first need several results. The
following theorem, which is a restatement of lemmas
and a theorem from Spirtes et al. [1999], and the corol-
lary which follows says that algorithm 2 performs every
conditional independence test necessary to determine
the correct equivalence class.

Theorem 7.2 (Spirtes et al. [1999], Lemma 12,
Lemma 13, Theorem 5). Let Sepset be constructed
as in algorithm 2 and for 1 ≤ i ≤ n, let Ki =
〈Vi, Ei〉 be a MAG. Then for 1 ≤ i ≤ n, if for
all X,Y ∈ Vi such that Sepset({X,Y },Gi) is de-
fined, msepKi

(X,Y |Sepset({X,Y },Gi)), then for all
X,Y ∈ Vi and S ⊆ Vi\{X,Y }, X ⊥⊥ D Y |S ⇒
msepKi

(X,Y |S).

Corollary 7.1. Let Sepset be constructed as in algo-
rithm 2 and K = 〈V, E〉 be a MAG. Then for 1 ≤ i ≤ n,
if for all X,Y ∈ Vi such that Sepset({X,Y },Gi)
is defined, msepK(X,Y |Sepset({X,Y },Gi)), then for
all X,Y ∈ Vi and S ⊆ Vi\{X,Y }, X ⊥⊥D Y |S ⇒
msepK(X,Y |S).

Proof. Let i be any integer between 1 and n such
that for all X,Y ∈ Vi such that Sepset({X,Y },Gi)
is defined, msepK(X,Y |Sepset({X,Y },Gi)). Let
X and Y be any such X,Y ∈ Vi such that
∃S ⊆ Vi such that X ⊥⊥ D Y |S, and let S be
any such set. Assume ¬msepK(X,Y |S). Now,
let Ki be the marginal MAG for K with respect

to Vi. Since MAGs are closed under marginaliza-
tion, ¬msepK(X,Y |S) ⇒ ¬msepKi

(X,Y |S). How-
ever, also since MAGs are closed under marginal-
ization, it must then be the case that for all
X ′, Y ′ ∈ Vi such that Sepset({X ′, Y ′},Gi) is defined,
msepKi

(X ′, Y ′|Sepset({X ′, Y ′},Gi)). Thus, by corol-
lary 7.1, X ⊥⊥D Y |S ⇒ msepKi

(X,Y |S), which is a
contradiction. Thus, msepK(X,Y |S).

We can now show that for any J added to G, the
output set of algorithm 3, the corresponding mixed
graph which results at line 21 before J is added to
this set is a MAG which entails every conditional in-
dependence and dependence true in the marginal dis-
tributions which generate each Di ∈ D.

Lemma 7.1. Let J be a partially oriented mixed
graph that is added to G in algorithm 3 at line 22.
Then the corresponding graph J ′ resulting at line 21
is a MAG such that for 1 ≤ i ≤ n, X,Y ∈ Vi and
S ⊆ Vi\{X,Y }, X ⊥⊥D Y |S⇔ msepJ ′(X,Y |S).

Proof. If J is added to G, then J ′ must be a MAG
since condition (i) at line 22 must be satisfied. Since
condition (ii) at line 22 must also be satisfied, by corol-
lary 7.1 it must be the case that for 1 ≤ i ≤ n,
X,Y ∈ Vi, and S ⊆ Vi\{X,Y }, X ⊥⊥ D Y |Z ⇒
msepJ ′(X,Y |Z). For each Gi constructed in algorithm
2 and X,Y ∈ Vi, X and Y are not adjacent if and only
if Sepset({X,Y },Gi) is defined. Thus, also by corol-
lary 7.1, 〈{X,Y },Gi〉 ∈ IP if and only if X and Y are
adjacent in a MAG Hi such that for X ′, Y ′ ∈ Vi and
S ⊆ Vi\{X

′, Y ′}, X ′ ⊥⊥D Y ′|S ⇔ msepHi
(X ′, Y ′|S).

Since condition (iii) at line 22 must also be satis-
fied, by theorem 3.2, for 1 ≤ i ≤ n, X,Y ∈ Vi and
S ⊆ Vi\{X,Y }, X ⊥⊥D Y |S⇔ msepJ ′(X,Y |S).

Next we need to show that any J is a PAG. To do this,
we first show that if H is a marginal MAG for J ′, then
orientations in J ′ which correspond to immoralities in
H must be the same as in H.

Lemma 7.2. Let G = 〈V, E〉 and H = 〈W,F〉 be
MAGs such that W ⊂ V and for any X,Y ∈ W and
S ⊆ W\{X,Y }, msepH(X,Y |S) ⇔ msepG(X,Y |S).
If 〈X,Z, Y 〉 is an immorality in H, then (i) if X and
Z are adjacent in G, then the edge between X and Z
in G contains an arrowhead endpoint at Z and (ii) if
Y and Z are adjacent in G, then the edge between Y
and Z in G contains an arrowhead endpoint at Z.

Proof. Since H is a MAG and 〈X,Z, Y 〉 is an
immorality in H, ∃S ⊆ W\{X,Z, Y } such that
msepH(X,Y |S) ⇒ msepG(X,Y |S). Since X and Z
are adjacent inH and Y and Z are adjacent inH, there
are inducing paths between X and Z and between Y
and Z in G by theorem 7.1. Thus, if either X and Z are
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adjacent in G or Y and Z are adjacent in G, then either
(i) 〈X,Z, Y 〉 is a triple in G, (ii) 〈X,Z, Y 〉 is not a triple
in G, but G contains a path 〈X,Z, V1, . . . , Vn, Y 〉 where
〈Z, V1, . . . , Vn, Y 〉 is an active path with respect to S in
G, or (iii) 〈X,Z, Y 〉 is not a triple in G, but G contains
a path 〈X,V1, . . . , Vn, Z, Y 〉. where 〈X,V1, . . . , Vn, Z〉
is an active path with respect to S in G.

Case (i):
Since msepG(X,Y |S), 〈X,Z, Y 〉 must be a v-structure
in G since for any other orientations of the endpoints
at Z along 〈X,Z, Y 〉, 〈X,Z, Y 〉 is an active path with
respect to S since Z /∈ S. Thus, the edge between X
and Z in G contains an arrowhead endpoint at Z and
the edge between Y and Z in G contains an arrowhead
endpoint at Z.

Case (ii):
Since 〈Z, V1, . . . , Vn, Y 〉 is an active path with respect
to S in G and Z /∈ S, 〈X,Z, V1, . . . , Vn, Y 〉 must be an
active path with respect to S in G unless 〈X,Z, V1〉 is
a v-structure in G. Thus, the edge between X and Z
in G contains an arrowhead endpoint at Z.

Case (iii):
By symmetry with case (ii), 〈Vn, Z, Y 〉 must be v-
structure in G. Thus, the edge between Y and Z in G
contains an arrowhead endpoint at Z.

Now we show that J must also have these orientations.

Corollary 7.2. Let G = 〈V, E〉 be a PAG and H =
〈W,F〉 be a MAG such that W ⊂ V and for any
X,Y ∈ W, S ⊆ W\{X,Y }, and MAG K represented
by G, msepH(X,Y |S ⇔ msepK(X,Y |S). If 〈X,Z, Y 〉
is an immorality in H, then (i) if X and Z are adjacent
in G, then the edge between X and Z in G contains
an arrowhead endpoint at Z and (ii) if Y and Z are
adjacent in G, then the edge between Y and Z in G
contains an arrowhead endpoint at Z.

Proof. This follows from the fact that lemma 7.2 can
be applied to H and any such MAG K, so the orien-
tation is invariant in the Markov equivalence class for
K and hence present in G.

Finally, we can show that J is a PAG.

Lemma 7.3. Any partially oriented mixed graph J ∈
G, the output set of algorithm 3, is a PAG.

Proof. For any J added to G at line 22 of algorithm
3, the associated J ′ created at line 21 is a MAG such
that for 1 ≤ i ≤ n, X,Y ∈ Vi and S ⊆ Vi\{X,Y },
X ⊥⊥D Y |S⇔ msepJ ′(X,Y |S) by lemma 7.1 and the-
orem 3.2 since J ′ must satisfy conditions (i), (ii), and
(iii) at line 22 of algorithm 3. Thus, there exists a
PAG K with the same adjacencies, immoralities, and

v-structures at discriminated triples as J ′, i.e. J ′ is a
MAG represented by K. The partially oriented mixed
graph Ht resulting at line 14 must have the same ad-
jacencies and immoralities as K since R1, . . . ,R10 do
not add or remove edges or creat additional immoral-
ities. Any oriented endpoints along edges of Ht which
do not correspond to immoralities in K must have been
made at line 27 of algorithm 2 to the corresponding
edge in G. Any such orientation corresponds to an end-
point of an immorality in a MAG L = 〈Vi,F〉 for some
1 ≤ i ≤ n such that for X,Y ∈ Vi and S ⊆ Vi\{X,Y },
X ⊥⊥D Y |S⇔ msepL(X,Y |S). Thus, by corollary 7.2,
K must have these orientations. Since Ht thus con-
tains no orientations that are not present in K, has
the same adjacencies and immoralities as K, and the
orientation rulesR1, . . . ,R10 are correct and complete
for obtaining a fully oriented PAG [Zhang, 2007], J is
a PAG.

The last result we need to prove theorem 5.1 is that
the steps in lines 18-21 of algorithm 3 produce a MAG
from a PAG. This result is proven in Zhang [2006].

Theorem 7.3 (Zhang [2006] Lemma 3.3.4). Let G be
a fully oriented PAG and H be the mixed graph which
results from orienting ◦-marked edges in G as follows:
(i) if an edge has one ◦ endpoint, then make this end-
point a tail
(ii) if an edge has two ◦ endpoints then let this edge
have the same orientations as the corresponding edge
in graph which results from orienting edges in the in-
duced subgraph of G containing only edges with two
◦ endpoints such that this graph is a DAG with no
immoralities
Then H is a MAG in the equivalence class represented
by G.

Now, we can prove that algorithm 3 produces a correct
equivalence class.

Theorem 5.1 (correctness). ∀J ∈ G, resulting from
algorithm 3, J is a PAG such that for any MAG J ′

in the equivalence class represented by J , for 1 ≤ i ≤
n, X,Y ∈ Vi and S ⊆ Vi\{X,Y }, X ⊥⊥D Y |S ⇔
msepJ ′(X,Y |S).

Proof. By lemma 7.3, if J is added to G at line 22 of
algorithm 3, then J is a PAG. By theorem 7.3, the cor-
responding mixed graph J ′ resulting at line 21 of algo-
rithm 3 is a MAG in the equivalence class represented
by J . By lemma 7.1, for 1 ≤ i ≤ n, X,Y ∈ Vi and
S ⊆ Vi\{X,Y }, X ⊥⊥D Y |S ⇔ msepJ ′(X,Y |S). Any
MAG in the equivalence class represented by J other
than J ′ is, by definition, Markov equivalent to J ′ and
thus entails the same conditional independences and
dependences.
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Now, in order to prove theorem 5.2, we need several
results. We first show that any MAG H which entails
every conditional independence and dependence true
in the marginal distributions which generate each Di ∈
D must contains a subset of the edges and superset of
the immoralities of the partially oriented mixed graph
G produced by algorithm 2.

Lemma 7.4. Let H be a MAG such that for 1 ≤
i ≤ n, X,Y ∈ Vi and S ⊆ Vi\{X,Y }, X ⊥⊥D Y |S ⇔
msepH(X,Y |S). Then the partially oriented mixed
graph G which results from algorithm 2 contains a su-
perset of the edges in H.

Proof. G is initially constructed at line 1 of algorithm
2 as a complete graph with no orientations. An edge
between two nodes X and Y in G is only removed
in algorithm 2 if for some 1 ≤ i ≤ n such that
X,Y ∈ Vi, ∃S ⊆ Vi\{X,Y } such that X ⊥⊥D Y |S ⇒
msepH(X,Y |S). For any such S, there is an active
path between X and Y with respect to S in H unless
X and Y are not adjacent in H.

Lemma 7.5. Let H be a MAG such that for 1 ≤
i ≤ n, X,Y ∈ Vi and S ⊆ Vi\{X,Y }, X ⊥⊥D Y |S ⇔
msepH(X,Y |S). Then the partially oriented mixed
graph G which results from algorithm 2 contains a sub-
set of the immoralities in H among common edges.

Proof. If 〈X,Z, Y 〉 is an immorality in G and 〈X,Z, Y 〉
is a path in H, then X and Y are not adjacent in H
by lemma 7.4. Since 〈X,Z, Y 〉 is an immorality in
G, then for some 1 ≤ i ≤ n, Sepset({X,Y },Gi) is
defined, but Z /∈ Sepset({X,Y },Gi). Thus, for some
1 ≤ i ≤ n, there exists a MAG Hi = 〈Vi,F〉 such that
for X ′, Y ′ ∈ Vi and S ⊆ Vi\{X

′, Y ′}, X ′ ⊥⊥D Y ′|S ⇔
msepHi

(X ′, Y ′|S) and 〈X,Z, Y 〉 is an immorality in
Hi. Thus, by lemma 7.2, 〈X,Z, Y 〉 is an immorality
in H.

Now we show that some graph with the same adjacen-
cies as H is considered in algorithm 3.

Lemma 7.6. Let H be a MAG such that for 1 ≤
i ≤ n, X,Y ∈ Vi and S ⊆ Vi\{X,Y }, X ⊥⊥D Y |S ⇔
msepH(X,Y |S). Then some partially oriented mixed
graph considered at line 7 of algorithm 3 must contain
the same adjacencies as H.

Proof. By lemma 7.4, H must contain a subset of the
edges in the partially oriented mixed graph G. Let
X and Y be two adjacent nodes in G. If X and Y
are not adjacent in H, then ∃S ⊆ V\{X,Y } such
that msepH(X,Y |S) since H is a MAG. By corol-
lary 7.1, for any such S, it must be the case that
for 1 ≤ i ≤ n, S * Vi\{X,Y }. Also, by corollary
7.1, for one such S, it must be the case that either

S ⊆ AdjXH or S ⊆ PossSep({X,Y },H) and for one
such S, it must be the case that either S ⊆ AdjYH or
S ⊆ PossSep({X,Y },H). Thus, any such X and Y
must be added to RemEdges at line 3 of algorithm 3
so some partially oriented mixed graph with the same
adjacencies as H must be considered at line 7 of algo-
rithm 3.

Now we show that some graph with the same adjacen-
cies and immoralities as H is considered in algorithm
3.

Lemma 7.7. Let H be a MAG such that for 1 ≤
i ≤ n, X,Y ∈ Vi and S ⊆ Vi\{X,Y }, X ⊥⊥D Y |S ⇔
msepH(X,Y |S). Then some partially oriented mixed
graph considered at line 7 of algorithm 3 must contain
the same adjacencies and immoralities as H.

Proof. By lemma 7.6, some H′ must be considered at
line 7 of algorithm 3 which has the same adjacencies
as H. Since by lemma 7.5 H must contain a super-
set of the immoralities among common edges in the
partially oriented mixed graph G and H′ contains a
subset of the edges in G, H must contain a superset
of the immoralities in H′. Let 〈X,Z, Y 〉 be an im-
morality in H that is not present in H′. If for some
1 ≤ i ≤ n, Z ∈ Vi and Sepset({X,Y },Gi) is defined,
then 〈X,Z, Y 〉 would be made an immorality at line
27 of algorithm 2. Thus, 〈X,Z, Y 〉 must be included
in PossImm so some partially oriented mixed graph
with the same adjacencies and immoralities as H must
be considered at line 14 of algorithm 3.

Now, we can prove that algorithm 3 produces a com-
plete equivalence class.

Theorem 5.2 (completeness). Let H be a MAG such
that for 1 ≤ i ≤ n, X,Y ∈ Vi and S ⊆ Vi\{X,Y },
X ⊥⊥D Y |S ⇔ msepH(X,Y |S). Then ∃J ∈ G such
that H can be formed by orienting ◦-marked edges in
J .

Proof. By lemma 7.7, some Ht must be considered at
line 14 of algorithm 3 which has the same adjacen-
cies and immoralities as H. Any oriented endpoints
along edges of Ht which do not correspond to im-
moralities must have been made at line 27 of algorithm
2 to the corresponding edge in G. Any such orienta-
tion corresponds to an endpoint of an immorality in
a MAG L = 〈Vi,F〉 for some 1 ≤ i ≤ n such that
for X,Y ∈ Vi and S ⊆ Vi\{X,Y }, msepL(X,Y |S) ⇔
X ⊥⊥D Y |S⇔ msepH(X,Y |S) by corollary 7.1. Thus,
by corollary 7.2, any PAG J which represents H must
have these orientations. Thus, since the orientation
rules R1, . . . ,R10 are correct and complete for ob-
taining a fully oriented PAG [Zhang, 2007], J ∈ J
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constructed at line 15 of algorithm 3. When J is con-
sidered at line 16 of algorithm 3, the corresponding J ′

constructed at line 21 of algorithm 3 is a MAG that is
Markov equivalent to H by theorem 7.3. Thus, J ′ sat-
isfies conditions (i) and (ii) considered at line 22. By
theorem 7.1, J ′ also satisfies condition (iii) considered
at line 22. Thus, J is added to G.


